Living Streaming and Overlay Multicast

David Harrison
harrisod@eecs.berkeley.edu

EE290T Spring 2004
Video and Image Processing Lab, EECS
University of California, Berkeley
http://www-video.eecs.berkeley.edu

Some slides and diagrams lifted from I. Stoica, A. Parekh, and P. Mehra
Outline

Media Streaming Problem
Background
Application-Layer Multicast
End-system multicast: Narada
BREAK
Scalability via Distributed Hash Tables
DHT-based multicast: Splitstream
Infrastructure-based Multicast: Scattercast (if time)
Media Streaming Problem

- Stream live audio/video to many, large audiences.
- Streaming audio:
 - Top 5 online broadcasters:
 - MusicMatch, AOL Radio, Yahoo launchcast, Live365, Virgin Radio had est. tot 207000 average simultaneous listeners in 2/04 [Arbitron]
 - Virgin Radio had 4200 average numbers listeners in 2/04 [Arbitron]
 - Live 365 claims 10,000’s simultaneous stations.

- Video streaming
Outline

Media Streaming Problem

Background
Application-Layer Multicast
End-system multicast: Narada

BREAK

Scalability via Distributed Hash Tables
DHT-based multicast: Splitstream
Infrastructure-based Multicast: Scattercast (if time)
What is Overlay Multicast?

- Subset of IP nodes engage in multicast.
- Other nodes are oblivious. Just see unicast traffic.
What is Overlay Multicast?

- Subset of IP nodes engage in multicast.
- Other nodes are oblivious. Just see unicast traffic.
What is Overlay Multicast?

- Subset of IP nodes engage in multicast.
- Other nodes are oblivious. Just see unicast traffic.
What’s wrong with IP Multicast?

- Not deployed. But why?
- Routing table explosion.
 - Routers maintain per-group routing table entry.
 - Difficult to aggregate multicast addresses.
- Reliability and congestion control are difficult.
 - Potentially every receiver has a different rate.
 - NAK implosion.
- Christophe Diot adds:
 - Multicast address allocation
 - Lack of support for network management
 - Group management (receiver/sender authorization, group creation).
- Difficult to Monitor Performance
Why not BIG servers?

- Use TCP or UDP+TFRC from server to each receiver.
- Current method for streaming video.
- Server load, state, bandwidth, cost grows \textit{linearly} with number of receivers \(n \).
- Inefficient.
 - Same data transferred \(O(n) \) times over access link
- Server farms scale to larger audiences but still \(O(n) \).
Partial solution: IP Tunneling and the MBONE

- Connect multicast-enabled networks (campus, LANs) via IP tunnels.
- First example of overlay multicast. Tunnels overlay core.
- Solves routing table explosion in core.

Source S. Receivers w, x, y, z

Tunnels
Partial solution: IP Tunneling and the MBONE

- Connect multicast-enabled networks (campus, LANs) via IP tunnels.
- First example of overlay multicast. *Tunnels overlay core.*
- Solves routing table explosion in core.
Partial solution: IP Tunneling and the MBONE

- Connect multicast-enabled networks (campus, LANs) via IP tunnels.
- First example of overlay multicast. *Tunnels overlay core.*
- Solves routing table explosion in core.
Partial solution: IP Tunneling and the MBONE

- Connect multicast-enabled networks (campus, LANs) via IP tunnels.
- MBONE is in current Internet as a working testbed.
- First example of overlay multicast.
- Solves routing table explosion in core.

David Harrison, EE 290T: Overlay Multicast
Why not IP tunneling?

- Perfect when small number of sites with dense viewership within each site.
- Must configure each tunnel endpoint.
- Tunnel endpoints must maintain state for every tunnel terminating at a tunnel endpoint.
- Does not scale when many sites.
 - Consider when # sites is $O(n)$,
 - Tunnel endpoints must maintain $O(n)$ routing state.
Outline

Media Streaming Problem
Background
Application-Layer Multicast
End-system multicast: Narada
BREAK
Scalability via Distributed Hash Tables
DHT-based multicast: Splitstream
Infrastructure-based Multicast: Scattercast
What is Application-Layer Multicast (ALM)?

- Move IP Multicast into Application Layer.
- Ex: End-system Multicast (Peer-to-peer)

Source S. Receivers w, x, y, z
What is Application-Layer Multicast (ALM)?

- Move IP Multicast into Application Layer.
- Ex: End-system Multicast (ESM), a.k.a., Peer-to-peer

Source S. Receivers w, x, y, z

TCP or UDP connections

David Harrison, EE 290T: Overlay Multicast
Why End-System Multicast?

- **Scalability**
 - Routers maintain no per-group state.
 - End-systems do, but they participate in few groups.

- **Easier to deploy**

- **Potentially simplifies support for higher level functionality**
 - Leverage computation and storage of end systems.
 - For example, for buffering packets, transcoding, ACK aggregation.
 - Leverage solutions for unicast congestion control and reliability
 - Trivial if use TCP.
 - Or UDP+TFRC
 - Can afford to implement complex security measures.
Performance Concerns

Delay from CMU to Berk1 increases

Duplicate Packets: Bandwidth Wastage

Adapted from Ion Stoica
Other Challenges facing End-System Multicast

- Small access bandwidth
 - Asymmetric Bandwidth (more down than up)
- End-systems often unwilling to forward
- End-systems typically less trustworthy than router
 - Substitute/Garbage content

(We won’t discuss these further)
Outline

Media Streaming Problem
Background
Application-Layer Multicast
End-system multicast: Narada
BREAK
Scalability via Distributed Hash Tables
DHT-based multicast: Splitstream
Infrastructure-based Multicast: Scattercast (if time)
NARADA: Example End-System Multicast

- NARADA [Y. Chu et al JSAC Oct 2002]
- A distributed protocol for constructing efficient overlay
- Self-organizes

- Caveat: assume apps with small and sparse group
 - Around tens to hundreds of members

Adapted from Ion Stoica
Why is self-organization hard?

- Fully-distributed
 - Implies no central knowledge
- Dynamic changes in group membership
 - Members may join and leave dynamically
 - Members may die
- Limited knowledge of network conditions
 - Members do not know delay to each other when they join
 - Members probe each other to learn network related information
 - Overlay must self-improve as more information available
- Dynamic changes in network conditions
 - Delay between members may vary over time due to congestion
NARADA self-organizes in 2 steps

- Build a mesh that includes all participating end-hosts
- Build source routed distribution trees.
NARADA mesh creation

- All nodes can communicate with each other via unicast, but not all paths are good!
- Good mesh has two properties:
 - The quality of the path between any pair of members is comparable to unicast.
 - Each member has limited number of neighbors (commensurate to each nodes bandwidth)
- Mesh created incrementally as nodes join/leave and as nodes exchange state.
NARADA: Member Joins

- **Join**
 - New node obtains list of members via external mechanism. (can be out-of-date)
 - Node randomly selects neighbors from this list. Reselecting as necessary for non-responders.
 - Each node begins swapping its list of members with its neighbors.

```
128.32.43.205
169.237.99.2
...
```

bootstrap

```
128.32.48.139
```

Zahedan

David Harrison, EE 290T: Overlay Multicast
NARADA: Member Joins

- Join
 - New node obtains list of members via external mechanism. (can be out-of-date)
 - Node randomly selects neighbors from this list. Reselecting as necessary for non-responders.
 - Each node begins swapping its list of members with its neighbors.

Zahedan’s node list

128.32.43.205
...
169.237.99.2
...

David Harrison, EE 290T: Overlay Multicast
NARADA: Member Joins

- **Join**
 - New node obtains list of members via external mechanism. (can be out-of-date)
 - Node randomly selects neighbors from this list. Reselecting as necessary for non-responders.
 - Each node begins swapping its list of members with its neighbors.

```
128.32.43.205
...
169.237.99.2
...
```

Zahedan’s node list

```
128.32.48.139
```

```
128.32.43.205
```

```
169.237.99.2
```

David Harrison, EE 290T: Overlay Multicast 28
Narada: Leaves/Failures

• Leave
 – When node leaves it notifies neighbors, which propagate this information.

• Failure
 – Neighbor stops responding to probes (pings).
 – Add “dead member” to list of members.
 – Propagate “dead member” to neighbors.
How to scale? Distributed Hash Tables (DHT)
Example DHT: Pastry
Example DHT Multicast: Scribe
Scribe + Video ⇒ SplitStream
Example Proxy-Based Multicast: Scattercast
Logical ESM Overlay Topology

- IP topology is abstracted.
- All overlay nodes can have connectivity to all others.
- Typically only know RTT, loss rate.

TCP or UDP connections

David Harrison, EE 290T: Overlay Multicast
Logical ESM Overlay Topology

- IP topology is abstracted.
- All overlay nodes can have connectivity to all others.
- Typically only know RTT, loss rate.

TCP or UDP connections