Vector Quantization

- K-means complexity:
 - $M =$ number of training vectors
 - $L =$ number of codewords
 - $N =$ dimension of vectors
- With a full search algorithm:
 - Complexity of codebook design:
 - MNL adds and mults per iteration
 - $(M+L)N$ storage
 - Complexity of the transmitter
 - NL adds and mults per vector
 - NL storage
Tree Codebooks

- $L = \text{number of codewords} = 2^p$
 - 1. Use "k-means" to divide N dimensional span into 2 regions ($L = 2$ in "old" algorithm).
 - 2. Divide each of these 2 regions into 2 more regions using k-means.
 - 3. Repeat step 2 until there are L reconstruction levels
Complexity of Tree Codebook

- Codebook design
 - $2NM \log_2 L$ operations
 - Storage is the same as for full search
- Operation complexity at transmitter
 - $2N \log_2 L$ operations per vector
 - Twice as much storage as full search
Second Generation Image Coding

- Code:
 - edges
 - textures

Arbitrary Shape Coding

- Useful for editing → extracting objects and backgrounds
Video Coding

- Want to take advantage of spatial and temporal redundancy.

The difference between images contains less energy, and is thus more efficient to code.