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The Impact of Tolerance on Kill Ratio Estimation
for Memory

Oliver D. Patterson, Member, IEEEand Mark H. Hansen

Abstract—Spatially correlating in-line inspection data and post-
process electrical test data is an effective approach for estimating
the yield impact of different defect types and/or process steps. An
estimator for the probability that a particular type of defect kills
an electrically testable structure, the kill ratio, has been described
in the literature. This estimator may be used to predict the yield
impact immediately after inspection, providing a number of ben-
efits. It may also be used to generate a yield loss pareto by defect
type. This paper introduces a new estimator for the kill ratio, which
takes into account the impact of tolerance, a parameter setting the
maximum distance between a defect and structure under which
they are considered spatially correlated. This estimator was devel-
oped for memory (bitmap) data, where the tolerance is very large
relative to the size of the structure. The tolerance is often increased
to accommodate for misalignment between inspection tool sets and
the electrical data. The problem with increasing the tolerance is
that the chance of coincidental correlation between failed bits and
defects increases as the square of tolerance. Analytical and sim-
ulation results are presented to illustrate the danger of using the
existing kill ratio estimator with too large a tolerance or overly
sensitive inspection tool recipes. These same results illustrate the
improved performance of the new estimator. Because the number
of falsely attributed defects adds up over a number of inspections,
a small error in the kill ratio estimator can have a major impact on
the yield loss pareto.

Index Terms—Bitmap, kill ratio, overlay of electrical and defect
data, yield loss pareto, yield modeling.

I. INTRODUCTION

SPATIAL correlation of in-line inspection data and
end-of-line electrical test data, also known as overlay

analysis, may be used to identify killer defects and their process
step of origination. This information is useful for prioritizing
yield improvement efforts, tracking yield loss contributions
by process step or defect type, and predicting yield [1]–[4].
Overlay analysis may be applied to any type of electrically
testable structure, including whole product die, comb test
structures [5] and individual bits in an array of memory [4],
[6], [7]. Application to memory is useful for a number of
reasons. First, the chance of defects from different inspections
correlating with the same electrical failure is small even for
very high defect densities due to the small size of a bit of
memory. Second, memory is a part of many products and
therefore fabrication of nonrevenue generating test structures
is not necessary.
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Two useful metrics typically used in analyzing overlay anal-
ysis data are the kill ratio, which is defined as the increased
chance of a structure being rejected when a defect of type
is present relative to the baseline yield, and the defect limited
yield, which is defined as the upper limit for circuit yield which
would be obtained if a particular visual defect type were the
only factor limiting the overall yield [3]. Defect types are often
broken down by inspection step but may also be broken down
by defect characteristics. The following estimators for the kill
ratio, , and defect limited yield, , for a defect of type
, denoted , are defined in the literature [3]

(1)

(2)

where

total good structures with observed
total structures with observed

(3)

total good structures where is not observed
total structures where is not observed

(4)

and

total structures with observed
total structures

(5)

The kill rate is an estimate of the conditional probability that
a structure will fail given that defectis present on the structure;
the kill rate is an estimate of the conditional probability that
a structure will fail given that defectis not present on the struc-
ture, and is an estimate of the probability that a defect of
type occurs on a structure. The superscriptstands for liter-
ature. For convenience, (3) and (4) are presented in a simplified
form, where the inspection tools are perfect, i.e., the probability
that an existing defect is missed is 0, and the probability that a
defect is detected although it really does not exist is 0.

This theory assumes a one-to-one correspondence between
defects and electrical structures (i.e., an observed defect will
only impact the electrical structure that it appears to lie on). This
will be the case for large test structures, but not for memory.
The size of a bit of memory for 0.16-m technology is roughly
5 m , whereas the positional inaccuracy of state-of-the-art
optical inspection tools is much worse. Based on a set of tool
accuracy experiments conducted at Agere Systems, defect wafer
maps for the same wafer can be as far as 25m offset for
two different KLA 2138s. The offset between wafer maps
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from a KLA 2138 and a Surfscan AIT may be as much as
75 m. These values assume the inspection tool recipes are
set up analogously. If different locations for the die origin are
selected (e.g., the middle of the intersection of the two scribe
lines for one tool and the bottom left corner of the die for
the other tool), the positional inaccuracy will be much worse.
Therefore, even if a defect does in fact cause an electrical
failure, the position on the defect wafer map may be 75m
or greater from the location of the failed bit on the electrical
wafer map. Also, the same defect may be identified at multiple
inspections but may similarly be offset from wafer map to
wafer map. Therefore, a new theory is needed to address the
situation where each observed defect can correspond to one
out of a large number of electrical structures.

To address the issue of positional inaccuracy between inspec-
tion tools and the electrical wafer map, overlay analysis pack-
ages include a parameter called tolerance,[8]. The tolerance is
the maximum distance between two events (defect to defect or
defect to electrical failure) to be considered spatially correlated.
When a nonzerois used, an error is introduced into and

. This error is the chance of coincidental correlation (i.e.,
the chance that an unrelated defect is within theof a failed bit).
The error in will be shown to be approximately equal to
the total area within of any electrical failure divided by the
total inspected wafer area. This error increases with the square
of and linearly with the number of electrical failures.

A new estimator for kill ratio, which takes into account the
impact of , is derived in this paper. This estimator is compared
to for different and electrical and physical defect den-
sities analytically and through simulation. The impact of these
variables on the yield loss pareto is also quantified.

II. K ILL RATIO

Hall et al. [2] shows how contingency table analysis may be
used to determine whether two variables of classification, the
existence of a defect of typeon a die and the functionality of
the die, are correlated. For memory, different class variables as
shown in Fig. 1 are appropriate. Let A be defined as all area
within of a defect of type . This area is shaded in the ex-
ample wafer map in Fig. 2. The remaining inspected area,, is
shaded in Fig. 3 for the same example wafer map. For now, as-
sume that no two defects are withinof each other. We will look
at the impact of violating this assumption in a Section VI. Let

be the number of electrical failures multiplied by the
area in a circle of radius, a tolerance ball. The is the
remaining area. In , the is equivalent to the number
of hits (defects within of a failure) multiplied by the area in
a tolerance ball, while the is the number of misses
(defects not within of a failure) multiplied by the area in a tol-
erance ball. In , the is the area where a hypothetical
defect could land and be withinof an electrical failure, whereas
the is the area where a hypothetical defect could land
without being within of an electrical failure.

The independence of versus may be determined
by comparing

(6)

Fig. 1. Contingency table for determining whether a defect of typei impacts
yield.

Fig. 2. Example ofA. The area,A, is shaded. Thehit area is indicated. The
remaining shaded area is themiss area.

Fig. 3. Example ofA. The area,A, is shaded. Thearea for a hit is indicated.
The remaining shaded area is thearea for a miss.

and

(7)

using a Chi-squared statistic. The kill rateis an estimate of the
probability that a bit within of a defect will be dead at electrical
test. The background kill rateis an estimate of the probability
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that a bit will be dead given it is not withinof a defect. (Sim-
ilar notation to reference [3] is adopted to facilitate comparison
to the existing theory. For ease of notation, estimators are not
notated with hats, since the symbols in this paper are predomi-
nantly estimators.) Dependency of these variables indicates that
the presence of a defect changes the likelihood that the struc-
ture upon which it lies will be rejected. In this paper, we will
assume that the inspection tools are perfect. If the classification
variables and are dependent, thenand will have
significantly different values.

The kill ratio can be derived using and

(8)

This new estimator is similar to (1) but is a function ofand
rather than and . The kill rate simplifies to , so the
only difference between kill ratio estimators is theterm. Note
that the estimator was developed for the more general
case where the inspection tools are imperfect in reference [3].
The estimator can be similarly generalized.

It is not necessary to determine the actual regions for, ,
, and to determine , , and . In-

stead, these regions may be quantified by an approximation of
their area. First and are calculated

(9)

(10)

where is the number of defects, is the total in-
spected area, and is the area of a single bit. Equation
(9) is an approximation for ; for small values of the toler-
ance balls approach the form and size of a bit of memory. This
approximation makes it possible to span from one estimator to
another. Generally, will be large compared to the area of a bit.

Next the defect wafer map is overlaid with the electrical wafer
map to obtain the number of hits, missed defects , and
missed electrical failures

(11)

(12)

where is the total number of bit failures. From these variables,
and are calculated

(13)

(14)

Equation (14) is an approximation since tolerance balls around
electrical failures could intersect with each other or. The
background hit rate, is calculated using (7).

Both and are bound by 0 and 1. Although in practice
will occasionally be smaller than, resulting in a negative value
for , it does not make sense that the presence of a defect
should decrease the chance of failure. Therefore, should
also be bound by 0 and 1. Negative values of will routinely
occur when the true is 0 or very small and are not reason
for concern. When is 0, becomes and the expression for

exactly matches .

In order to demonstrate this estimator, a model is necessary.
The underlying probabilistic model, which describes the true
process, will be represented by , and .
This model will be used in both the simulation and analytical
sections.

III. Y IELD LOSSPARETO

In order to prioritize yield improvement opportunities, the
yield impact of the different defect types must be compared. A
standard way is through the use of the defect limited yield which
may be expressed similarly to (2) but as a function of

(15)

The term may be expressed as the ratio ofto the total
number of bits , resulting in the following estimate for

:

(16)

where is the number of electrical failures attributed to defect
. Rather than generating a pareto of for all defect types,

it may be more useful to generate a pareto of since
is dependent upon the test structure size. From, for
any test structure or chip size may easily be determined. The
attributed failures may be calculated in a number of ways

(17)

IV. A NALYTICAL COMPARISON TOEXISTING FORMULAS

The new estimator is analytically compared to in
this section. The error in the kill ratio estimate is defined as

(18)

and is expressed as a percentage of 1, the maximum possible
value for a kill ratio. The error in is defined as a percentage
of the total number of electrical failures

(19)

In the simulation results that follow, we show that the difference
between and , the true kill rate for defect used
in the model, is much, much smaller than the difference between

and . Therefore, and are repre-
sentative of the true error in and .

Since a bit covers an extremely small area, even for very high
levels of random yield loss, and

(20)

An expression for may be obtained using (8), (18), and
(20):

(21)
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TABLE I
ERRORS INKR AND E FOR A RANGE OF VALUES FOR N , E, t, total area AND KR .

ALL VALUES ARE NORMALIZED TO COUNTS ORAREA PERWAFER

In the case where defectdoes not affect yield, and will
be identically distributed. For large , and will ap-
proach their population quantities, and . There-
fore, large sample approximations for and when
defect does not affect yield are

(22)

and

(23)

Equation (23) was obtained from (17) and (22). It could just as
easily be derived intuitively; it is the percentage of area on the
wafer an unrelated electrical failure could fall and be withinof
a defect (i.e., coincidentally correlate with a defect). Equations
(22) and (23) show that: is proportional to the elec-
trical defect density, , and , but is independent
of ; also is proportional to the physical defect density,

, and , but is independent of . Equations (22)
and (23) may be used to approximate the significance of using

versus .
Table I compares and to and for different

values of , , , and . Similar to (22) and (23), these
results represent what would be observed for very large sample
sizes where the variance in the estimators is approximately 0.
The values in Table I are expressed on a per wafer basis. The
purpose of this table is to give the reader an idea of the size of
the error in and for a set of possible values.

The number of hits, , is calculated by summing the hits due
to defect with the random hits

(24)

The hits due to defect are approximated using .
The kill rates and are calculated using (7) and (13). The
estimator and are calculated using (8) and (21).
Lastly, is calculated using (23).

Nineteen different cases are included in Table I. The values
used are at the upper limits of the normal range to depict the
worst case. Use of aof 150 m is not uncommon to cover for
all possible sources of misalignment as discussed in Section I.
For all 19 cases, exactly predicts . Therefore,

and represent the error in and .
The first case is the baseline case, which is used for com-

parison with the other cases to show the effect of varying the
different variables. The variable is 0; the defects do
not impact yield. The estimator, equals whereas

equals 0.005, a 0.5% error. The corresponding error in
is 0.9%.

As in case 1, is also 0 for cases 2–5. In these cases,
the variables , , , and are changed in turn. The
effects are as expected based on (22) and (23).

Cases 6–13 show the inaccuracy of and when
is not equal to zero. Cases 6–9 show that the errors

decrease as is increased. In the extreme case, case
9, all the electrical failures are caused by defect. Therefore,
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Fig. 4. Simulation.

is 0, is 0, and is 0. Cases 10–13 show
the effects of varying variables , , , and when

is nonzero. The errors are attenuated from the cor-
responding cases when is zero. Cases 14–19 are in-
cluded to compare with the simulation results described in the
next section.

Among all the cases in Table I, the largest errors in
and occurred for , , m
and cm , the fourth case. The values for, , and

are on the high extreme of what might be used or observed
in industry. The error in for this case is 1.9%. This indi-
cates that although is a more precise estimator for the kill
ratio, in many cases, is adequate. The effect on is
more detrimental. For this case, the error in is 3.8%. A total
of 75 of the 2000 electrical failures were falsely attributed to
this defect. Alone possibly this is not so bad, however this error
compounds with the number of inspections. For instance, con-
sider the extreme case of ten inspections similar to this one (i.e.,
possessing comparable values forand ) and no two
defects lying within of each other (i.e., no overlapping toler-
ance balls). For each inspection, on average 3.8% of the failures
would be erroneously attributed. In total, approximately 38%
of the failures would be erroneously attributed. Most likely, the
tolerance balls of some of these defects would overlap and there-
fore the percentage of electrical failures erroneously attributed
would be somewhat smaller than 38%. Still, the yield loss pareto
would contain close to 38% of the electrical failures and their
relative magnitudes would be fully a function of noise, when in
reality none of the captured defects caused a failure. The new

estimator accurately estimates the true number of killer de-
fects by level and may be used to interpret the yield loss pareto.

V. SIMULATION

A simulation was developed to test the performance of .
This simulation is described in the box diagram in Fig. 4. For
this simulation, , , and are specified. A tolerance
of 160 m was used for all the simulation experiments reported
in this paper. First, defects were randomly placed on a lot of
25 wafers, with each wafer consisting of 600 30004000 bit
memory arrays. This product is a hypothetical example. We as-
sume each bit is 2 2 m so that the entire array is 0.48 cm.
A total of 25 defects are randomly placed throughout the lot.
With 4000 defects, very few landed within of each other,
although this is allowed in the simulation. Which bits fail is de-
termined using the modeled kill rates, and , which
can be calculated from , , and using Eqn. (8) and
the following expression for the probability of a failure:

(25)

In the simulation, we set

(26)

and

(27)

Thus, (25) can be expressed in terms of, , , and

(28)

For each bit with a defect, the chance of failure is determined
with an electronic coin flip with the chance of failure being

. For each bit without a defect, the chance of failure is de-
termined with an electronic coin flip with the chance of failure
being . Next, , which represents the kill ratio
with perfect knowledge (i.e., the exact bit each defect sits upon
is known), is calculated using (8) and aof 0, which is equiva-
lent to (1).

The defect map is then shifted by an arbitrary amount to
represent natural offset between an inspection tool data and the
electrical wafer map. Finally, and are calculated.
This simulation was run 100 times to generate distributions
for , , and including both the mean and
the standard error. The mean and standard error values for

, , and are listed in Table II for different
values of and . The percent differences between and

and and are also listed.
The average difference between and is

very small, indicating a sufficiently large sample size to evaluate
the estimators was used in the simulation. The standard errors
for , , and are very similar for each case
and measure the natural variation in the number of killer defects
per lot.
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TABLE II
SIMULATION RESULTS. A TOLERANCE OF160�m WAS USED FORALL CASES. VALUES FORN AND E ARE NORMALIZED TO COUNTS PERWAFER

The average difference between each of the estimators
and is included on the bottom of the table. The
average difference between and is over
ten times greater than the average difference between
and , indicating that is much more accurate
than . The error in is consistant with the values
predicted in cases 13–19 of Table I and by (22). The observed
error in appears proportional to and decreases as

increases, also consistent with the previous results.

VI. OTHER FACTORS

In this section, some of the complicating factors that were
temporarily set aside during the development of will be
briefly discussed. A detailed discussion of these factors is be-
yond the scope of this paper.

In reality, many different classes of electrical failures com-
monly occur in addition to single bit failures, including column,
row, cross, and double bit failures. For the purpose of overlay
analysis, these failures should be considered a single failure
since they are usually due to a single defect.

Clustering is prevalent in both cosmetic and electrical defect
data and will affect the results of the kill ratio estimators
discussed in this paper. Simulated experiments to quantify
the impact of clustering on these estimators would be an
interesting extension to this work. Neither nor
was designed to take advantage of clustering when present.
Through these experiments potentially a modification to
could be identified which would take advantage of the presence
of clustering.

For now, when is used, we recommend treating clusters
of defects as single defects. In some cases, unrelated defects
that are within of each other will both cause electrical failures.
By clustering these defects, will be lower than it should
be. In the case where two unrelated defects are withinof each
other but do not cause electrical failures, will be higher
than it should be. If numerous clusters occur, they should be in-
vestigated and the method of handling them should be based on
this investigation. If numerous clusters occur due to very high
defect densities, more accurate values forand could be gen-
erated by actually calculating the regions,, , , and

to take into account the overlap between events.
This route is much more computationally intensive.

VII. CONCLUSION

A new estimator for the kill ratio , which is appropriate
for bitmap data, was introduced. The improvement in accuracy
this estimator provides over the existing estimator was
demonstrated. The existing estimator becomes less accurate as

and the electrical defect density increase. At the same time, the
number of falsely attributed electrical failures increases with
and the physical defect density. The estimator will typ-
ically error on the high side because the estimate fordoes
not take into account. This error is approximately equal to
the total area within of any electrical failure divided by the
total inspected wafer area. Equations are provided to approx-
imate these errors for particular values of, , and
when is 0. These serve as an upper bound for all values
of , since when is nonzero, the error will
be less. This paper demonstrates that small errors in can
have a major impact on the yield loss pareto. The total number
of falsely attributed electrical failures is the sum of the error
components over all defect types and inspection levels. For in-
stance, in the extreme example presented, 38% of the defects
were erroneously attributed. Therefore,and should be kept
to reasonable sizes, and should be used instead of
for bitmap data.
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