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Statistically Based Parametric Yield
Prediction for Integrated Circuits

David S. Gibson, Ravi Poddar, Gary S. May,Senior Member, IEEE,and Martin A. Brooke,Member, IEEE

Abstract—This paper presents a novel procedure for predicting
integrated circuit parametric performance and yield when pro-
vided with sample transistor test results and a circuit schematic.
Two enhancements to the existing Monte Carlo simulation pro-
cedures are described: 1) a multivariate nested model is used
to reproduce random process-induced device variations, rather
than the multivariate multinormal model typically used, and
2) the stochastic Monte Carlo method for mapping process
variability into a performance distribution is replaced with a
deterministic mapping technique. The use of multivariate nested
distributions allows estimation not only of correlation between
various model parameters, but also allows each of those variations
to be apportioned among the various stages of the process (i.e.,
wafer to wafer, lot to lot, etc.). This allows matched devices to be
more accurately simulated, without having to develop customized
models for each configuration of matching, and provides focus for
process improvement efforts into those areas with the maximum
potential reward. The use of deterministic mapping provides
simulation results which are repeatable and do not rely on
chance to insure that the process parameter space has been
evenly explored. A software package which implements the entire
procedure has been written in C++.

Index Terms—Monte Carlo simulation, multivariate statistics,
parametric yield.

I. INTRODUCTION

T HE parametric performance of integrated circuits depends
on both the circuit design and the fabrication process used

to build the design. The ability to predict this performance
is essential to those attempting to design integrated circuits,
modify fabrication processes, plan production schedules, or
specify product operating characteristics. Typically, this pre-
diction is accomplished using a three-step Monte Carlo method
[1]: 1) a statistical model is built to characterize the fabrication
process to be used; 2) a circuit design is created using a
circuit simulator (such as SPICE) and nominal device values
for the target process; and 3) randomly generated instances
of the process model are simulated in a “Monte Carlo”
fashion to produce a representative set of output performance
characteristics. The impact of random process variations can
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be inferred from these simulations, and yield can then be
estimated using the percentage of that sample which meets
the performance requirements.

Several variations on this technique have been presented in
an effort to either improve accuracy or reduce computational
complexity. These efforts have occurred primarily in three
areas: selection of the variables in which the process model
is to be built, development of methods for predicting the per-
formance of a particular circuit instance, and determination of
techniques for guiding the selection of Monte Carlo instances
to improve the accuracy of yield estimates for a fixed sample
size.

Input variables are often examined using analysis of vari-
ance (ANOVA) techniques [2] to eliminate statistically in-
significant parameters [3], [4]. Uncorrelated multinormal dis-
tributions are often used, with many authors choosing the
same four supposedly independent parameters for MOSFET
devices: length, width, gate oxide thickness, and flatband
voltage [5]–[10]. Others have preferred to use manufacturing
parameters such as diffusion times and temperatures [3], [11].
Often, correlation is accounted for through the use of principal
component analysis [12], [13].

Given a generated circuit instance, many techniques have
been used to predict the resulting performance parameters. The
most common of these, and the standard by which the accuracy
of most techniques is measured, is the use of a traditional
circuit simulator such as SPICE. Since pure Monte Carlo
precision can be directly tied to the number of simulations
performed, it is desirable to minimize the calculation time
for each simulation. The data resulting from a handful of
well chosen SPICE simulations can be used to develop a
polynomial or neural network model [14], [15], which can
then be used in place of SPICE for future, faster calculations.
Polynomial circuit models have been successfully generated
using linear [7], piecewise linear [16], quadratic [17], [18], and
cubic [19] models. Transformations are often made to improve
the accuracy of these models. Analytic expressions can also
be used [20], as can hierarchical model generation [4], [21],
[22], [23]. Simplicial approximation attempts to reduce the
need for simulation by identifying the acceptance region in
input parameter space [24].

Several techniques are available for improving the accuracy
of a Monte Carlo yield estimate without increasing sample
size. Each is dependent on a controlled alteration of the
random generation of the input instances. Importance sampling
[25], [26] forces more samples in regions where yield is
close to 50%. Parametric sampling [27] allows samples from
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TABLE I
EXAMPLE OF A NESTED DISTRIBUTION

previous circuit designs to be added to samples for more recent
versions. Stratified sampling [26] divides the process region
into a number of nonoverlapping regions, and then calculates
the yield in each region. The control variate technique [26],
[28] can be used to overcome inaccuracies in the mapping
function (typically employed only when non-SPICE maps are
used). Acceptance sampling [29] performs a similar function,
but includes elements of stratified sampling as well. Latin
hypercube sampling insures that a wide range of values are
used for each variable in a multivariate sample [30].

Given this history, there is room for improvement in at
least three areas: the simulation of analog circuits which
use matched devices, extracting information from the process
model to maximize the effect of process improvement efforts,
and converting the probability density function (pdf) for the
process model to a pdf for circuit output characteristics.

Designers often rely on device matching to improve the per-
formance of circuits which incorporate differential amplifiers
(op amps), DAC’s, ADC’s, and other analog components. If
two matched devices are simulated using identical device val-
ues, then unrealistically good performance is predicted. Two
approaches have attempted to rectify this problem. The first
simulates within-die variations by adding a random component
to each device [31]. This falls short in that it attempts to use the
same variability for all devices in a design, regardless of the
degree of matching they exhibit. The second method develops
an empirical model for each specific matched device config-
uration, and uses that model to generate specific parameter
information for each matched device [32], [33]. This technique
requires explicit model development for each new matching
configuration (for example, if three matching devices were
used rather than two), and assumes that the only within-die
variations which matter are those on matched devices (other
devices are modeled with no variation).

Another shortcoming of current techniques is that they do
not facilitate process improvement. Manufacturing yield is
maximized when a process is centered (i.e., mean value is in
the middle of the desired range) and the random component of
process variation is minimized. Since process variation comes
from many sources, each of which contributes a different
amount to the total variation, it is important to attempt
reductions of those sources which have the most potential
for reducing the variation in output parameters. For example,
variation from run to run might not affect the variation

in output parameters nearly so much as variation within a
single circuit, especially when matched devices are used.
In such a case, a dramatic reduction in run-to-run variance
might not affect output performance as much as a more
modest improvement in within-circuit variance. In the course
of developing a process model, much of this information is
available. However, models created for most simulation needs
are not in a form which allows ready conclusions to be drawn
about which process steps should be targeted for improvement.
An improved technique would make this information directly
available.

While Monte Carlo simulation has served well for a number
of years, it has an inherent weakness in that it is a stochastic
process. Also, the most straightforward method for improving
accuracy is to increase the number of instances generated. This
can result in prohibitively large needs for computing time,
since each additional instance requires an additional simula-
tion. Furthermore, some instances will be statistically “close”
together, others will be “far” from their nearest neighbor.
Consequently, it cannot be assured that all regions of the model
parameter space will be explored equally. Finally, since Monte
Carlo simulation is a stochastic process, it will yield slightly
different results each time it is performed.

In this paper, two techniques are proposed to address the
three issues identified above. The first models a process using
a multivariate nested probability density function rather than
the typical multinormal pdf. This results in a model which can
more accurately reflect the impact of within-circuit variation,
while providing insight into profitable courses of action for
variability reduction. The second technique is a deterministic
probability mapping method offered as an alternative to Monte
Carlo analysis, and addresses those difficulties associated with
its stochastic nature.

II. PROCESSMODEL DEVELOPMENT

The modeling of semiconductor manufacturing processes
can be improved by using a multivariate, nested, normal
distribution. Nested distributions are appropriate when the
phenomena being modeled can be divided into “stages” such
that the variability within one stage is independent of the
variability within another stage [34]. In semiconductor man-
ufacturing, the potential stages are processes, lots, wafers,
circuits, groups (of matched devices), and devices. These
are generally mutually independent in their variability. For
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Fig. 1. Circuit used for simulations.

example, large variations in a device parameter from one lot
to the next is no indication that large variations will occur
in that same device parameter on two adjacent devices in the
same circuit. Lot variations might be due to the concentration
of a particular batch of solution used in a wet processing
step, while device level variations might be more dependent
on how evenly the solution is applied. This independence of
cause (and consequential independence of variance) makes
semiconductor manufacturing an excellent candidate for nested
modeling.

In addition to being nested, this distribution must also be
multivariate. That is, the modeling of the various different
parameters from one device are modeled using a multinormal
distribution, including the relevant variances and correlations.
The nested aspect of the distribution will reproduce similarities
in different devices from the same stage. The multivariate
aspect is needed to insure that when more than one parameter
from a single device is modeled, the appropriate correlations
are considered. For example, there is a well-documented
correlation between MOSFET threshold voltage and gate
oxide thickness. Using a multivariate model assures that
these two parameters will have the appropriate correlation.
Thus, a multivariate nested distribution not only reproduces
the correlation of different parameters within a device, but
also reproduces the correlation resulting from within-stage
similarities.

A. Description of Nested Modeling

In a nested distribution, each sample can be represented as
a global mean plus a variance contribution from each stage.
Consider two correlated variables and with two stages
of nesting. A sample from this design can be referenced using

where is the level of the first stage (the highest
stage—stage 1) andis the level of the second stage for that
particular sample. No two samples can have the same levels
for both stages. can be represented as

(1)

where is the grand average for (the same for all samples),
is the stage 1 component for (the same for all samples

with level of the first stage), and is the stage 2
component of (unique for each level of the second stage

TABLE II
VARIANCES USED IN GENERATING FIG. 2 AND

CALCULATED RESULTS (ALL VALUES x10
�13 m2)

within the first). can be represented similarly, with all
subscripts replaced with a similar subscript.

Defining a nested probability distribution requires a knowl-
edge of the global means for each parameter, and a covariance
matrix for each stage of the model to characterize the distri-
butions of and . Let the covariance matrices be given by

, and , where

contains the stage 1 covariances (the distributions ofand
) and contains the stage 2 covariances (the distributions

of and ). The nested model for these two variables
has been defined when all eight of these variables have been
identified (two means, four variances, and two covariances).
This distribution considers correlation not only among the
various parameters for a single device (as modeled by the
covariances in the matrices), but also considers correlation
among samples of the same parameter from different devices
in the same stage (as modeled by the common variance
components of common higher stages).

B. Multivariate Nested Modeling Example

Consider a practical application of a nested model in simu-
lating a simple circuit with three similar MOSFET devices,
two of which have been carefully matched. Assume each
transistor has two model parameters which vary statistically:
oxide thickness and threshold voltage . If is
considered variable and is variable , then the parameter
values for these three devices can be expressed as in Table I
by summing the mean, group, and device values.

The parameters of the nested pdf determine the distributions
of the values in Table I. The two means, and , are
constants, and consequently have no distribution. The group
values and are distributed multinormally with a 0
mean vector and a covariance matrix of, as are and

. Each of the three device value pairs is also distributed
multinormally with a 0 mean vector and a covariance matrix
of . The first two devices will probably be closer matched
than the last device since they contain the same values for
and , while the third device only shares the same value of.
Also, the correlation between and is preserved at each
stage via the covariance matrices.
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(a) (b)

(c) (d)

Fig. 2. Input generation differences between multinormal and nested distributions. The four random variables,L1; W1; L2, and W2, are projected
into two dimensions to facilitate visualization.

C. Multivariate Nested Distributions as
Process Improvement Tools

One additional benefit of using a nested distribution to
model a process is that sources of variability are more easily
identified. In the above example, if it was determined that
the variability of was too high, then an examination of

and would reveal how much of that variability was
present at the group level and how much was at the device
level. Larger variation at the group level might suggest that
the variability cause is due to a phenomenon which varies
across a circuit, such as etch uniformity. Larger variation at
the device level might suggest that the variability cause is
due to more fundamental limits in the ability to repeatably
build devices. These two conditions suggest different plans of
attack for process improvement. Furthermore, simulation of
the circuit using this distribution with reduced values of device
and group level variation will reveal which has a greater effect
on variations in output performance.

III. COMPARISON OFMULTINORMAL VERSUS NESTEDMODELS

To demonstrate the impact which a process distribution
model can have on performance prediction, Monte Carlo
simulations were performed using both multinormal and nested
distributions. All simulations were performed using the simple
differential amplifier circuit shown in Fig. 1. This circuit was
chosen for two reasons: it is a common subcircuit used in
IC design, and its performance is strongly dependent on the
matching of devices and . In an effort to keep these
examples simple, all parameters except the length and
width of devices and were held constant for all
simulations.

A. Using Nested Models to Reveal the
Impact of Device Matching

The advantage gained by using nested distributions as
opposed to multinormal distributions arises from differences
in the input instances they generate. With a multivariate
multinormal distribution, correlations among parameters on a
single device can be reproduced, but there is no mechanism for
preserving correlations between similar parameters on matched
devices. Since designs which incorporate matched devices
often have their performance driven largely by how closely
those similar parameters match, multivariate multinormal dis-
tributions can result in misleading performance predictions.

To illustrate this phenomenon, the differential amplifier
shown in Fig. 1 was modeled twice using a Monte Carlo
analysis procedure. The first time, input instances were gen-
erated using a multinormal distribution, while a multivariate
nested distribution was used for comparison. Table II shows
the variances used to build each of the models, with similar
parameters used for both. For the nested model, the total
variance of each device parameter was split evenly between
the two levels of variance in evidence here: circuit to circuit
and device to device. Fig. 2 shows the inputs generated by
performing these two simulations.

Fig. 2(a) and (c) each show the instances generated using
the multinormal distribution, while Fig. 2(b) and (d) show the
instances generated using the nested distribution. Fig. 2(a) and
(b) show the two sets of input instances plotted versus
and . As expected, both models reproduce the targeted
negative correlation between length and width, as reflected
in the tendency of the instances to cluster along a diagonal
line sloping from upper left to lower right. Plotting the same
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(a) (b)

(c) (d)

Fig. 3. L values of generated input instances showing varying degrees of variance distribution. Moving from (a) to (d) reflects an increasing portion of
the distribution allocated to within-circuit, rather than between-circuit sources.

(a) (b)

(c) (d)

Fig. 4. Output performance for the circuit instances shown in Fig. 3.

data using and as axes produces Fig. 2(c) and (d).
Notice that while no correlation is seen between these two
parameters in Fig. 2(c) (as evidenced by the apparently random
distribution of instances), Fig. 2(d) exhibits a clear positive

correlation. This observation is verified by the statistical
analysis of the generated instances shown in Table II. Note that
all target parameters are reasonably reproduced in both models
(within statistical margins) with the exception of versus
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(a)

(b)

(c)

Fig. 5. The impact of stage choice on inputs for variance reduction efforts. (b) reflects a 90% reduction in the between-circuit variance from that shown
in (a), while (c) reflects a 90% reduction in the between-device variance.

correlation—the multinormal model cannot reproduce this
characteristic. This correlation will be referred to hereafter as
“device” correlation, since it measures the correlation between
similar parameters in different devices, and plays a major
factor in the performance of circuits with matched devices.

Fig. 3 shows the instances generated using four different
distributions of variance between the circuit and device levels:
(a) 100% device (traditional multinormal modeling), (b) 10%
circuit, 90% device, (c) 50% circuit 50% device, and (d)
90% circuit, 10% device. As expected, the instances exhibit a
stronger relationship between and as more variability
is apportioned to the circuit level (leaving less variability
between devices). Notice that the total variance forand
has not been changed in any of these plots, only the manner
in which it is distributed.

Fig. 4 shows the corresponding results of simulations on the
instances depicted in Fig. 3, with the letters (a)–(d) taking on
the same significance. Note that as more of the variance is
apportioned to circuit level, the variation in the output perfor-
mance is reduced (as evidenced by a tightening of the output
distribution), even though the variance of the input parameters
has remained the same. This is a direct consequence of two
facts: 1) better matching of transistors and is a key
factor in reducing output variation (more important than their
absolute values) and 2) with constant total variance, more
circuit level variation means less device level variation, leading
to better matching of and in any particular circuit.
Clearly, by assuming that all variation is device level (as is
done with a multinormal model), gross mistakes can be made
in estimating circuit performance—including the generation
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(a)

(b)

(c)

Fig. 6. Output performance for the circuit instances shown in Fig. 5.

of inaccurate yield estimates.

B. Using Nested Models to Target Process Improvement

It is not unusual for either designed or fabricated circuits
to exhibit output performance with a greater variability than
desired. Several approaches can be taken to reduce this vari-
ability, including process and circuit design modification. Two
questions must be answered to optimize work in this area:
1) to what types of variability are the output parameters
most sensitive; and 2) to what degree are each of those
variability sources currently present. An answer to the first
question is necessary to avoid working to reduce factors
where, even if successful, that work will not significantly
improve output performance. The second piece of information
can be useful when several sources of variation are found
to be significant—typically it is easiest to obtain incremental
improvement in the parameter which varies the most.

Consider a hypothetical example using the circuit in Fig. 1,
once again only considering the four parameters for
and previously described. The first step in improving
variability is to construct a process model. If the multinormal
model from above were used, it would reveal a process in
which all four parameter variances were essentially equal. The
impact of improving device matching could not be explored on
paper, since the multinormal model cannot reproduce device
correlation. If a decision was made to reduce process variation
for one of the four parameters, it would still be unclear how
to proceed. For example, circuit to circuit variation might
be improved by reducing the time between processing of
successive wafers, while device to device variation might
be improved by modifying control of gas flow over each
individual wafer.

Suppose, on the other hand, that a nested model were used,
and that it revealed a distribution similar to that shown in
Fig. 3(c). In other words, all four parameter variances were
equal, and those variances were split 50/50 between circuit
level and device level. A typical set of instances generated
from such a distribution is shown in Fig. 5(a), with the
corresponding sample variances and covariances shown to the
immediate right. Fig. 5(b) and (c) show the effects of reducing
the circuit and device level components, respectively, by 90%.
Once again, sample statistics for each of the plots are shown
to the right of the figures. Note that Fig. 5(b) and (c) show
a similar reduction in the four parameter variances, but in
Fig. 5(b) this was accomplished at the expense of a dramatic
reduction in covariance between and .

The consequences of these two paths are shown in Fig. 6.
The conditions in (b) do provide some reduction in variance,
but (c) provides a clearly superior route. This suggests that,
for this example, the best course of action is to pursue those
options which would reduce device to device variance within
a circuit, such as improving device matching through revised
layout or reducing process variability across a circuit.

IV. M APPING OUTPUT PERFORMANCE

Monte Carlo simulation is nothing more than a method of
applying a deterministic mapping function to a joint pdf to
generate a resultant joint pdf. When simulating circuits, the
initial pdf is the distribution of device parameters, the mapping
function is the SPICE simulation program, and the resultant
pdf is the distribution of performance parameters. The resultant
pdf can also be obtained using a technique known as Jacobian
transformation [35].

Suppose and are correlated device parameters with
a joint probability distribution pdf , and and are
two output parameters with a joint pdf of pdf . To
use the Jacobian technique, two inverse functions must be
calculated such that for all instances of outputs, , the
input instance, , which generated that output can be
calculated as and . This requires
that each output map into one and only one input. The Jacobian
matrix, , can then be calculated as follows:

(2)
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Fig. 7. Use of the pdf discretization procedure on the standard normal distribution. A discretization to five points yields the circled values on the ordinate.

The joint density of and is then given by

(3)

Unfortunately, Jacobian transformation requires knowledge
of an inverse map and partial derivatives of the mapping
function—neither of which is available with a SPICE mapping
routine. These problems can be overcome by discretizing the
input and output probability density functions using the novel
methodology described below.

A. Use of Jacobian Concepts for Discrete Functions

Many of the restrictions imposed on using the Jacobian
transformation for mapping continuous probability density
functions disappear when evaluating discrete pdfs. Letbe
a single realization of an input pdf. If there arepossible
discrete values for given by , with the prob-
ability for given by , and finite values for the
output given by , then the probability for
each , can be given as:

(4)

where is a deterministic mapping function which
maps each into a single value of . The only requirements
for this procedure are that: 1) the are defined and their
probabilities, , are known; 2) a mapping function, ,
is defined for each ; and 3) each maps to exactly one .
While the are not a Jacobian matrix, they serve a similar
purpose in allowing the creation of a new distribution via
deterministic mapping of an original distribution. Once the

and their probabilities have been determined, a discrete
version of the output pdf can be constructed if a “volume” in
the output parameter space,, can be associated with each

. The resulting the pdf at , pdf , is given by

(5)

By selecting an appropriately fine resolution for the, the
output pdf can be reproduced to the desired precision.

B. Discretization of Multinormal Model Density Functions

To use this technique, a finite number of points in the input
pdf space must be identified, with a probability assigned to
each point. To best represent the original function, each point
selected should represent a region of reasonably homogeneous
behavior. Unfortunately, there is noa priori method for
determining where the output function will change rapidly
with respect to the process model variables. Consequently,
the method used here is to distribute the sample points
“evenly” throughout the input probability space. This results
in a probability of associated with each point if
points are selected. This is true since “even” spacing implies
that all points will represent the same probability volume,
and since the sum of all probability densities must equal
1 for the entire volume to be mapped. By increasing,
the volume represented by each point can be reduced as
much as desired until it is small enough that no significant
variations occur within the region represented by a single
point.

This concept is illustrated by the one-dimensional example
in Fig. 7, in which a standard normal pdf is discretized into five
points. The lower curve shows a standard normal probability
density function. The upper curve is the standard normal
cumulative probability function, obtained by integrating the
pdf. The first step is to divide the distribution into five regions,
each representing 1/5, or 20%, of the total distribution. For
this example, these regions are 0 to 20%, 20% to 40%, 40%
to 60%, 60% to 80%, and 80% to 100%. The percentages
representing the centers of each of those regions are 10%,
30%, 50%, 70%, and 90%, respectively. The values associated
with each of those percentages are1.3, 0.5, 0.0, 0.5, and
1.3, respectively.

For multinormal distributions of variables, the pdf
will contain dimensions. If each of these dimensions
is made an independent normal distribution (for example,
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(a) (b)

(c) (d)

Fig. 8. Comparison of inputs generated using various combinations of distribution model and instance generation technique.

(a) (b)

(c) (d)

Fig. 9. Output performance for the circuit instances shown in Fig. 8.

through the use of principal component analysis [36]),
then this procedure can simply be repeated once for
each dimension. Creating a two-dimensional pdf using
the distribution in Fig. 7 would result in the same five

points for both axes, with the resulting 25 center points
being

, each of which has
a probability of 1/25.
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Fig. 10. The impact of grid resolution on yield prediction capability. The dark solid line represents a large sample Monte Carlo prediction (taken as the
correct value), while other lines represent increasingly fine pdf grid discretizations.

C. Conversion of Multivariate Nested Distributions
to Multinormal Distributions

To discretize a pdf as described above, a multinormal
representation of the distribution must be available. Fortu-
nately, any nested distribution with a particular sample plan
can be converted to a multinormal distribution. Consider two
correlated variables and with two stages of nesting. Let

and be a pair of instances of and which have a
stage 1 value of and a stage 2 value of. Also, define

, and .
For each circuit instance to be generated, many pairs
must be determined. For example, if and are transistor
parameters, a pair of values have to be generated for
each transistor in the circuit design in order to create one
instance of the circuit. If transistors were present in the
circuit design, then random numbers would have to be
generated, requiring the creation of a multinormal distribution
in variables.

Covariance values between each of the variables
depend on which stages have identical levels, so that the
covariance between the values for two different devices
is given by

and
and (6)

the covariance between thevalues for two different devices

is given by

and
and (7)

and the covariance between anyand values is given by

and
and

(8)
As an example, consider the data used in preparing Table I.

A six variable multinormal distribution can be constructed to
represent the three devices defined, each of which is modeled
with two parameters. The first two devices are matched, but
the third is not. Allowing to represent and to represent

, the means vector for the new multinormal pdf is given by

(9)

and the covariance matrix is given by

(10)
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Fig. 11. Yield prediction capability comparison using two points in each dimension (16 samples). Upper and lower confidence intervals for the discrete
prediction are shown in broken lines.

Note that each sample of has the same mean value, ,
and the same variance, . As intuition dictates, only the
covariances change from one sample of(or ) to the next.

V. COMPARISON OF MONTE CARLO

VERSUS DISCRETE PDF SIMULATIONS

The circuit in Fig. 1 was used once again to demonstrate the
characteristics of the discrete pdf mapping and how they differ
from traditional Monte Carlo simulation. Unless otherwise
noted, all discrete pdf simulations were performed using five
divisions in each of the pdf’s four dimensions for a total
of 625 samples. To allow meaningful comparison, all Monte
Carlo simulations were also performed using 625 samples.
Furthermore, nested simulations were performed using the
nested pdf model introduced with Fig. 2. Based on consistent
results obtained with other simulations, the results documented
below are believed to have general applicability to all circuit
analysis performed using this technique.

A. Interaction between Multinormal and Nested Distributions,
Monte Carlo and Discrete Simulations

The circuit in Fig. 1 was simulated using each of the
four permutations of multinormal and nested distributions and
Monte Carlo and discrete transforms. The impact of using
each of these four combinations is most apparent in Fig. 8,
where the input parameters used for each of the four conditions
are displayed. Note that although there are four inputs, only

and are plotted, so that two additional dimensions

representing and have been projected onto the
plane.

Fig. 8(a) shows a multinormal distribution with inputs gen-
erated for Monte Carlo analysis. Using the same multinormal
distribution but generating inputs using the discrete technique
yields the very regular input distribution in Fig. 8(b). Note
that (b) would be even more obviously regular if it could
be viewed in the four dimensions of the full input parameter
space. Fig. 8(c) and (d) show inputs generated using a nested
distribution. Again the inputs are regular in (d), but they are
skewed to reflect the correlation which is now present between

and .
Fig. 9 shows the outputs generated from Fig. 8(a)–(d).

Three significant features can be observed. First, as noted be-
fore, the nested distribution reflects the improved performance
expected when matching effects are considered, as reflected by
the tighter grouping in (c) and (d) than is found in (a) and (b).
Second, the outputs from the discrete technique also display a
degree of regularity [as seen in (b) and (d)], although not so
pronounced as was evident in the inputs. Finally, the tails of
the distributions are not as heavily populated in the outputs
using the discrete transform, which is especially obvious in
Fig. 9(d). These last two points will be further explored in
the next example.

B. Impact of Sample Size on Yield Prediction Capability

Parametric performance for the circuit in Fig. 1 was esti-
mated using a Monte Carlo technique with 10 000 samples
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Fig. 12. Yield prediction capability comparison using seven points in each dimension (2401 samples). Upper and lower confidence intervals for the
discrete prediction are shown in broken lines.

and a nested input distribution. An estimate for yield,,
could then be calculated by computing the percentage of circuit
instances passing a given output criterion (since each instance
has identical probability of occurring). The yield has a standard
deviation, given by

(11)

This results in a prediction of yield which has a worst case
standard deviation of only 0.5%. Consequently, the 10 000-
sample Monte Carlo prediction is used as a reference to
evaluate the discrete transform method. Fig. 10 shows this
reference yield (labeled “MC reference”) as a function of a
single output parameter—output voltage for a zero volt input.
Instances displaying an output voltage above the minimum
value are categorized as passing for the purpose of calculating
yield. As the minimum acceptable output voltage is increased,
the percentage of passing instances is reduced until the yield
falls to zero at a sufficiently high output requirement. (Al-
though this is not typically the way in which an output offset
voltage would be specified, it serves well the purpose at hand.)

Also shown in Fig. 10 are the yields predicted using the
discrete transform with various sample sizes. As with the
Monte Carlo technique, yield is estimated by calculating the
percentage of passing instances. The different sample sizes are
the result of varying degrees of coarseness in the input pdf grid.
With only two divisions in each of four dimensions, 2points
are generated, while seven divisions in each dimension leads to

7 (or 2401) points. Three observations can be made from this
plot. First, it is apparent that increasing the number of samples
improves accuracy, since the curves for successively larger
samples sizes come closer and closer to the reference line.
Second, errors in the center of the plot (near 50% yield) seem
centered about the reference, while errors near the extremes
( 95% and 10%) tend to consistently underestimate the
population of the distribution tails. Third, changes in the yield
estimated seem to occur in dramatic steps for smaller sample
sizes. The first observation is intuitively obvious, but the
remaining points bear further study.

To understand why the discrete technique seems to underes-
timate the population of the distribution tails, consider Fig. 7.
Note that the lower 20% of the distribution will always be
represented by the 10% point, so the lowest value selected will
always be 1.3. If a Monte Carlo simulation were performed
using the same distribution and 5 points, then there would be
41% chance (given by 1–0.9) that at least one point would
be selected with a value less than 1.3. If a second independent
dimension is added to Fig. 7 so that 5points are used, then
the Monte Carlo probability of getting a value less than 1.3
increases to 93% (1–0.9), while the discrete technique will
never generate a value less than 1.3. If performance varies
significantly with nominal decreases in this value, then yield
will be misrepresented. A similar argument can be made for the
upper 20% of the distribution. Clearly, the discrete technique is
most accurate when circuit performance is relatively constant
within each individual cell of the input grid.
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The dramatic changes in yield seen in Fig. 10 are explained
with a similar simple analysis. Note that for the 16-sample
case, there are four distinct points where the yield drops
dramatically, the first of which occurs at a minimum acceptable
output voltage of about 0.45, when the yield drops from
100% to 75%. This is a consequence of the regularity of the
sampled points associated with the discrete transform. Since
these points tend to be aligned in rows, any output specification
which defines a constraint parallel to a row of points will see
significant changes in yield as that specification passes the row.

A quantitative comparison of the accuracy of the discrete
and Monte Carlo techniques is demonstrated in Figs. 11 and
12. Fig. 11 shows the discrete map, 16-sample yield prediction
once again, but it is contrasted with the and 3 confidence
intervals for a 16-sample Monte Carlo prediction [where
is calculated using (11)], while Fig. 12 shows the same for
2401 samples. Note that for both maps, the discrete prediction
is rarely outside of the confidence interval, especially
when estimating yields between 85% and 15%. Conversely,
the Monte Carlo prediction can be expected to be outside this
interval roughly 30% of the time.

This discussion leads to certain conclusions about the utility
of this technique. It provides an excellent tool for obtaining
quick estimates of yield during the early stages of design,
when large numbers of simulations for each design iteration
can be excessively time consuming. With small sample sizes,
the Monte Carlo technique is risky, since an “unfortunate”
sample could lead to erroneous conclusions about the yield
space and send the designer in an incorrect direction. The
discrete mapping technique, being deterministic, would be
immune to such chance occurrences. Furthermore, the regu-
larity of successive discrete output plots would allow a better
qualitative understanding of the impact of design changes,
and the inherent inaccuracy at extreme values of yield would
not be a liability until final design modifications were being
incorporated to “squeeze out” the last percentage points of
yield.

This suggests a modeling procedure for development work
which would incorporate simulations with a small number of
points using the discrete technique until the design is nearly
optimized. Then, if precise understanding of the expected yield
is required, and if the design is expected to be high yielding, a
thorough Monte Carlo simulation can be performed with nu-
merous instances to determine exact yield. The only situation
in which Monte Carlo analysis offers a clear advantage is in
this latter situation: a high (or low) yielding design with need
for a precise estimate of yield in a situation where running
numerous circuit simulations is not a serious liability.

VI. CONCLUSION

Two techniques have been described which enhance the
capability to predict circuit parametric performance. The use
of multivariate nested distributions has been shown to offer
distinct advantages over the multivariate normal distributions
most commonly used, particularly when device matching
has an impact on circuit performance. These multivariate
nested distributions can be easily extracted from test structure

electrical measurements, and provide improved modeling of
output parameter distributions while offering guidance for
process improvement efforts. Also, a novel technique has been
presented which offers a deterministic method of predicting
performance, rather than the traditional stochastic Monte Carlo
procedure. In certain cases, this technique can reduce the
number of simulations required for accurate yield prediction,
and is guaranteed to provide repeatable results with uniform
sampling of the process space.
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