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A Unified Yield Model Incorporating
Both Defect and Parametric Effects

C. Neil Berglund, Fellow, IEEE

Abstract— A new approach to modeling yield is presented,
which inherently includes both the effects of the conventional
defect contributors and the parametric yield loss contributors of-
ten treated separately in existing yield models. These parametric
yield losses are particularly important during the startup yield-
improvement phase of new technology introduction, in many
performance-sensitive products such as analog devices and high-
speed digital devices, and in analyses of bin-split yields. By
assuming a distribution in the size of defects, from point defects
" up to defects as large as or larger than a wafer, the parametric
yield contributors can be viewed as simply rather large, design-
dependent defects, which will render IC’s unacceptable if any
portion of the large defect overlaps the defect-sensitive area of
a chip. In this way, the conventional Poisson model, or various
extensions of the well-known Murphy model, can be augmented
in a straightforward and general way to include parametric
yield loss. It is shown that parametric yield losses introduce an
additional die size dependence for yield that can help to account
for the observed dependence of yield on die area. The model
is compared to other models and to experimental yield data to
illustrate both its utility in separating yield contributors and its
close agreement with experimental yield data.

I. INTRODUCTION

CCURATE modeling of integrated circuit yield has been
found to be a difficult task. The original yield model of
Murphy [1] is widely used, particularly in forms which include
some distribution in the mean defect density [2]-[8], but even
forms of this model which include empirically determined
parameters often fail to fit the experimental data accurately
[6]. Furthermore, because of the assumptions incorporated in
some models it is often difficult to relate observed yield perfor-
mance in detail to specific yield loss contributors [8]. Despite
these shortcomings, however, such models have been used
effectively in yield management [9], and provide a generally
accepted description for comparing yield performance [10].
An additional shortcoming of the Murphy model and some
yield models derived from it is the inherent assumption that all
yield loss, other than that which destroys entire wafers, arises
from point defects or from particulate defects which are small
compared to the size of the die. While many of the defects
and defect types that can cause yield loss fit this description,
some yield limiters arise from physical or electrical parameters
being out of acceptable range on the die. These parametric
problems often affect entire wafers, but Ham [11] has pointed
out that such parametric “defects” can also result in variable
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sized areas of the wafers exhibiting zero yield. He suggested
that they can be accounted for by adding a constant yield
multiplier called the area usage factor (AUF) to defect-based
yield models. A number of authors have subsequently defined
an empirical constant Yy, consistent with this area usage factor
concept, to account for both parametric and other similar kinds
of large area yield loss on the wafer [6], [9]. It has been added
either into the Poisson model or into extensions of the Murphy
model as an independent yield loss multiplier to provide better
agreement with experimental observations.

One potential problem with such treatments of parametric
yield losses is the implied assumption that there is no die size
dependence of the loss. While this is expected to be a good
assumption when the parametric yield problems impact entire
wafers, when examinations of yield wafer maps indicate that
they impact only portions of wafers, perhaps over areas that
may cover only a few dice [11], [12], such an assumption may
be inadequate. In such cases the wafer area impacted by this
yield loss will have some die size dependence because of the
dice affected around the edges of such regions.

In this paper it is shown that both the conventional small
defects and these much larger parametric or area “defects” can
inherently be included in most commonly used yield models in
a straightforward manner. The resulting yield expression not
only provides an analytical expression for the contribution to
a constant multiplier Y, from the larger defects on wafers, it
also includes an additional die-perimeter-dependent yield term
which results from the loss of those dice which only partially
overlap the large defects. The equations are based only on
the defect density distribution as a function of defect size.
The model is first described and developed, then compared to
previous models, to published data, and to specific experimen-
tal data from a commercial silicon integrated circuit factory.
Although defect clustering effects can easily be incorporated
into the model, it is shown that the model based only on
a simple Poisson yield expression can account for much
of the observed and published dependence of yield on die
area. Similar agreement can be obtained from a number of
yield models based on defect clustering, and therefore such
agreement by itself does not prove the applicability of the
model presented here in explaining any particular set of yield
data. However, it does indicate there is an additional and
alternative explanation to that of defect clustering for an
experimentally-determined dependence of yield on die area.
Furthermore the utility of the model in separating yield loss
contributors associated with a subset of the total process steps
may make it attractive for yield analysis in those cases where
it provides a good approximation to observed results.
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II. VARIABLE DEFECT SIZE YIELD MODEL

Most yield treatments begin with the assumption that there
is a random distribution of point defects characterized by some
average defect density Dy, with each defect being statistically
independent of all others. Under this assumption the yield ¥’
of an integrated circuit with a critical area A sensitive to such
defects is simply the probability of having zero defects within
the area A, and is given by the Poisson distribution

Y = exp(—ADy). 1)

This equation was found to poorly represent the observed
yield as a function of die area in general, and Murphy [1]
proposed that the mean defect density might be better viewed
as a distribution f(D) which may vary from die to die on
each wafer and/or from wafer to wafer to help account for the
discrepancy with experiment. Under this assumption it was
proposed that (1) be modified to

Y:/f(D)exp(——AD)dD. )

While Hu [4] has suggested that this equation is not math-
ematically exact in general, under certain conditions such as
when D varies from wafer to wafer it serves as a rather good
approximation. A number of authors [1]-[3], [6], [7] have
used (2) and several different assumptions about the defect
density distribution to derive closed-form solutions, and have
found that the resulting yield expressions can provide good
agreement with experimental data of yield versus die area. In
order to incorporate the contribution of parametric and other
large-area yield losses, some authors have further modified (2)
with a multiplicative constant [6], [9] as discussed previously
to give

3

where Y, reflects the reduced wafer area which is defect
limited in yield, and would include the AUF described, for
example, by Ham [11].

Most yield models used today are based on (1), (2), and/or
(3). One commonly applied yield expression, derived from
(3) assuming the mean defect density is approximated by the
gamma distribution function, is referred to as the negative
binomial (NB) model [3], [6].

Y = Yo(1 + DoAJa)™

Y =Y, / (D) exp (—AD) dD

“4)

where Dy is the mean defect density and « is defined as the
clustering parameter. This yield model will be compared later
in this paper to the variable defect size model proposed here.

Inherent in (3) and (4) are the assumptions that the para-
metric yield loss can be adequately addressed by adding an
empirical multiplicative constant, and that the only die size
dependence of yield comes from small defects through (1)
or (2). However, if parametric yield losses can affect only

portions of a wafer as described by Ham [11], then it might

be expected that a die-size dependence of yield could result
from the contribution of dice overlapping the edges of such
regions. Fig. 1 demonstrates how a such die size dependence
of parametric yield can occur. In the figure an illustrative
region shown by the dotted outline represents an area on a
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Fig. 1. Iilustration of the die size dependence of yield loss associated with
parametric yield limiters. The dotted outline represents a region of the wafer
with unacceptable parameters, and the shaded areas represent the dice lost due
to the parametric problem for two different die sizes.

wafer that has a parametric problem causing zero yield for
any dice that overlap the region. Fig. 1(a) and (b) shows by
the shaded areas all dice that will be impacted by this same
sized parametric problem for two different die sizes. It can be
seen that the wafer area within which dice will fail because
of the parametric problem is larger than the dotted region,
and covers a somewhat larger total area for the larger die size
than for the smaller die size. For this reason an assumption
of a die-size-independent area usage factor or Y, will fail to
accommodate this die-size dependence of the total failure area.

In order to address this aspect of parametric yield loss, it will
be assumed here that the defects incorporated in (1) include
a distribution of defect size s, where s can vary from zero to
a size even comparable to or larger than that of the wafer. If
such defects overlap any part of the critical area of a die that
is sensitive to that defect, the die is assumed to be bad. T hen
(1) can be written as

Y = exp {— [ 4@ ds} )

where D(s) represents the mean density of defects of size s
and A(s) is the critical area associated with the die sensitive
to a defect of size s.
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The concept of A in (5) being dependent on defect size
has been previously proposed to address the yield impact of
variable-sized particulate defects [9]. In that treatment the
defects under consideration were comparable to or smaller
than the features on the die, and the critical die area was often
found to be smaller than the actual die area for the smaller
defects. Furthermore, such a critical area will not only depend
on the defect under consideration, it will also depend on the
integrated circuit design. However, when the defects become
much larger than the features on the die, effectively all such
defects will cause a yield loss if the defect is located anywhere
within the actual die area because they will invariably overlap
some portion of the critical regions. Thus for such larger defect
sizes the critical area becomes essentially equal to the actual
die area. In what follows this possible critical area dependence
on defect size for the smaller defect sizes will be omitted in the
interests of simplicity, although it is straightforward to include
it later should it be important.

Here, we are particularly interested in defects that are
comparable to or larger than the die. In such cases, the critical
area must be even larger than the actual die area itself as shown
in Fig. 2, because defects located outside the actual die area
but with sufficient size to overlap some portion of the die will
also result in a yield loss. Such larger defects will often have
irregular shapes, so that a general closed-form solution to (5)
is not possible. However, the characteristics of (5) for these
larger defects can be illustrated by assuming the larger defects

are circular in shape with diameter s. In this case the effective:

area sensitive to such defects includes the die itself -and a
region around the die within a distance of s/2 as shown in
Fig. 2. Taking into account this total critical area, (5) becomes

Y =exp{- /[LW + (L + W)s + ws%/4]D(s) ds}
= exp {—LW/D(S) ds—(L+ W)/sD(s) ds

- (7r/4)/32D(s) ds}
= exp{—LWDy — (L + W)(s)Do — (s*Do}  (6)
where

Dy = mean defect density = / D(s)ds )

(s) = / sD(s) ds/ Do ®)
and
(s?) = (1r/4)/52D(s)ds/D0. 9)

The terms (s) and (s2) can be interpreted as weighted means
for the defect size and the square of the defect size respec-
tively.

Equation (6) can be written in the form of a product of two
exponential terms to illustrate its utility in separating yield
loss contributors

Y =Y,Y, = exp {—~LWDy}

exp {—(L + W)(s)Dg — (s*)Dy}. (10)

w

Die of Area

A L

Fig. 2. Critical area sensitive to a defect of size s for a die of length L and
width W.

The first term in (10), Yy, is identical in form to that arising
from the simple Poisson model as given by (1), with the yield
depending exponentially on the product of the actual die area
and the average defect density. If the defect size dependence
of the critical area for point and small particulate defects is
included in the derivation of (10), it is this term that will
reflect such a dependence [9]. Note that in (10) the value of Dy
includes defects of all sizes, even those that are comparable
to or larger than the die.

The second term, Y, is the yield loss term that results
from the model only if there are larger-size defects. In such
cases the exponent includes both a constant or die-area-
independent term and a term dependent on the sum of the
die length and width, the magnitudes of these two terms

. being functions of the defect size distribution. The die-area-

independent yield loss contributor in (10) can be viewed as
an analytical expression for that portion of the Y in (3) and
(4) that accounts for parametric yield loss. The additional
large-defect yield term, which is effectively dependent on die
perimeter, is interestingly a term that has been postulated
in the past but without theoretical justification [13]. In his
work Moore found that the yield could be approximated by
assuming it varied exponentially with the square root of the
die area, which, in the case of a square die, is proportional
to the die perimeter. For interpretive purposes this term can
be viewed as accounting for the added die lost around the
edges of the larger parametric defects which only partially
overlap as shown in Fig. 1. As a result, (6) and (10) provide
a unified model which includes both small defects and large-
area defects such as parametric yield loss mechanisms through
a single distribution of defect sizes.

It should be noted that the yield analysis provided here is not
restricted to only the parametric area yield losses described,
but will also apply to any other large-size defects such as
scratches and handling problems around the edges of wafers
which are subject to the argument presented using Fig. 1.
All such regions will result in a die-size-dependent yield loss
caused by dice that only partially overlap the failure area. They
will therefore be better approximated by an expression such as
Y, in (10) than by a multiplicative yield constant such as Yj.
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In the derivation of (10) the possible contribution of defect
clustering effects as represented by (2) has not been included.
However, it is straightforward, although perhaps complex, to
develop yield expressions using (10) and (2) which incorporate
any combination of defect clustering and variable defect sizes.
No attempt will be made here to expand on the derivation in
this way. Rather the simple Poisson form of the variable defect
size model as given by (10) will be used for comparison both
to existing models based on clustering and to experimental
data. In this way the unique features of the variable defect
size model can be illustrated and its characteristics relative to
clustering models can be clearly identified.

While (6) or (10) can be used as is for interpretation of
experimental yield data, a two-parameter model is often easier
to use for analysis and comparisons provided such a model
provides good agreement with the data. It has been found
that by assuming a specific defect size distribution a two-
parameter model can be derived from (10) which provides
surprisingly good agreement with the experimental yield data
to be discussed later as well as simplifying the discussion. The
size distribution assumed is given by

D(s) = (Do/30) exp (—s/s0) (11)
where so9 can be looked upon as an average defect size.
Substituting (11) into (10)

Y =YY, =exp{-LWDq}

cexp{—Do((L + W)so + (7/2)s5)}.  (12)
Equation (12) provides, like the defect clustering models
excluding Yy, an expression containing two parameters Dy
and so that can be chosen for best fit to experimental data.
However, its form is quite different and the expression is
applicable to both point defect yield problems as well as
to some combination of point defects, larger size defects,
and ‘parametric yield limiters. Fig. 3 illustrates the die area
dependence of yield predicted by (12) for different values of
sg and Dy in the case of a square die. Note that as the value of
8¢ increases, in addition to changes in the shape of the yield
versus die area curve the yield intercept corresponding to zero
die area becomes less than unity.

It should also be noted here that in the case of devices
designed with redundancy for yield improvement such as many
memory devices, the redundant elements will be unable to cope
with the larger defects that encompass a significant portion of
the die. As a result, if the variable defect size model applies,
it follows that effectively only Yy in (10) and (12) can be
improved by the implementation of redundancy.

III. COMPARISON TO THE MURPHY YIELD MODEL

While there are a number of assumed defect density distri-
butions including those proposed originally by Murphy [1] that
are used in practice, a number of authors [2], [3], [6], [7], [9],
[14] have used the gamma distribution function, which results
in the NB model given by (4), to explain experimental yield
data. Since this distribution is representative of most of the

Yield (%)

Product of Die Area and Defect Density AD,

Fig. 3. Theoretical yield versus normalized die area for the variable defect
size model.
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Fig. 4. Comparison of yield dependence on die area for the negative bino-
mial model and the variable defect size model with parameters chosen to give
similar curves.

features of clustering models in general, only a comparison to
this model will be included here. Other assumed clustering
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Fig. 5. Representative experimental wafer maps illustrating the characteristics of some large-area and parametric yield loss contributors.

distributions have been found to give similar results and
conclusions.

Fig. 4 provides a comparison of the yield variation with
die area predicted by this well-known NB model to the yield
variation with die area predicted by the variable defect size
(VDS) model given by (12) for a square die with parameters
chosen to provide approximately similar curves. The value of
Yy for the NB model has been assumed to be unity although
the conclusions reached are valid for any value of Yp. It
can be seen that both models have similar shapes and die
area dependencies except when the die area is small. Since
most experimental data in the literature covers the larger die
sizes, because of the similarity of the curves it can reasonably
be concluded that if one model can successfully explain the
observed and published die area dependencies of yield, then
the other one can do so also. However, the explanation of
the die area dependence of the yield clearly will be quite
different for the two models. Thus, it can further be concluded
that agreement with yield versus die area data alone does not
provide complete evidence in support of either the VDS model
or the various yield models based on clustering such as the
NB model. )

The quite different die area dependence of yield at small die
sizes in Fig. 4 illustrates the fundamental difference between
all defect cluster models and the VDS model presented here.

In the case of defect cluster models, the yield for small die
(ADg < 1) converges independent of the type or degree of
clustering, and the yield dependence on die area must always
become linear in the product AD, as the die area approaches
zero. The implied assumption of the model is that the Poisson
distribution is a good approximation for small die and that
the often higher-than-expected yield of larger die (based on
the defect density extracted from small-die data) is caused
by defect clustering. By contrast the VDS model used here
assumes no defect clustering and retains the assumption that
a Poisson distribution applies for all defect sizes. However,
it incorporates the fact that the die area dependence of yield
for all die sizes is impacted additionally by a die-perimeter-
dependent term.

IV. COMPARISON TO EXPERIMENT

Parametric yield loss problems can often dominate over
point-defect-related yield contributors, particularly during
the early startup phase of new processes and on some
performance-sensitive devices such as analog circuits and
high-speed digital circuits. In addition to causing nonfunctional
die, they may also result in yield losses such as the “good
to functional” yield loss and bin-split yields where the die is
functional but fails to meet specific performance specifications.
However, even more mature processes or those with products
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that exhibit rather low yield sensitivity to parametric variations
often have some parametric yield loss.

Examination of yield wafer maps has shown that such para-
metric yield losses often cover only portions of wafers affect-
ing a relatively small number of die, as discussed in the liter-
ature [11], [12]. Fig. 5 provides additional illustration of such
characteristics. A number of representative experimentally-
observed wafer maps for a logic device fabricated on the
relatively mature production CMOS process used in this
study are shown, where numbers or letters representing the
test results are placed at the locations of the die on the
wafer. The number 1 indicates good devices and the other
numbers and letters represent various types of failure modes.
Fig. 5(a) shows the map of a wafer which exhibits no obvious
parametric or systematic types of failure, and the expected
random distribution of both failed die and the nature of the
failure mechanisms is observed. However, the other wafer
maps shown in Fig. 5(b)-(d) illustrate types of yield loss
features exhibited by some wafers. Not only are some of the
failures spatially localized over some fraction of the wafer area
within which the yield is zero, there is a commonality to the
test that most die tend to fail in these regions. In Fig. 5(b)
there appears to be a localized region near the center of the
wafer where devices fail test “C”; in Fig. 5(c) and (d) there
are larger regions on the right side of the wafer where devices
fail test “G.”

Such localized regions or areas of zero yield might be
viewed as having very high densities of small defects, and
interpreted in terms of defect clustering. However, if the
devices are functional but simply fail performance tests, or in
many cases when there is a commonality of the fail bin in the
zero-yield regions as shown, this behavior is often indicative
of parametric yield loss rather than loss due to small defect
effects. Independent of their cause, however, an alternative
interpretation to that of defect clustering is to treat these zero-
yield regions as rather large random defects causing failed die
if any portion of a die overlaps the region, as assumed in
the variable defect size model presented here. The wafer maps
shown tend to support such an interpretation. In particular they
show that such yield loss regions often extend over several
dice but are smaller than the wafer, and that the appearance
of such regions as well as their size appears to be random as
assumed in the VDS model.

In order to further illustrate the validity and applicability of
the model, experimental yield data on one device from five
lots of approximately 24 wafers each, run in the controlled
production CMOS process described above at a 6" wafer
commercial semiconductor factory over a period of about a
year, were analyzed. From wafer maps of good dice, it was
possible not only to establish the yield of individual devices,
but also to establish the yield of independent device pairs as
well as that of independent groups of 3, 4, 6, 9, 12, and 16
[15]. In this way the data could be used to generate yield
versus die area curves with the assurance that both (s) and
{s2) in (6) and (10) must be the same for all cases. Fig. 6
shows the comparison of the experimental data to best-fit
yield predictions using the two-parameter VDS model with the
values of so and Dy given in Table 1. Table I also provides
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Fig. 6. Experimental yield data from five wafer lots, with best fit prediction
based on the variable defect size yield model.

an indication of the magnitudes of the two yield terms, Yy
and Y, relative to overall yield Y for these particular wafer
lots. Fig. 7 shows a similar comparison of the experimental
data to best-fit yield projections using the three-parameter NB
model with the values of Yy, Dy, and « given in Table I under
the assumption that the critical area is equal to the actual die
area. The three-parameter NB model was used rather than the
two-parameter version not only because of the better fit to the

data, but also because it includes parametric effects through

the multiplicative term Yp.

Figs. 6 and 7 illustrate that both the VDS and NB models
provide excellent agreement with the experimental data given
that appropriate parameters are chosen for the models. Thus
it can be concluded that both models can adequately and
independently account for the observed yield dependence
on die area. As a result it is not possible to determine
from this agreement alone that one or the other model is
more representative, or whether some combination of the two
models applies.

However, depending on which model one assumes, some-
what different conclusions will be reached with respect to
the relative contribution of different yield loss mechanisms.
From Table I it is seen that the VDS model tends to predict
somewhat smaller defect densities and therefore a somewhat
larger yield loss contribution from large defect and parametric
effects than the NB model. Because of the different underlying
assumptions in the two models, the fact that the VDS model
predicts smaller defect densities is always expected to occur
although the magnitude of the difference will vary depending
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TABLE I
BEST-FIT THEORETICAL VALUES FOR YIELD PARAMETERS USED IN FIGS. 6 AND 7

Wafer Lot 1

Measured Yield (%) 60 83
VDS Model
Do (cm®) 0.28 0.15
$o (cm) 0.43 0.21
Y4 (%) 80 89
Y. (%) 75 94
NB Model
Do(cm®) 0.37 0.18
o 20 13
Yo (%) 81 9

WaferLot2 WaferLot3 Waferlot4 WaferLot 5

66 69 62
0.22 0.23 0.28
0.42 0.27 0.37

84 83 79

79 83 78
0.28 0.30 0.37
16 12 15
82 88 84

Yield (%)
5

NB Yield Model - Solid Lines
Experimental - Data Points

1

t + + t + + t t t 1 t t + +
© = N ;T VN W D~ 0 OO0 = N Y WO
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Fig. 7. Experimental yield data from the same five wafer lots, with best fit
prediction based on the negative binomial yield model.

on the experimental data. In any case, any prioritization of
yield causes which are based on the degree of fit to a yield
versus die area plot will differ depending on which yield
model is used. Therefore for accurate separation of the relative
contribution of the small defects from that of the larger
and parametric defects, it will be important to use the most
representative yield model.

If the VDS model is, in fact, a good approximation to the
yield loss mechanisms applicable to the experimental data,
then Table I shows that for these particular wafer lots the
conventional Yy term does not account for most of the yield
loss. Much of the yield loss results from the larger-size defects
reflected in the Y, term. Detailed examinations of wafer maps
from the five lots of wafers tends to be consistent with this
conclusion, although it was not possible to correlate precisely
the values of sy in Table I to physical observations. On the
other hand examination of wafer areas clearly free of larger
size defects tended to be represented by defect densities very
close to those shown for the VDS model in the table.

V. DISCUSSION AND CONCLUSIONS

From Fig. 6 it is apparent that the VDS yield model pre-
sented here, even in its two-parameter form, provides excellent
fits to the experimental yield data provided. When this result
is combined with the fact that parameters can be chosen so
that the VDS model can always closely approximate the yield
dependence on die area predicted by defect clustering models,
it seems reasonable to further conclude that by selecting
appropriate values for Do, {(s), and (s?) the VDS model
will satisfactorily match most experimental data of yield
versus die area that can also be matched by defect clustering
models. Thus it provides an alternative and quite different
physical explanation to account for observed departure of yield
dependence on die area from that predicted by the simple
exponential relationship exp (—ADy).

While such good fits are encouraging, curve fitting alone
will clearly not provide justification for any specific model.
Thus for any particular case additional information is needed
to assess which model, or what combination of the variable
defect size and defect clustering models, applies. However, in
those cases where the VDS model is found to be consistent
with more detailed assessments such as observations of wafer
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maps, there are significant advantages in application to yield
analysis. Not only are the statistical distributions involved
well understood and straightforward to assess in terms of
sampling plans, the simple exponential form of the equations
resulting from the model allows the simple addition of terms
in the exponent to account for the contributions of individual
process steps or sequences of steps. As has been described by
Ferris-Prabhu [8], a yield model with this feature is highly
desirable because of its utility in quantitative assessments
of both the magnitude and the size distribution of defect
densities at individual process steps. Furthermore the model
inherently includes the consequences of parametric yield loss
mechanisms, yield limiters usually included separately through
an empirical yield multiplier in other published models, and
illustrates how such problems can affect yield as a function of
die size. This can be of particular value in assessing the relative
contribution of large-area and parametric versus small-defect
yield limiters over the life of a semiconductor process.

A major feature of the model is an additional yield term
that is dependent on die perimeter. Previous work has usually
assumed that the areas of the wafer impacted by parametric
problems and other large-size defects such as scratches are
independent of die size, while the model developed here
also accounts for the additional wafer area lost due to die
around the periphery of such large defects that only partially
overlap the defect. In those cases where such larger defects are
significant yield loss contributors, interpretations of the die size
dependence of yield can lead to incorrect conclusions if they
are treated simply as a die-size-independent yield multiplier.

It should be pointed out that in the model developed here
the defect density for the larger defect sizes could be die
design/test dependent. This could come about, for example,
if one device on a given process were more sensitive to
transistor electrical parameters than another. Thus the model
can be used to explain experimentally observed “scatter” in
die yield versus area plots when different devices are run
on the same process [6] and. therefore subject to the same
densities and clustering characteristics of the smaller defects.
Alternately, bin-split yield for products on a wafer, where it
is known that all devices will be impacted by the same small
and point defects but may be sensitive in different ways to
parametric variations, can be analyzed using the VDS model
simply by using different larger-size defect distributions for
the different bins. These can then be correlated to different
parametric sensitivities for in-depth yield analysis.

The VDS model is also easily applied to devices that incor-
porate redundancy for yield improvement, although a study of
this aspect of the model has not yet been carried out. Since
most of the larger size defects will not be repairable using
redundancy, the model inherently incorporates separation of
those yield limiters which can be repaired from those that
cannot, and allows application of simple Poisson statistics
to redundancy issues. Alternative yield modeling approaches
usually introduce additional adjustable parameters in order to
separate repairable die from nonrepairable die for comparison
to experimental data and to explain the amount of yield
improvement attained with redundancy [14].
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