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Quantifying the Value of Ownership of
Yield Analysis Technologies

Charles Weber, Vijay Sankaran, Kenneth W. Tobin, Jr., Member, IEEE, and Gary Scher

Abstract—A model based on information theory, which
allows yield managers to determine optimal portfolio of yield
analysis technologies for both the R&D and volume production
environments, is presented. The information extraction per
experimentation cycle and information extraction per unit time
serve as benchmarking metrics for yield learning. They enable
yield managers to make objective comparisons of apparently
unrelated technologies. Combinations of four yield analysis
tools—electrical testing, automatic defect classification, spatial
signature analysis and wafer position analysis—are examined in
detail to determine the relative value of ownership of different
yield analysis technologies.

Index Terms—Analysis, information theory, learning, manage-
ment, ownership, value, yield.

I. INTRODUCTION

COST-OF-OWNERSHIP models, which have been cus-
tomized for the semiconductor industry over the last 15

years [1]–[6], give managers a very good idea of the true cost
of technologies. However, managers of integrated circuits also
need to assess the value of ownership (VoO) of technologies,
in order to make optimal decisions on which technologies to
purchase or develop.

Manufacturers of integrated circuits invest billions of dol-
lars in process equipment, and they are interested in obtaining
as rapid a return on their investment as possible. Rapid yield
learning is thus becoming an increasingly important source of
competitive advantage. The sooner a potentially lucrative cir-
cuit yields, the sooner the manufacturer can generate a revenue
stream. Conversely, rapid identification of the cause of yield loss
can restore a revenue stream and prevent the destruction of ma-
terial in process [7], [8].

A series of studies has shown that shortening the defect
learning cycles accelerates yield learning by increasing ex-
perimentation capacity. Defects must be detected, analyzed
and eliminated within increasingly shorter time periods.
Consequently, successful yield improvement tends to consist
of a total systems approach that involves electrical testing,
defect inspection andin situ fault detection. A defect reduction
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team can thus develop true yield management capability by
correlating data obtained from methods with short data cycles
to those extracted from methods with longer ones. Once defect
databases become large enough, signals from short-cycle
methods can foreshadow effects on final yield [8]–[14].

Yield managers have a large but expensive arsenal of yield
improvement tools and methods at their disposal, whose data
cycles can vary by orders of magnitude. Different tools perform
different functions under different conditions, and some combi-
nations of tools and methods work better than others do. Yield
managers need to know which combination of tools works the
most effectively and the most cost-effectively, in order to max-
imize the profitability of their operations. Yield managers re-
quire metrics that allow them to assess the value of apparently
unrelated options. In layman’s terms, they need to effectively
compare apples and oranges.

This paper uses a model based on information theory in an
attempt to create an objective method of comparing technology
options for yield analysis. The information extraction per ex-
perimentation cycle and information extraction per unit time
serve as benchmarking metrics for yield learning. Combinations
of four yield analysis technologies—electrical testing (ET), au-
tomatic defect classification (ADC), spatial signature analysis
(SSA) and wafer position analysis (WPA)—are examined in de-
tail to determine an optimal yield management strategy for both
the R&D and volume production environments.

II. CONVERTING DATA INTO KNOWLEDGE

Yield learning characterizes the radical experience curves
of the semiconductor industry, where enormous investments
need to be recovered in a relatively short time [13], [14].
Yield learning is an iterative experimentation process, which is
repeated until all sources of yield loss are detected, identified
and eliminated, or until the cost of further experimentation
exceeds the benefit of the knowledge gained [15], [16]. Yield
learning can be accelerated by shortening the experimentation
cycle, or by making each experimentation cycle more effective.
The former option depends upon the engineering team’s ability
to reduce the design time of an experiment, the fabrication
facility’s ability to reduce the fabrication cycle time, the test
area’s ability to accelerate the data generation rate, and the
engineering team’s ability to increase the data analysis rate.
The latter option depends upon how the data are analyzed,
and to what extent they are converted into knowledge, where
knowledge is defined as certain information.

Information theory provides and excellent metric for how ef-
fectively information is converted to knowledge—the entropy
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of the information source [17]–[20]. A source of information
reveals an amount of information whenever the source is
in state [21]. is, therefore, known as theself-informa-
tion and is given by1

bits (1)

where is the probability of occurrence of state . In-
formation entropy is defined as expectation of , or the
average amount of self-information per state [17]. It is given by
the random variable

bits/state (2)

Information entropy is at a maximum when all states are
equiprobable or , a situation that reflects
maximum ignorance about the information source. Information
entropy decreases from its maximum value as concen-
trates into fewer states, approaching zero as the probability of
one state approaches unity, and the probability of all other states
approach zero. In other words, information entropy approaches
zero as information becomes knowledge.

Therelative entropyof a probability distribution with
respect to a second probability distribution is given by
the Kullback–Leibler formula

bits/state (3)

where the sum covers all possible states of the system [22], and
plays the role of a reference measure. The relative en-

tropy can thus be used to compare the final state of an experi-
mentation cycle to the initial state or to benchmark the amount
of information extraction performed by two different, possibly
unrelated processes.

III. PROBLEM LOCALIZATION

Localizing the root cause of a problem to a particular process
step or process technology constitutes the stated objective of
yield analysis. It has also been shown to be most valuable stage
of the problem-solving process. During problem localization,
problem solvers that specialize in yield analysis or process
integration, execute a sequence of trial-and-error procedures,
which concentrate the probability of finding the root cause of a
problem into fewer and fewer process steps. Once the odds of
finding the root cause of a problem in a particular process step
are close to 100%, the yield analysis and process integration
specialists call in specialists in technologies associated with the
culprit process step to continue the problem-solving process
[23].

1The base of logP (X ) determines the units of information. The binarylog
P (X ) is given in “bits;” the decimallog P (X ) is given in “hartleys”; and
the naturallog P (X ) is expressed in “nats” [19].

To adequately model the problem-localization process, one
has to define a discrete random variable, whose discrete states

represent the individual steps of the semiconductor process.
Problem localization consists of concentrating —the
probability that the root cause of the problem can be found
in process step —into fewer and fewer process steps. If

concentrates into a distribution of that exhibits only
one peak, then the variance of can be used as a metric
for the extent of problem localization. However, if
exhibits multiple peaks, the variance of is not a good
metric for the extent of problem localization because
can concentrate without causing a significant reduction in the
variance of . In contrast, information entropy
is an excellent metric for the extent of problem localization
because it decreases as probability concentrates regardless of
the number of peaks in the probability distribution.

The advantages of entropy as a metric for problem localiza-
tion can be demonstrated in a modern semiconductor process,
which typically consists of 500 steps [24] termed through

. If we assume that prior to the application of a diagnostic
technology the source of a fault is equally likely to reside in steps

, , and , and infinitesimally unlikely to
come from any other process step, then

, and . If problem
solvers conduct an experiment that eliminates and
as possible sources of the fault, then the probability distribution
concentrates to , and
. As Table I illustrates, the variance of the distribution does

not decrease as probability concentrates (it actually increases
slightly), whereas the information entropy does. Consequently,
the variance does not accurately track the level of knowledge
regarding the location of the root cause, whereas information
entropy does.

Previous experience at solving problems of a certain kind
has been shown to determine strategies for subsequent problem
solving and experimentation [25], [26], implying that the
problem-localization process does not necessarily start from
equiprobability between process steps. In many instances, the
odds that the root cause of a problem can be associated with
a specific process step can and must be estimated from the
outcome of previous experiments. For example, the probability
that high resistance in a metal-3 line width structure results
from metal-3 deposition or the lithography step that determines
metal-3 line width can in principle be estimated from a factory’s
historical records. If previous experiments have shown that the
photolithographic step associated with metal-3 line width was
the cause of high resistance in the line width structure in 90%
previous occurrences the problem, and in the remaining 10% of
all occurrences the root cause of the problem not to be related
to lithography, then historical data contains enough information
for a problem solver to correctly identify the photolithography
step associated with metal-3 as the culprit step in 90% of all
occurrences of the problem. The problem solvers in charge
of problem localization subsequently face the challenge of
converting this information into knowledge by elevating the
probability of finding the problem’s root cause in a specific
process step to 100%. They begin the problem-localization
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TABLE I
INFORMATION ENTROPY, VARIANCE AND STANDARD DEVIATION BEFORE AND

AFTER DIAGNOSTIC ACTIVITY

process at low entropy, and they subsequently try to reduce the
entropy to zero.

IV. THE VALUE OF YIELD ANALYSIS TECHNOLOGIES

Semiconductor yield problems have the potential to induce
severe losses. For example, if one process tool in a factory
disperses 100 defects with half a micrometer in diameter onto
product wafers, it can “kill” a significant portion of the 200
chips wafers with a diameter of 200 millimeters typically
contain. Let us assume that on average the tool kills 25 out of
200 chips on every wafer, and that these chips are micropro-
cessors that sell for $100 a piece. The tool will therefore cause
$2500 of damage in the time that it takes to process one wafer,
which may be as short as one minute. If the tool is situated
near the beginning of the line, it may damage wafers that will
take nearly two months to reach the end of the line, when the
problem is discovered. In the interim, the tool continues to
reduce the profit of the operation by $2500/minute, $150 000
per hour or more than $2.5 million per day. If the problem is
discovered after the first damaged wafer exits the end of the
line, more than $100 million will have been lost.

Clearly, it is in every semiconductor manufacturer’s interest
to discover process excursions and tool contamination early,
even if they do not actually impact the yield. The potential
damage is so great that the manufacturer needs to proactively
respond to every defect signal [23]. Semiconductor manu-
facturers have thus invested in expensive in-line inspection
tools, which detect contamination that may or may not cause
electrical faults within a few hours of critical process steps.
Defect analysis tools and defect sourcing methods reduce the
data generated by inspection tools and point to the process
steps that are the likely culprits of potential yield loss.

In an economic environment governed by radical experience
curves, the actual value of information extraction also depends
on the time required to reduce the data, or the length of the
experimentation cycle. A tool that identifies the source of an
electrical fault with absolute certainty but requires the full VLSI
process to be completed may be less valuable than a tool that can
identify the source of a fault with significant probability within
a few hours.

In the following subsections, we assume that all combinations
of yield analysis technologies operate on the same semicon-
ductor process, a modern ultra-large-scale integration (ULSI)
process that consists of 500 process steps. Under these circum-
stances, the information extraction rates per experimentation
cycle and the information extraction rate per unit time can serve

as benchmarking metrics for yield learning. Combinations of
four yield analysis technologies—electrical testing (ET), au-
tomatic defect classification (ADC), spatial signature analysis
(SSA) and wafer position analysis (WPA)—are examined in de-
tail to determine an optimal yield management strategy for both
the R&D and volume production environments.

A. Electrical Testing and Wafer Position Data

Chips on product wafers are electrically tested for function-
ality shortly after they emerge from the fabrication facility. The
wafers also typically contain microelectronic test structures in
the scribe line between the chips that may reveal characteristics
of the fabrication process when subjected to a parametric test
[27]. Functional testing alone identifies defective chips, but both
functional and parametric testing of product wafers can localize
the source of an electrical fault to within a neighborhood of a
few process steps. In doing so they dramatically reduce the en-
tropy of the information source. For example, if the fact of chip
failure were the only information available to a yield engineer,
the engineer would have a 1/5000.002 chance of identifying
the culprit process step in a process that consists of 500 such
steps. If, however, the engineer had access to the information
that the NMOS transistor threshold voltage was out of specifi-
cation, then the engineer could most likely use his/her expertise
to reduce the source of the electrical fault to a neighborhood
of about 20 process steps. Without access to the history of the
process, the engineer would have to assume that each step has
a 1/20 0.05 chance of being the culprit. Assuming the poten-
tially relevant steps are numbered 151 through 170, then substi-
tuting the aforementioned odds into Equation (3) yields

-

bits/process step (4)

With prior knowledge of the history of the process, the engineer
could assess that some of the 20 candidate steps are more
likely to be the culprits than others are. The final entropy
of the 20 candidate steps would then be lower than what is
inferred by equiprobability, increasing the relative entropy of
the information extraction in equation (4) and the apparent
value of electrical parametric testing.

The value of the analyses provided by functional testers can
be assessed in the same manner. If the functional tester indicates
that parameters pertaining to steps through are out
of spec, then the root cause of the problem has been localized to
these steps, and the Kullback–Leibler formula yields the same
value as equation (4) does.

As mentioned previously, the information extraction rate is
the more meaningful metric for the value of yield analysis tech-
nologies. An engineer who had no access to a parametric tester
could, for example, have reduced the possible number of cul-
prit process steps from 500 to 20 by stripping back the wafer to
the to the process layers that hosted the problem. However, this
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would have taken more than 100 times as long as localizing the
problem by a parametric tester, which could evaluate a wafer in
about an hour. (In addition, a whole wafer, possibly worth a few
thousand dollars, would have to be sacrificed for stripback.) A
parametric tester can thus be assigned an information extraction
rate of about 5 bits/process step/hour, whereas stripback most
likely does not reduce data at a rate faster than 0.05 bits/process
step/hour. Most engineers therefore value access to a parametric
tester very highly.

Parametric testing is an extremely valuable tool for localizing
a problem, but by itself it can rarely be used to pinpoint the
source of an electrical fault to the actual process step. However,
randomizing and recording the wafer order prior to executing
every process step may yield enough information to identify the
culprit step precisely and rapidly [28], [29]. Data from para-
metric testing is correlated to the wafer order at each process
step. Any correlation between an electrical parameter and wafer
order can potentially infer causality.

Revisiting the case of the out-of-spec threshold voltage of the
NMOS transistor with access to wafer position data allows an
engineer to reduce the entropy of the data source much further
than equation (4) would suggest. The wafer position data would
identify a single process step, say threshold implantation, as the
culprit of the electrical fault, effectively reducing the data from
equiprobability over 500 steps to virtual certainty. Following the
same line of reasoning pursued in deriving equation (4) results in
an information extraction of 8.96 bits/process step for the com-
bined approach parametric tester/wafer position data approach,
a significant improvement over what a parametric tester can do
by itself. Analysis of wafer position data also adds little time to
the information extraction process, which pegs the information
extraction rate of the combined approach at about 8 bits/process
step/hour.

Fig. 1 summarizes the effect of information extraction. Given
no initial information, all process steps have the same chance of
being the source of the fault. Electrical parametric testing con-
centrates the probability into 20 steps, increasing the informa-
tion content and reducing the information entropy in the process.
Wafer position analysis pinpoints the process step and reduces
the information entropy to very low levels.

B. Shortening the Data Cycle

The data analysis activity described in the previous section is
only one in a series of steps in the experimentation cycle [14].
The other steps have to be included to get a meaningful bench-
mark of yield management strategies. Thus the sum of the de-
sign time, fabrication time and analysis time is the appropriate
denominator for information extraction, which slows down the
learning rate over a full VLSI process cycle of about 50 days to
(8.96 bits/process step)/(50 days)0.18 bits/process step/day.
At that learning rate, hundreds of millions of dollars could be
lost by the time the source of a problem has been identified.
Semiconductor manufacturers have thus resorted to fabricating
fractions of the process in parallel on test wafers in the manner
suggested in the introduction and in reference [30].

The limitations and the value of short-cycle methods have to
be assessed according to how they extract information from a
whole gambit of variables (information sources). The expected

Fig. 1. Probability mass functions of fault sources. Three distributions are
shown.

entropy of multiple variables or sources serves as a metric for
the assessment of the limitations. It is given by

bits/state (5)

where represents the number of electrical parameters char-
acterize a process. The average information extraction, which is
useful in the assessment of the value of short cycle experiments,
is given by

bits/state

(6)

For the purpose of analyzing the limitations and value of short
cycle experiments, it is useful to assume that a full VLSI process
is broken up into five modules with a fabrication cycle of 10 days
each; and that these modules are fabricated in parallel. Let us
also assume that 100 electrical parameters (100 sources) char-
acterize this process ( ). However, short cycle methods
cannot capture faults such as plasma damage where a problem
near the end of the process affects a structure fabricated near the
beginning of the process. We, therefore, assume that 10 out of
100 parameters would remain in a state of equiprobability over
500 process steps. Substituting these assumptions into equation
(5) yields

bits/process step (7)

which represents the lower limit of entropy that short cycle ex-
periments can achieve by themselves. Experiments that cover
the full VLSI process must thus be conducted, in order to guar-
antee problem localization.

The value of short-cycle experiments can be estimated by
substituting the above conditions into equation (6). If 10 out of
100 electrical parameters remain in a state of equiprobability
and the other ninety parameters experience the previously calcu-
lated information extraction of 8.96 bits/process step, then equa-
tion (6) yields

-

bits/process step (8)
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Given an experimentation cycle of 10 days this translates into
a learning rate of about 0.8 bits/process step/day, a marked im-
provement over the 0.18 bits/process step/day for the full VLSI
process. However, electrically testing wafers that have been re-
alized by the full process compensates for the limitations of
short-cycle experiments by capturing faults that short-cycle ex-
periments do not detect. The true information extraction for
full-process experiments therefore equals the sum of the output
of equation (4) plus the output of equation (7), which, when
WPA is included, amounts to

-
bits per process step (9)

Given an experimentation cycle of 50 days for a full VLSI
process, this quantity converts to a learning rate of slightly more
than 0.18 bits per process step per day, which still compares
unfavorably to the learning rate for short-cycle experiments.
Short-cycle experiments are therefore considered valuable in
spite of their limitations.

C. Automatic Defect Classification, Trainability and False
Alarms

The potentially dire consequences of not detecting an elec-
trical fault early during the process have motivated technology
managers in the semiconductor industry to introduce an inspec-
tion step after about every ten process steps. During these in-
spections optical imaging and light scattering tools find defects
that could cause faults. Most of these tools have the capability
to segment their imaging data to separate defects that have been
added to the wafers from defects that were detected at previous
inspections. The inspection tools also transfer the coordinates
of the defects to defect review tools, which enable an engineer
to classify the defects and identify their source.

ADC as applied in the semiconductor industry is the process
of automatically categorizing wafer defects into one of multiple
classes using data captured by wafer analysis instruments. The
type of data that is used by the ADC algorithms varies with the
application. It could be optical microscope image data, scanning
electron microscope (SEM) image data, material composition
information (e.g., from SEM energy dispersive spectroscopy),
or confocal microscope image data. ADC compares the defect
image to a set of images of known defect types and attempts
to classify them into previously established categories. These
categories are typically associated with process steps through
historical data. ADC therefore has an excellent chance of iden-
tifying the source of a fault-causing defect [31].

The phrase “excellent chance” implies finite odds of mis-
classification or classification into a category called unknown.
These phenomena complicate the entropy picture by perceiv-
ably adding to the entropy of the source during the information
extraction process. Fig. 2 illustrates this effect in a hypothet-
ical case where ADC identifies the culprit process step in 73%
of all attempts. The other 27% of all attempts either result in
misclassification or classification as an unknown. In absence of
a well-documented history of the process, misclassified or un-
classified defects have an equal chance of being generated in
any of the 10 possible process steps. Let us also assume that

for the specific case in Fig. 2 ADC points to only three defect
sources out of the 10 under consideration. The classifier assigns
40% of all defects to step , 20% to step and 13%
to step . The remaining probabilities of 0.027 per process
step come from misclassification or classification as unknown.
Therefore, ;

; ; and

. for all ten process
steps in question because initially the odds of the defects being
caused by any of the 10 sources are equal. Substituting these
data into equation (3) gives the entropy reduction provided by
this ADC classifier

-

bits per process step (10)

The experimentation cycle of for this process sequence, which
consists of 10 process steps, equals one day. Therefore, the
learning rate provided by this ADC system is 0.91 bits per
process step per day.

Automatic Defect Classification is a “trainable” diagnostic
technology: its classification accuracy increases with the cu-
mulative number of observations of a specific defect type. For
example, if the ADC classifier made the categorization in (10)
after viewing 1000 wafers of a certain type, then it is likely to
make more accurate classifications after having viewed 2000
wafers. The percentage of defects that have been misclassified
or classified as unknown may shrink from 27% to 7%. Under
these circumstances the probability of defect localization may
concentrate to ;

; ; and

. The relative entropy of this con-
centration is given by

bits per process step (11)

From this quantity we can infer a training rate of 0.123 bits
per process step per 1000 wafers, which is likely to decrease
as classifications become increasingly accurate.

ADC can generate false alarms by spotting defects that do not
cause electrical faults. If the semiconductor manufacturer deems
it desirable to identify the source of these false or “cosmetic” de-
fects then the analysis expressed in equation (10) holds. How-
ever, if the manufacturer only wants to identify the source of
“killer” defects, then an additional bucket for false defects needs
to be created. If we assume that 25% of the defects in the above
analysis are false in all categories, then

; ;
; and

; . Under
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Fig. 2. Probability mass functions of an automatic defect classification.

these circumstances, the Kullback–Leibler formula yields an in-
formation extraction of

-

bits per process step (12)

which translates into a learning rate of 0.68 bits per process step
per day. The information extraction and its associated learning
rate can be increased to the value given by (10) by reducing the
proportion of false counts to zero.

D. Spatial Signature Analysis

A spatial signature is defined as a population of defects that
originates from a single manufacturing problem. Spatial signa-
ture analysis is an artificial intelligence method that relies on
capturing operator experience through a teaching method to em-
ulate the human response to various manufacturing situations.
This has been successfully accomplished through the develop-
ment and application of an image processing-based, fuzzy clas-
sifier system. The technique uses data collected from current
in-line inspection tools to interpret and rapidly identify char-
acteristic patterns, or “signatures,” that are uniquely associated
with the manufacturing process. The SSA system then alerts
fabrication engineers to probable yield-limiting conditions that
require attention, and uniquely assigns a signature to a single
process step even when multiple signatures overlap on a wafer
map [16], [32]–[35]. (See Fig. 3.)

Currently SSA does not by itself routinely assign the process
step attributable to a defect, but a yield engineer with knowl-
edge of machine history and prior defect patterns can localize
the defect with sufficient accuracy. Given a sufficiently large
database library of historical SSA images and a database link
between the stored images and the process step that generated
them, there is in principle no reason why SSA could not make
the attribution to the process step automatically. Since SSA, like
ADC, is a “trainable” diagnostic technology, the accuracy of the
attribution would increases with the number of images in the li-
brary. The value of SSA is thus likely to increase over time.

We can extend the argument of information entropy reduction
to the SSA approach as follows. We assume 100 defects have
been detected and that there are 10 possible sources of these de-
fects: Steps through . Before applying SSA, the prob-
ability of determining the source of any defect is 0.1. Let

(a) (b)

(c)

Fig. 3. Various types of signatures found by SSA. Fig. 3(a)–(c) serve as
examples of systematic clusters on a series of wafer maps. Each cluster is made
up of many individual defects that are correlated to each other based on the
manufacturing source [33].

us also assume that SSA separates the 92 of these defects into 3
large clusters such as the ones shown in Fig. 3, and only leaves
behind 8 isolated defects to classify. Thirty-five of the one-hun-
dred defects are assigned to step ; fifteen to ; and
forty-two to step . The remaining eight unclassified defects
could come from any step between and including through

, adding a 0.008 to the odds of a defect coming from each
of the 10 states. Thus

;
;

; and .
Then the relative entropy of this information extraction is given
by

-

bits per process step (13)

which corresponds to a learning rate of 1.45 bits per process step
per day.

V. SUMMARY AND DISCUSSION

Technology managers in the semiconductor industry need
strategies for yield management and fault reduction. Accel-
erated yield learning gives competitive advantage in R&D
environment, which is characterized by radical experience
curves. Capital productivity generates competitive advantage
in the production environment, where an undetected source of
electrical faults can cause enormous losses. The authors have
identified the yield-learning rate as the key success metric for
both environments, and recognized it as a benchmark for the
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(a)

(b)

Fig. 4. Comparative information extraction rates, lengths of experimentation
cycles and yield learning rates. Data are normalized. (a) Models a mature
manufacturing environment. (b) Models an early manufacturing environment.

valuation of (sometimes unrelated) technologies. The authors
defined the yield-learning rate as the ratio between the infor-
mation extraction rate and the length of the experimentation
cycle. The information extraction has also been quantified by
using the Kullback–Leibler formula [equation (3)] for relative
information entropy, which enables estimation of the relative
value of four technologies—electrical testing, wafer position
data, automatic defect classification, and spatial signature
analysis.

Technology managers in the semiconductor industry are not
confronted with an either/or decision between these diagnostic
technologies, because the aforementioned limitations of short-
cycle analysis practices, which extend to ADC and SSA, man-
date diagnoses of wafers that have been exposed to the full ULSI
process. Electrical testing on some level is a must, because it is
the only technology that identifies sophisticated faults that have
roots in more than one process module. However, utilizing di-
agnostic technologies that can identify sources of faults on short
notice is also extremely important, because it may help semicon-
ductor manufacturers avoid extremely high losses. Managers
would thus like to know the optimal amount of resources to in-
vest in each of the aforementioned technologies. They need a
Value-of-Ownership model.

Fig. 4 shows the results of a valuation effort for the afore-
mentioned yield analysis technologies, which is based on their
relative learning rates and includes their respective limitations.
Fig. 4(a) models a mature production environment, for which we
assume that short cycle experiments capture 90% of all faults,
whereas ADC and SSA only capture 80% of all faults. Analysis
of the valuations indicates that electrical testing exhibits a very
high information extraction rate, especially when it is combined
with wafer position analysis. The value of electrical testing plus
WPA as expressed by the learning rate is increased dramatically
when these methods are used in conjunction to analyze wafers

Fig. 5. Inputs and output of a real-time value of ownership model.

that have been fabricated on short cycle, even though a complete
characterization of a full semiconductor process is no longer
possible under these conditions. Inspection-related technologies
like ADC and SSA have an even higher value due to their asso-
ciation with extremely short experimentation cycles. Fig. 4(b)
shows that this picture changes dramatically if we model an
early manufacturing environment, for which we assume that
ADC and SSA localize only 10% of all faults because hitherto
unobserved defect types have not been incorporated into defect
libraries. In this case, the amount of entropy reduction for ADC
and SSA is limited, the residual entropy is very high, and the
expected credit for problem localization has to be given to tech-
niques such as electrical testing and WPA, which do not depend
on libraries of previously observed faults for their analysis.

Fig. 5 shows that data on cost of ownership must feed into any
operationalizable Value-of-Ownership model. Cost-of-Owner-
ship models give managers a very good idea of the true cost of
yield analysis technologies, which unfortunately varies directly
with value. Estimates place the cost of ownership of defect
inspection and review with automatic defect classification at
around $10 per wafer per inspection [36]. The cost of owner-
ship of electrical parametric testing including the associated
data analysis varies significantly with sampling plan, but most
experts believe it is nearly an order of magnitude less than that
of defect inspection. The high cost test wafers limits the utility
of short-cycle experiments. They are primarily conducted in
R&D, but yield analysis experts have been known to utilize
short-cycle experiments on anad hoc basis to localize the
root cause of yield problems in manufacturing [30].

The information extraction rate also depends strongly on the
(user-specific) sampling plan, because a larger sample size gen-
erates lower uncertainty, higher information content and lower
information entropy. In addition, managers typically have ample
historical data on the relative frequency of fault types that have
plagued their factories. Matching this knowledge to the value
metrics established in this paper will allow technology mangers
to significantly improve upon the current level of cost/value
propositions for yield management and fault reduction, and the
technologies described in this paper may enable them to achieve
a value assessment in real time. For example, it is quite conceiv-
able that an ADC system can estimate the damage done by a
distribution of defects once it has localized the source of the de-
fect type. The shop floor control system knows when the defect
distribution was generated and how many wafers have passed
through the culpable step since the appearance the defect dis-
tribution. The shop floor control system can also absorb eco-
nomic data like the spot market price of the product chips. It is
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thus quite conceivable that one day the shop floor control system
will send a technology manager the following message.

“The inspection at step 256 has identified a defect distribution
that results from step 248. Machine #83 is the culprit. You have
already lost $130k $20k. You are continuing to lose money at
a rate of $25k $4.2k per hour. If you shut Machine #83 down,
you will only lose $11k $3.3k per hour until the machine is
back up. Your track record indicates that you would have lost
an additional $840k $90k, had you attempted to solve this
problem without me. Don’t you think my value significantly
exceeds my cost?”
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