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Statistically Based Parametric Yield
Prediction for Integrated Circuits

David S. Gibson, Ravi Poddar, Gary S. M&gnior Member, IEEEand Martin A. Brooke Member, IEEE

Abstract—This paper presents a novel procedure for predicting be inferred from these simulations, and yield can then be
integrated circuit parametric performance and yield when pro-  estimated using the percentage of that sample which meets
vided with sample transistor test results and a circuit schematic. the performance requirements

Two enhancements to the existing Monte Carlo simulation pro- L . . .
cedures are described: 1) a multivariate nested model is used Several variations on this technique have been presented in

to reproduce random process-induced device variations, rather an effort to either improve accuracy or reduce computational
than the multivariate multinormal model typically used, and complexity. These efforts have occurred primarily in three
2) the stochastic Monte Carlo method for mapping process greas: selection of the variables in which the process model
variability into a performance distribution is replaced with a is to be built, development of methods for predicting the per-

deterministic mapping technique. The use of multivariate nested . RN .
distributions allows estimation not only of correlation between formance of a particular circuit instance, and determination of

various model parameters, but also allows each of those variations techniques for guiding the selection of Monte Carlo instances
to be apportioned among the various stages of the process (i.e.,to improve the accuracy of yield estimates for a fixed sample
wafer to wafer, lot to lot, etc.). This allows matched devices to be gjze.

more accurately simulated, without having to develop customized : : - . .
models for each configuration of matching, and provides focus for Input variables are often examined using analysis of vari

process improvement efforts into those areas with the maximum @nce (ANOVA) techniques [2] to eliminate statistically in-
potential reward. The use of deterministic mapping provides Significant parameters [3], [4]. Uncorrelated multinormal dis-
simulation results which are repeatable and do not rely on tributions are often used, with many authors choosing the
chance to insure that the process parameter space has beenggme four supposedly independent parameters for MOSFET
S\r/ggﬁSéplﬁgidt')g‘e?&ﬁﬁfnpiﬁcé‘ﬁe_ which implements the entire devices: length, width, gate oxide thickness, and flatba_md
voltage [5]-[10]. Others have preferred to use manufacturing
Index Terms—Monte Carlo simulation, multivariate statistics, parameters such as diffusion times and temperatures [3], [11].
parametric yield. Often, correlation is accounted for through the use of principal
component analysis [12], [13].
|. INTRODUCTION Given a generated circuit instance, many techniques have

HE parametric performance of integrated circuits depenB@e” used to predict the resulting performance parameters. The
on both the circuit design and the fabrication process us&fSt common of these, and the standard by which the accuracy

to build the design. The ability to predict this performanc8f Most techniques is measured, is the use of a traditional
is essential to those attempting to design integrated circuf@CUit simulator such as SPICE. Since pure Monte Carlo
modify fabrication processes, plan production schedules, Rj€cision can be directly tied to the number of simulations
specify product operating characteristics. Typically, this pr@_erformed,_ it is _deswable to minimize the calculation time
diction is accomplished using a three-step Monte Carlo methf €ach simulation. The data resulting from a handful of
[1]: 1) a statistical model is built to characterize the fabricatiof€ll chosen SPICE simulations can be used to develop a
process to be used; 2) a circuit design is created usingP@ynomial or neural network model [14], [15], which can
circuit simulator (such as SPICE) and nominal device valudlzen be used in place of SPICE for future, faster calculations.
for the target process; and 3) randomly generated instanE&dynomial circuit models have been successfully generated
of the process model are simulated in a “Monte Carld?sing linear [7], piecewise linear [16], quadratic [17], [18], and
fashion to produce a representative set of output performarféic [19] models. Transformations are often made to improve
characteristics. The impact of random process variations di§ accuracy of these models. Analytic expressions can also
be used [20], as can hierarchical model generation [4], [21],
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TABLE |
ExAMPLE OF A NESTED DISTRIBUTION
Group Device Mean Group Device
Device Level Level Parameter Value Value Value
First matched device 1 1 fox Ta K 4 €an
Vi TB Lp Ep,
Second matched device 1 2 fox TA Ha €A,
Ve TR Hp, €g,
First unmatched device 2 1 fox Ta Wa, € Ay
Vi Th Wg, €8y,

previous circuit designs to be added to samples for more recentoutput parameters nearly so much as variation within a
versions. Stratified sampling [26] divides the process regiaingle circuit, especially when matched devices are used.
into a number of nonoverlapping regions, and then calculatéssuch a case, a dramatic reduction in run-to-run variance
the yield in each region. The control variate technique [26fight not affect output performance as much as a more
[28] can be used to overcome inaccuracies in the mappingpdest improvement in within-circuit variance. In the course
function (typically employed only when non-SPICE maps aref developing a process model, much of this information is
used). Acceptance sampling [29] performs a similar functioayailable. However, models created for most simulation needs
but includes elements of stratified sampling as well. Lati@re notin a form which allows ready conclusions to be drawn
hypercube sampling insures that a wide range of values &kout which process steps should be targeted for improvement.
used for each variable in a multivariate sample [30]. An improved technique would make this information directly
Given this history, there is room for improvement in agvailable.
least three areas: the simulation of analog circuits which While Monte Carlo simulation has served well for a number
use matched devices, extracting information from the procedsyears, it has an inherent weakness in that it is a stochastic
model to maximize the effect of process improvement effortgfocess. Also, the most straightforward method for improving
and converting the probability density function (pdf) for th@ccuracy is to increase the number of instances generated. This
process model to a pdf for circuit output characteristics.  €a@n result in prohibitively large needs for computing time,
Designers often rely on device matching to improve the pé_'mce each additional ins_tance requi_res an agdi_tional simula-
formance of circuits which incorporate differential amplifier§On- Furthermore, some instances will be statistically “close”
(op amps), DAC’s, ADC’s, and other analog components. ipgether, other's will be “far” from their neqrest neighbor.
two matched devices are simulated using identical device v&ionsequently, it cannot be assured that all regions of the model
ues, then unrealistically good performance is predicted. TW@rameter space will be explored equally. Finally, since Monte
approaches have attempted to rectify this problem. The ﬁgf\rlo simulation is a sftochgs_tlc process, it will yield slightly
simulates within-die variations by adding a random componefifierent results each time it is performed.
to each device [31]. This falls short in that it attempts to use the!" thiS paper, two techniques are proposed to address the
same variability for all devices in a design, regardless of tﬁgree ISSUes identified above.. The f|rst. models.a process using
degree of matching they exhibit. The second method devel uIt|yar|ate ’?eStEd probab|l_|ty densny function rather than
an empirical model for each specific matched device confi e typical multinormal pai. Th's results n a m_ode_l Wh'(.:h can
uration, and uses that model to generate specific param W?c])ﬁe accurately reflect the impact of within-circuit variation,

information for each matched device [32], [33]. This technique ' _p.r0V|d|ng I.nSIth into_profitable courses of actlor_1 for_
variability reduction. The second technique is a deterministic

requires explicit model development for each new matchir obability mapping method offered as an alternative to Monte

configuration (for example, if three matching devices we : e ) ;
used rather than two), and assumes that the onl Within-(garlo analysis, and addresses those difficulties associated with
' y it§ stochastic nature.

variations which matter are those on matched devices (other
devices are modeled with no variation).

Another shortcoming of current techniques is that they do Il. PROCESSMODEL DEVELOPMENT
not facilitate process improvement. Manufacturing yield is The modeling of semiconductor manufacturing processes
maximized when a process is centered (i.e., mean value ischin be improved by using a multivariate, nested, normal
the middle of the desired range) and the random componentditribution. Nested distributions are appropriate when the
process variation is minimized. Since process variation comsisenomena being modeled can be divided into “stages” such
from many sources, each of which contributes a differetitat the variability within one stage is independent of the
amount to the total variation, it is important to attemptariability within another stage [34]. In semiconductor man-
reductions of those sources which have the most potentidhacturing, the potential stages are processes, lots, wafers,
for reducing the variation in output parameters. For examplgrcuits, groups (of matched devices), and devices. These
variation from run to run might not affect the variationare generally mutually independent in their variability. For
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v* TABLE Il
VARIANCES USED IN GENERATING FIG. 2 AND
CALCULATED RESULTS (ALL VALUES 210713 m?)

p1 0 p2 Variable Target Multinormal Nested

Vout L1 1.00 091 1.04

. __| Wi 1.00 0.98 0.99

Vin [ e

— L2 1.00 1.04 0.99

a w2 1.00 1.08 0.97

v L1vs. W1 -0.50 -0.46 -0.47

Fig. 1. Circuit used for simulations. L1vs.L2 0.50 -0.05 0.57

example, large variations in a device parameter from one lot

to the next is no indication that large variations will occuy‘”thln Fhe first). By can be r_ep_resented s_lmllarly, with all
scripts replaced with a simil& subscript.

in that same device parameter on two adjacent devices in ﬁlf% fini ed bability distributi . K |
same circuit. Lot variations might be due to the concentration efining a nested probability distribution requires a knowl-
ge of the global means for each parameter, and a covariance

of a particular batch of solution used in a wet processi . . o
P P trix for each stage of the model to characterize the distri-

step, while device level variations might be more dependeB i ¢ de. Letth . tri be ai b
on how evenly the solution is applied. This independence 8f'°"S ;’2/” ar; €ij- Letthe Covar';';‘{‘ce n;a rices be given by
A O_AQBI | and s, = | 4 AB2 | where X,

cause (and consequential independence of variance) maKes= |O_ -
AB B . . B .
e stagé 1 covariances (the distributions,pfand

semiconductor manufacturing an excellent candidate for nestgghiains th
modeling. _ S 1p;) and¥, contains the stage 2 covariances (the distributions

In addition to being nested, this distribution must also & ., andep ). The nested model for these two variables

. . . . . . ij i/t

multivariate. That is, the modeling of the various differentas peen defined when all eight of these variables have been
parameters from one device are modeled using a multinorm@lntified (two means, four variances, and two covariances).
distribution, including the relevant variances and correlationppis distribution considers correlation not only among the
The nested aspect of the distribution will reproduce similariti§srious parameters for a single device (as modeled by the
in different devices from the same stage. The multivariaig,ariances in th& matrices), but also considers correlation
aspect is needed to insure that when more than one paramgigpg samples of the same parameter from different devices

from a single device is modeled, the appropriate correlatiops ine same stage (as modeled by the common variance
are considered. For example, there is a WelI—document@g.nponemS of common higher stages).

correlation between MOSFET threshold voltage and gate
oxide thickness. Using a multivariate model assures that
these two parameters will have the appropriate correlatigs. pMultivariate Nested Modeling Example
Thus, a multivariate nested distribution not only reproduces . . . S
the correlation of different parameters within a device, bgt Consider a practical application of a nested model in simu-

also reproduces the correlation resulting from within-sta gng a sn_nple circuit with three similar MOSFET devices,
similarities. wo of which have been carefully matched. Assume each

transistor has two model parameters which vary statistically:
oxide thickness(t,x) and threshold voltag€V;). If ¢, is
considered variablgl andV; is variableB, then the parameter

In a nested distribution, each sample can be represented;@gies for these three devices can be expressed as in Table |
a global mean plus a variance contribution from each stagf: summing the mean, group, and device values.
Consider two correlated variables and B with two stages  The parameters of the nested pdf determine the distributions
of nesting. A sample from this design can be referenced usigg the values in Table I. The two means, and 75, are
(Aij, Bij) wherei is the level of the first stage (the higheskonstants, and consequently have no distribution. The group
stage—stage 1) anglis the level of the second stage for thagalues .4, and up, are distributed multinormally with a 0
particular sample. No two samples can have the same lev@lsan vector and a covariance matrix f, as areu.4, and
for both stagesA;; can be represented as 1s,. Each of the three device value pairs is also distributed
@ multinormally with a 0 mean vector and a covariance matrix

of 32,. The first two devices will probably be closer matched

wherer4 is the grand average fot (the same for all samples), than the last device since they contain the same values for
w4, IS the stage 1 component fer (the same for all samplesand ., while the third device only shares the same value.of
with level 4 of the first stage), anct,,; is the stage 2 Also, the correlation betweefy, andV; is preserved at each
component of4 (unique for each level of the second stagstage via theX. covariance matrices.

A. Description of Nested Modeling

Aij =Ta+pa, +Ea,
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Fig. 2. Input generation differences between multinormal and nested distributions. The four random vakidbles1, L2, and W2, are projected
into two dimensions to facilitate visualization.

C. Multivariate Nested Distributions as A. Using Nested Models to Reveal the
Process Improvement Tools Impact of Device Matching

One additional benefit of using a nested distribution to The advantage gained by using nested distributions as
model a process is that sources of variability are more eastlgposed to multinormal distributions arises from differences
identified. In the above example, if it was determined th@i the input instances they generate. With a multivariate
the variability of ¢,x was too high, then an examination ofmultinormal distribution, correlations among parameters on a
0%, ando?, would reveal how much of that variability wassingle device can be reproduced, but there is no mechanism for
present at the group level and how much was at the deviseserving correlations between similar parameters on matched
level. Larger variation at the group level might suggest thgkvices. Since designs which incorporate matched devices
the variability cause is due to a phenomenon which varigien have their performance driven largely by how closely
across a circuit, such as etch uniformity. Larger variation giose similar parameters match, multivariate multinormal dis-
the device level might suggest that the variability cause fgputions can result in misleading performance predictions.
due to more fundamental limits in the ability to repeatably 1o jllustrate this phenomenon, the differential amplifier
build devices. These two conditions suggest different plans g§own in Fig. 1 was modeled twice using a Monte Carlo
attack for process improvement. Furthermore, simulation gha\ysis procedure. The first time, input instances were gen-
the circuit using this distribution with reduced values of devicgrated using a multinormal distribution, while a multivariate
and group level variation will reveal which has a greater effefbsteq distribution was used for comparison. Table Il shows
on variations in output performance. the variances used to build each of the models, with similar

parameters used for both. For the nested model, the total
lll. COMPARISON OFMULTINORMAL VERSUS NESTEDMODELS  variance of each device parameter was split evenly between

To demonstrate the impact which a process distributidhe two levels of variance in evidence here: circuit to circuit
model can have on performance prediction, Monte Carfifid device to device. Fig. 2 shows the inputs generated by
simulations were performed using both multinormal and nestggrforming these two simulations.
distributions. All simulations were performed using the simple Fig. 2(a) and (c) each show the instances generated using
differential amplifier circuit shown in Fig. 1. This circuit wasthe multinormal distribution, while Fig. 2(b) and (d) show the
chosen for two reasons: it is a common subcircuit used iimstances generated using the nested distribution. Fig. 2(a) and
IC design, and its performance is strongly dependent on ti® show the two sets of input instances plotted versus
matching of devicesVl and N2. In an effort to keep these and W1. As expected, both models reproduce the targeted
examples simple, all parameters except the leridith and negative correlation between length and width, as reflected
width (W) of devicesN1 and N2 were held constant for all in the tendency of the instances to cluster along a diagonal
simulations. line sloping from upper left to lower right. Plotting the same
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Fig. 3. L values of generated input instances showing varying degrees of variance distribution. Moving from (a) to (d) reflects an increasing portion of
the distribution allocated to within-circuit, rather than between-circuit sources.
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Fig. 4. Output performance for the circuit instances shown in Fig. 3.

data usingL1 and L2 as axes produces Fig. 2(c) and (d)correlation. This observation is verified by the statistical
Notice that while no correlation is seen between these tvamalysis of the generated instances shown in Table Il. Note that
parameters in Fig. 2(c) (as evidenced by the apparently randalitarget parameters are reasonably reproduced in both models
distribution of instances), Fig. 2(d) exhibits a clear positivewithin statistical margins) with the exception @éfl versus
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Fig. 5. The impact of stage choice on inputs for variance reduction efforts. (b) reflects a 90% reduction in the between-circuit variance froormthat show
in (a), while (c) reflects a 90% reduction in the between-device variance.

L2 correlation—the multinormal model cannot reproduce this Fig. 4 shows the corresponding results of simulations on the
characteristic. This correlation will be referred to hereafter agstances depicted in Fig. 3, with the letters (a)—(d) taking on
“device” correlation, since it measures the correlation betwedre same significance. Note that as more of the variance is
similar parameters in different devices, and plays a majapportioned to circuit level, the variation in the output perfor-
factor in the performance of circuits with matched devices. mance is reduced (as evidenced by a tightening of the output
Fig. 3 shows the instances generated using four differatistribution), even though the variance of the input parameters
distributions of variance between the circuit and device levelsas remained the same. This is a direct consequence of two
(a) 100% device (traditional multinormal modeling), (b) 10%acts: 1) better matching of transistofél and N2 is a key
circuit, 90% device, (c) 50% circuit 50% device, and (djactor in reducing output variation (more important than their
90% circuit, 10% device. As expected, the instances exhibiahsolute values) and 2) with constant total variance, more
stronger relationship betweehl and L2 as more variability circuit level variation means less device level variation, leading
is apportioned to the circuit level (leaving less variabilityo better matching ofV1l and N2 in any particular circuit.
between devices). Notice that the total variancelforand L2 Clearly, by assuming that all variation is device level (as is
has not been changed in any of these plots, only the mandene with a multinormal model), gross mistakes can be made
in which it is distributed. in estimating circuit performance—including the generation
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14 Consider a hypothetical example using the circuit in Fig. 1,

124 once again only considering the four parameters Mt

10 and N2 previously described. The first step in improving
csl variability is to construct a process model. If the multinormal
'g 61 model from above were used, it would reveal a process in

7 which all four parameter variances were essentially equal. The
4T p} 4 impact of improving device matching could not be explored on

2 paper, since the multinormal model cannot reproduce device

0 f , ' % % correlation. If a decision was made to reduce process variation
-3 -2 -1 0 1 2 3 for one of the four parameters, it would still be unclear how
Output Offset Voltage to proceed. For example, circuit to circuit variation might

(@ be improved by reducing the time between processing of

14 successive wafers, while device to device variation might

121 _be_lr_nproved by modifying control of gas flow over each

individual wafer.

101 Suppose, on the other hand, that a nested model were used,
-g 81 and that it revealed a distribution similar to that shown in
O 61 Fig. 3(c). In other words, all four parameter variances were

4 equal, and those variances were split 50/50 between circuit

24 + level and device level. A typical set of instances generated

0 ; : - , } from such a distribution is shown in Fig. 5(a), with the

3 2 1 0 1 5 3 corresponding sample variances and covariances shown to the
Output Offset Voltage immediate right. Fig. 5(b) and (c) show the effects of reducing
®) the circuit and device level components, respectively, by 90%.

Once again, sample statistics for each of the plots are shown

14 to the right of the figures. Note that Fig. 5(b) and (c) show

12 1 M a similar reduction in the four parameter variances, but in

10 4 %, Fig. 5(b) this was accomplished at the expense of a dramatic
c sl reduction in covariance betwednl and L2.

‘n The consequences of these two paths are shown in Fig. 6.
O 61 The conditions in (b) do provide some reduction in variance,

47 but (c) provides a clearly superior route. This suggests that,

21 for this example, the best course of action is to pursue those

0 ; : ; + 4+ options which would reduce device to device variance within

3 2 -1 0 1 2 3 a circuit, such as improving device matching through revised
Output Offset Voltage layout or reducing process variability across a circuit.
(©)
Fig. 6. Output performance for the circuit instances shown in Fig. 5. IV. MAPPING OUTPUT PERFORMANCE

Monte Carlo simulation is nothing more than a method of
applying a deterministic mapping function to a joint pdf to
generate a resultant joint pdf. When simulating circuits, the
initial pdf is the distribution of device parameters, the mapping
function is the SPICE simulation program, and the resultant
pdf is the distribution of performance parameters. The resultant

It is not unusual for either designed or fabricated CirCUitﬁdf can also be obtained using a technique known as Jacobian
to exhibit output performance with a greater variability thagansformation [35].
desired. Several approaches can be taken to reduce this var'guppose A and B are correlated device parameters with
ability, including process and circuit design modification. Twg joint probability distribution pdf4, B), and X andY are
guestions must be answered to optimize work in this argg;q output parameters with a joint pdf of gdf,Y). To
1) to what types of variability are the output parameteigse the Jacobian technique, two inverse functions must be
most sensitive; and 2) to what degree are each of thqs@culated such that for all instances of outputs,y), the
variability sources currently present. An answer to the firﬁqput instance,(a, b), which generated that output can be
question is necessary to avoid working to reduce factoggiculated as: = g.(z,y) andb = gp(z,y). This requires
where, even if successful, that work will not significantlynat each output map into one and only one input. The Jacobian
improve output performance. The second piece of informatigRytrix. J(z,y), can then be calculated as follows:

of inaccurate yield estimates.

B. Using Nested Models to Target Process Improvement

can be useful when several sources of variation are found Sa  Oa
to be significant—typically it is easiest to obtain incremental J(z,y) = % g_zé . 2)
improvement in the parameter which varies the most. dw Oy
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Fig. 7. Use of the pdf discretization procedure on the standard normal distribution. A discretization to five points yields the circled valueslioatthe or

The joint density ofr andy is then given by By selecting an appropriately fine resolution for thg, the
output pdf can be reproduced to the desired precision.
pdf(z,y) = pdf(ga(=z,y), 98(z, v))J (2, v). 3)

Unfortunately, Jacobian transformation requires knowled§ Discretization of Multinormal Model Density Functions

of an inverse map and partial derivatives of the mapping To use this technique, a finite number of points in the input
function—neither of which is available with a SPICE mappin@df space must be identified, with a probability assigned to
routine. These problems can be overcome by discretizing ta&ch point. To best represent the original function, each point
input and output probability density functions using the novaklected should represent a region of reasonably homogeneous

methodology described below. behavior. Unfortunately, there is na priori method for
determining where the output function will change rapidly
A. Use of Jacobian Concepts for Discrete Functions with respect to the process model variables. Consequently,

Many of the restrictions imposed on using the Jacobiz%ﬂe method used here is to distribute the sample points

transformation for mapping continuous probability densitpﬁvenly tt?rﬁ!f.ghouft the input prOb:b'“f[thpaCE' Th_|s r(_esults
functions disappear when evaluating discrete pdfs. Xebe a proba |||ty c:j 1/;]1. gssomate_ W't ea"c pqlnt .m i

a single realization of an input pdf. If there arepossible phomts”are s€ ectgll - This is trut:] since evenbsg?_cmg |Imp 'es
discrete values foiX given by Iy, I>,---, I,,, with the prob- that al points will represent the same proba liity volume,
ability for I, given by P(I,), and m finite values for the and since the sum of all probability densities must equal

. - 1 for the entire volume to be mapped. By increasimg
outputY given by O, Os,---, Oy, then the probability for .
eachO,, P(O,), can be given as: the volume represented by each point can be reduced as

much as desired until it is small enough that no significant
1 f() €O variations occur within the region represented by a single

— _ b a
P(Oa) =Y P(L) s Iy = {0 F(I,) & Oa ) point.
b This concept is illustrated by the one-dimensional example

where f(X) = Y is a deterministic mapping function whichin Fig. 7, in which a standard normal pdf is discretized into five
maps eachX into a single value ot”. The only requirements points. The lower curve shows a standard normal probability
for this procedure are that: 1) the are defined and their density function. The upper curve is the standard normal
probabilities,P(1;), are known; 2) a mapping functiof(1,), cumulative probability function, obtained by integrating the
is defined for eacli,; and 3) each, maps to exactly oné,. pdf. The first step is to divide the distribution into five regions,
While the J, are not a Jacobian matrix, they serve a simil&ach representing 1/5, or 20%, of the total distribution. For
purpose in allowing the creation of a new distribution vighis example, these regions are 0 to 20%, 20% to 40%, 40%
deterministic mapping of an original distribution. Once th& 60%, 60% to 80%, and 80% to 100%. The percentages
O, and their probabilities have been determined, a discrégPresenting the centers of each of those regions are 10%,
version of the output pdf can be constructed if a “volume” iB0%, 50%, 70%, and 90%, respectively. The values associated

the output parameter spack,, can be associated with eachvith each of those percentages a+¢.3, —0.5, 0.0, 0.5, and

O,. The resulting the pdf ab,, pdf,, is given by 1.3, respectively.
For multinormal distributions ofn variables, the pdf
pdf, = P(Oa)' (5) will contain n dimensions. If each of these dimensions

Va is made an independent normal distribution (for example,
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through the use of principal component analysis [36]points for both axes, with the resulting 25 center points
then this procedure can simply be repeated once foeing (-1.3,-1.3), (-1.3,-0.5), (-=1.3,0.0), (-1.3,0.5),
each dimension. Creating a two-dimensional pdf usirg1.3,1.3), (-=0.5,-1.3),---,(1.3,1.3), each of which has

the distribution in Fig. 7 would result in the same fivex probability of 1/25.
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Fig. 10. The impact of grid resolution on yield prediction capability. The dark solid line represents a large sample Monte Carlo prediction (t&ken as t
correct value), while other lines represent increasingly fine pdf grid discretizations.

C. Conversion of Multivariate Nested Distributions is given by
to Multinormal Distributions ) ) g )
. . . ) + , F— an 4 =
To discretize a pdf as described above, a multlnormalCOV B B.)— 0531 B, f_a J

; o . (Bij; Bay) = § 05, i=a and j#b (7)
representation of the distribution must be available. Fortu- 0 i+a
nately, any nested distribution with a particular sample plan ’
can be converted to a multinormal distribution. Consider twgnd the covariance between adyand B values is given by
correlated variablest and B with two stages of nesting. Let

A;; and B;; be a pair of instances of and B which have a 0aB, +0aB,, i=a and j=5b
stage 1 value ofand a stage 2 value gf Also, defineo? = ~ COV(Aij, Bay) = { 048, i=a and j#b
O—z211 + 0—312’ 02312 = 0231 + 0]232’ andaABlz = UABl + UABz' 0’ L 7& a.

For each circuit instance to be generated, maayB) pairs (8)

must be determined. For example,Afand B are transistor As an example, consider the data used in preparing Table I.
parameters, a pair afd, B) values have to be generated foA Six variable multinormal distribution can be constructed to
each transistor in the circuit design in order to create of@Present the three devices defined, each of which is modeled
instance of the circuit. IfV transistors were present in thewith two parameters. The first two devices are matched, but
circuit design, ther2 « N random numbers would have to behe third is not. AllowingA to represent. and B to represent
generated, requiring the creation of a multinormal distributiol¥ the means vector for the new multinormal pdf is given by
in 2 x N variables.

Covariance values between each of the N variables
depend on which stages have identical levels, so that the . L
covariance between thd values for two different devices and the covariance matrix is given by

T=|ta 7B TA TB TaA TB| %)

is given by 0[2“312 0@312 0[241 0,231 0 0
04 +0% it=a and j=0b 0;2]312 00312 aaéBl UUBI 8 8
COV(Aij da) = 402 i=a and j#£b (6 S=|, 0 o Jhe Tk 0
1 5 ABy I, 0AB12 OB,
0 iFa 0 0 0 0 0%, 0aBy
0 0 0 0  ouB, 0B,

the covariance between tt# values for two different devices (10)
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Fig. 11. Yield prediction capability comparison using two points in each dimension (16 samples). Upper and lower confidence intervals for ¢he discret
prediction are shown in broken lines.

Note that each sample ol has the same mean value;, representing? 1 andW2 have been projected onto tiié /L2
and the same variancey . As intuition dictates, only the plane.
covariances change from one sampledofor B) to the next. Fig. 8(a) shows a multinormal distribution with inputs gen-
erated for Monte Carlo analysis. Using the same multinormal
V. COMPARISON OF MONTE CARLO distribution but generating inputs using the discrete technique
VERSUS DISCRETE PDF 3MULATIONS yields the very regular input distribution in Fig. 8(b). Note

The circuit in Fig. 1 was used once again to demonstrate tt (b) would be even more obviously regular if it could
characteristics of the discrete pdf mapping and how they diffe¢ viewed in the four dimensions of the full input parameter
from traditional Monte Carlo simulation. Unless otherwiséPace. Fig. 8(c) and (d) show inputs generated using a nested
noted, all discrete pdf simulations were performed using fiv#istribution. Again the inputs are regular in (d), but they are
divisions in each of the pdf's four dimensions for a totafkewed to reflect the correlation which is now present between
of 625 samples. To allow meaningful comparison, all Monté! and L2.

Carlo simulations were also performed using 625 samplesFig. 9 shows the outputs generated from Fig. 8(a)—(d).
Furthermore, nested simulations were performed using thiree significant features can be observed. First, as noted be-
nested pdf model introduced with Fig. 2. Based on consistdffe. the nested distribution reflects the improved performance
results obtained with other simulations, the results documen@¢pected when matching effects are considered, as reflected by

below are believed to have general applicability to all circuthe tighter grouping in (c) and (d) than is found in (a) and (b).
analysis performed using this technique. Second, the outputs from the discrete technique also display a

degree of regularity [as seen in (b) and (d)], although not so

A. Interaction between Multinormal and Nested Distributiongronounced as was evident in the inputs. Finally, the tails of
Monte Carlo and Discrete Simulations the distributions are not as heavily populated in the outputs
The circuit in Fig. 1 was simulated using each of thdSing the discrete transform, which is especially obvious in

four permutations of multinormal and nested distributions aridd: 9(d). These last two points will be further explored in
Monte Carlo and discrete transforms. The impact of usifj® Next example.

each of these four combinations is most apparent in Fig. 8,
where the input parameters used for each of the four conditidfs
are displayed. Note that although there are four inputs, onlyParametric performance for the circuit in Fig. 1 was esti-
L1 and L2 are plotted, so that two additional dimensionsated using a Monte Carlo technique with 10000 samples

Impact of Sample Size on Yield Prediction Capability
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Fig. 12. Yield prediction capability comparison using seven points in each dimension (2401 samples). Upper and lower confidence intervals for the
discrete prediction are shown in broken lines.

and a nested input distribution. An estimate for yield:, 7* (or 2401) points. Three observations can be made from this
could then be calculated by computing the percentage of circpibt. First, it is apparent that increasing the number of samples
instances passing a given output criterion (since each instaimogeroves accuracy, since the curves for successively larger
has identical probability of occurring). The yield has a standasdmples sizes come closer and closer to the reference line.

deviation, oy« given by Second, errors in the center of the plot (near 50% yield) seem
centered about the reference, while errors near the extremes

oy :,/M_ (11) (>95% and<10%) tend to consistently underestimate the

10000 population of the distribution tails. Third, changes in the yield

This results in a prediction of yield which has a worst cagstimated seem to occur in dramatic steps for smaller sample
standard deviation of only 0.5%. Consequently, the 10008zes. The first observation is intuitively obvious, but the
sample Monte Carlo prediction is used as a reference r@&maining points bear further study.
evaluate the discrete transform method. Fig. 10 shows thisTo understand why the discrete technique seems to underes-
reference yield (labeled “MC reference”) as a function of &mate the population of the distribution tails, consider Fig. 7.
single output parameter—output voltage for a zero volt inpdiote that the lower 20% of the distribution will always be
Instances displaying an output voltage above the minimuig@presented by the 10% point, so the lowest value selected will
value are categorized as passing for the purpose of calculatiiggays be 1.3. If a Monte Carlo simulation were performed
yield. As the minimum acceptable output voltage is increasedking the same distribution and 5 points, then there would be
the percentage of passing instances is reduced until the yiéldo chance (given by 1-GPthat at least one point would
falls to zero at a sufficiently high output requirement. (Albe selected with a value less than 1.3. If a second independent
though this is not typically the way in which an output offsedimension is added to Fig. 7 so that points are used, then
voltage would be specified, it serves well the purpose at hanth Monte Carlo probability of getting a value less than 1.3
Also shown in Fig. 10 are the yields predicted using thiacreases to 93% (1-¢9, while the discrete technique will
discrete transform with various sample sizes. As with theever generate a value less than 1.3. If performance varies
Monte Carlo technique, yield is estimated by calculating thggnificantly with nominal decreases in this value, then yield
percentage of passing instances. The different sample sizesveitbe misrepresented. A similar argument can be made for the
the result of varying degrees of coarseness in the input pdf grighper 20% of the distribution. Clearly, the discrete technique is
With only two divisions in each of four dimensionst foints most accurate when circuit performance is relatively constant
are generated, while seven divisions in each dimension leadsvithin each individual cell of the input grid.
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The dramatic changes in yield seen in Fig. 10 are explainet&ctrical measurements, and provide improved modeling of
with a similar simple analysis. Note that for the 16-sampleutput parameter distributions while offering guidance for
case, there are four distinct points where the yield dropsocess improvement efforts. Also, a novel technique has been
dramatically, the first of which occurs at a minimum acceptabfgesented which offers a deterministic method of predicting
output voltage of about-0.45, when the vyield drops from performance, rather than the traditional stochastic Monte Carlo
100% to 75%. This is a consequence of the regularity of tipeocedure. In certain cases, this technique can reduce the
sampled points associated with the discrete transform. Simaember of simulations required for accurate yield prediction,
these points tend to be aligned in rows, any output specificatiand is guaranteed to provide repeatable results with uniform
which defines a constraint parallel to a row of points will seeampling of the process space.
significant changes in yield as that specification passes the row.
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