## Recent Developments in Multimedia Communications Technologies

#### Avideh Zakhor

VIP Lab, U.C. Berkeley: www-video.eecs.berkeley.edu

#### Outline

- **\*\*What is Multimedia Communications?**
- **\*\*What are technical challenges?**
- **\*What are economic issues?**
- **#Future**

### MM communications

#### # Multimedia:

Audio, video, text, graphics, 3D

#### **\*\*Communications:**

- Unicast: one to one; braodcast: one to many, multicast: many to many; anycast
- Wired vs. wireless
- Analog vs. digital
- One way streaming, two way interactive, live
- Broadband vs. narrowband

#### Why MM communications today?

- **Stars are all aligned:** 
  - Fast, high bandwidth networks everywhere:
  - Fast electronics cheap and available
  - Fast PCs, PDAs everywhere
  - Display technology

## **Applications:**

- **#Enterprise:** 
  - On line training
  - Video conferencing or broadcasing meetings
- **#Consumers:** 
  - Home entertainment:
    - □ Cable and DSL everywhere
- **#Wireless**

## Close to 1 in 10 U.S. households now has high speed internet services

|                | US<br>users | Speed<br>Mb/s | Monthly<br>Price |  |
|----------------|-------------|---------------|------------------|--|
| Cable<br>modem | 7 mill.     | 1.5           | L.5 \$46         |  |
| DSL            | 3.3 mill    | 1 - 1.5       | \$50             |  |
| Wireless       | .3 mill     | 0.5 –1.5      | \$50             |  |
| Satellite      | .06 mill    | 0.15-0.5      | \$75             |  |
| Fiber          | N/A         | 4.5-9         | \$85             |  |

### Can TV like Quality be offered over today's available networks?

- Recent advances in compression technology make near D1 quality at 1Mb/s a reality
- Broadcasters, ISP, movie studios all in need of such technology:

#### Example:

- Truvideo proprietary codec based on matching pursuits technology: demo
- Many dBs better than MPEG-4 or H.26L

#### TruVideo's 4.0 Gain Over MPEG4 – Luma (dB)



### Why isn't streaming flying yet?

- #Technical: TV quality delivery over today's best effort internet needs better solutions: compression and networking;
- Economies of scale don't apply: more users to view, means higher infrastructure cost for streaming;
  - goes linear with # of users for popular content: mutlicast?
  - niche paying markets for content that is otherwise unavailable;

#### **Multimedia communications**

#### 8 MM requirements different from data:

- delay sensitive: late packet as good as lost.
- massively compressed
- not sensitive to loss
- graceful degradation to loss and delay
- unlike data BER is not an indicative of performance; audio/visual quality is.
- bits of unequal importance
- Solution lies somewhere in between Signal Processing (SP) and Networking.

### Bag of tricks from SP and Networking and intersection

#### **Signal Processing and communications:**

- Source coding, channel coding, joint source channel coding, unequal error protection
- Layered compression; multiple description coding;
- Error resilient compression: reversible VLC, sync,

#### 8 Networking:

- Protocol design
- QoS enabled networks: diffserv, MPLS
- Architecture: edge architecture, overlay, distributed

#### **#Intersection:** packetization issues

## Layered video invented by SP to deal with Networking issues



## Typical application needs mix and match of solutions from bag of tricks

#### **#Example:**

- Unicast streaming
- Multicast streaming
- Diffserv
- Distributed streaming

#### Example: unicast streaming of video over best effort packet switched networks

- Layered Video + Rate Adaptive TCP friendly UDP protocol at Transport Layer + Error Resilient Packetization
- Tan and Zakhor, IEEE Trans. On MM, 1998

Throughput for concurrent transmission from Toronto to Berkeley



#### Adaptation of TCP friendly protocol to changing network conditions: (Toronto - Berkeley, 2 pm, May 8, 1998)



- Extra traffic started at time = 80 seconds
- Losses remain low after protocol reduces transmission rate

# FEC without error resiliency packetization won't work



## **Achieving Error-Resilience**

- Independently decodable
- Equally important
- Disperse effects of packet loss



# Song and dance between economics and technology

#### Exmaples:

- Multicast technology:
  - ☑Can tremendously reduce distribution cost
  - Application level multicast: Fast Forward Networks/Inktomi
- Diffserv: Pay more to get better quality
- Content Distribution Networks:
  - Enabled video streaming on Overlay networks, with edge servers.
  - Example: Akamai, Digital Island, etc.
- Distributed video streaming: Napsterization of video

## Example: Layered video + FEC in Multicast: Tan and Zakhor, IEEE Trans. CSVT 2000

Let receivers subscribe to optimal number of FEC layers and video data layers based on its loss/bandwidth.



## **Mbone Experiment**

#6 data layers of 100kbps

#6 FEC layers of 50kbps

4 protects data layer 1 Source: Indiana

2 protects data layer 2

\*\*Two receivers each at Sweden and Berkeley

One uses LFEC, the other not



## **Mbone Experiment**



## Visually...



Without LFEC

With LFEC

## Layer add or drop decision by the receivers

TCP Friendly Equation based rate control (ERC) results in fair sharing of bandwidth among multicast receivers as well as TCP cross traffic.



## Naïve add/drop strategy by receivers results in unfair usage of bandwidth



#### Diffserv based video streaming

- Qos enabled packet switched networks: diffserv, MPLS, traffic engineering, source based routing
- Diffserv: Routers process few classes of traffic differentially, resulting in different loss/delay
- # How to send video over diffserv enabled networks:
  - Decompose video into streams of different delay/loss:
  - Send each substream to a different diffserv class.
- # Advantages:
  - Better utilize network resources
  - Provide some level of quality of service.

## **Loss Optimized Classifiers**

Tan and Zakhor, Packet Video Workshop 2001



Loss-optimized classifier

# Delay Optimized Classifiers



Delay-optimized classifier

## Simulation Setup



## Simulation Results - Distortion



## Delay Results – heavy load

Uniform

Delayoptimized

Lossoptimized



## **Edge Architecture**



#### Distributed Video Streaming: napsterizing video:

- # Ngyuen and Zakhor, SPIE 2002, 1/24
- Simultaneous distributed streaming of video from multiple senders
  - Higher aggregate bandwidth
  - Fault and network congestion tolerant



Challenge: Design required protocol to facilitate distributed streaming

## Protocol Design (cont' d)



## **Internet Experiment**



## Wireless Video Networking

|                                                 | Seen,<br>heard of or<br>read about | Already<br>have | Expect to<br>drive in the<br>next 12<br>months | Interested<br>in but no<br>plans to<br>buy |
|-------------------------------------------------|------------------------------------|-----------------|------------------------------------------------|--------------------------------------------|
| PDA/hand<br>held with<br>wireless<br>web access | 62%                                | 2%              | 2%                                             | 23%                                        |
| Web<br>enabled<br>cell phone                    | 60%                                | 7%              | 1%                                             | 20%                                        |
| MP3 player<br>with hard<br>drive                | 42%                                | 2%              | 1%                                             | 16%                                        |
| MP3 player<br>without<br>hard drive             | 42%                                | 2%              | 1%                                             | 17%                                        |

Consumer Interest and buying for mobile internet music platforms

# Obstacles to wireless streaming

- **# Channel, Channel, Channel:** 
  - ☐Time varying
  - Long bursts and periods of low throughput
  - Small available bandwidth, low bit rates
- **\*\*** Existing wireless networks:

  - Mobitex: Ericsson
  - CDPD: omnisky and goamerica leased from ATT and Verizon: 5 to 19.2 kbps:
- # Future: 3G, 4G, etc.

# What is the killer app in wireless video?

- 38 Nannycam, webcam for traffic conditions
- Wireless bandwidth too expensive for entertainment:
  - Good compression important.
- \*\*What compression technology?
  - MPEG-4 vs. Proprietary;
  - Demo: Truvideo codec streamed over CDPD network.(courtesy of Steve Van de Bogart)

# Technical Issues on Wireless Video Networking

# # Major issues:

- Wired: congestion, transport layer
- Wireless: loss at the physical layer, time varying, unpredictable channel

# Bifferent approaches for interactive vs. streaming:

- Retransmission, large buffer for streaming
- Interactive or live require low delay;
  - **SFEC**;
  - Physical diversification schemes: antenna, path, time, space, frequency, etc.

# Layer Adaptation to Channel and Source Data

Source coding, bit level or packet level unequal protection, retransmissions, Scheduling;

Application Packetization RTP Socket Interface UDP IP Data / Radio Link Physical

Number and kind of retransmissions, block size

Feedback to other layers Adaptation to physical channel

Make sure layers don't interact destructively

# Layer Adaptation to Channel and Source Data (2)

# # FEC and ARQ can be applied to any layer:

- At lower layer, implementation complexity to adapt to packet importance
- At higher layer, larger packets, more delay, more waste of bandwidth

# Pass along corrupted packets to higher layers:

- UDP lite passes "up" corrupted RLP packets to application layer for retransmission.
- Small RLP packets only are sent again, not large UDP
- Scheduling at application layer sends packets out of order based on their importance

# Layer Adaptation to Channel and Source Data (3): Example

- Apply redundancy at the application layer so that UDP packet is automatically decomposed into (n,k) RS coded RLP packets with more redundancy to important RLP packets;
  - Unequal FEC computation at application layer, but FEC size at the level of RLP packets;



# **Overall System**

### **RLP Packet Decomposition**



#### Base station



### receiver



## Performance



# **Performance**



# Analog of distributed streaming in wireless

- #Triband cell phones operate at 3 frequencies.
- Send three streams on each of the three channels to allow diversification;
- If conditions of channels are not known to each other, can use multiple description coding
- \*\*Any single bit stream yields acceptable quality
- 8 More bit streams create better quality





Block Diagram of the 3 loop structure for two description coding Tang and Zakhor, ICIP 2001

## Two state slowly varying Markov Channel



- \*\*Two state Markov Channels at 900 MHz and 1.8 GHz
- **SDC1**, SDC2 and MDC + FEC
- \*\*Total bit rate constant in all cases
- SDC1 source rate same as MDC
- SDC2 source PSNR same as MDC

# Conclusions

- **\*\*MM** communication revolution is here
- #Host of technical and economic issues need to be resolved
  - DRM probably stickiest of all!
- **Computer, entertainment, semiconductor** industries are all poised to "own a piece of this pie".