
EECS 291E: Hybrid & Intelligent Control
Homework 3: Games, Spring 2020

Assigned March 17th, Due April 2nd 11:59 pm.

Problem 1 Computing Mixed Saddle Points of Zero
Sum Games

Find the minimax mixed solution (security level as well as policies for each player) of the
zero sum game with payoff matrix

A =


0 1 2 3
1 0 1 2
0 1 0 1
−1 0 1 0


Think about a way that you can systematically compute minimax mixed equilibria of general
zero sum games, using convex programming in Matlab. You can consult Chapter 6 of
“Noncooperative Game Theory : An Introduction for Scientists and Engineers”, By J. P.
Hespanha, Princeton University Press, 2017. No need to include code, but give it a try and
discuss your analysis.

Problem 2 Nash equilibria for Non Zero Sum Games

Compute Nash equilibria for the two games of the Prisoner’s Dilemma and the Couple’s
Quarrel. Both players seek to minimize their costs in A and B, with P1’s choices indexing
the rows and P2’s choices indexing the columns.

Part 2A: Love is War

There is a deep fissure that divides lovers everywhere: Modern-era Classical versus Romantic-
era Classical. Inevitably, one partner (P1) loves listening to Bach (action 1) and suffers
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through Stravinsky (action 2), while the second (P2) feels staunchly the opposite. Yet they
both prefer to go to the concert together:

A =

[
−2 0
1 −1

]
B =

[
−1 3
0 −2

]

Part 2B: Prisoner’s dilemma

Pitting two prisoners’ against each other to rat the other out, Prisoner 1 must choose either
to confess (action 1) or keep the secret (action 2) with rewards in A. Prisoner 2 makes the
same choice with rewards in B.

A =

[
2 30
0 8

]
B =

[
2 0
30 8

]

Part 2C: In General

Think about how you can systematically compute Nash equilibria of bimatrix games, using
convex programming in Matlab. You can consult Chapter 10 of “Noncooperative Game
Theory : An Introduction for Scientists and Engineers”, By J. P. Hespanha, Princeton
University Press, 2017. No need to include code, but give it a try and discuss your analysis.

Problem 3 Conflict Resolution for Aircraft

You may choose to do either Problem A or Problem B. These are both based on the
motivational example given in Lecture Notes 7.
Problem A: No mode switching = Continuous Game
Consider the case in which the aircraft follow straight paths only (mode 1 of the motivational
example), and collision avoidance is achieved using linear velocity control only. Thus, the
continuous inputs are the airspeeds of the aircraft (u = v1, d = v2) and assume that the
airspeeds are known to vary over specified ranges: u ∈ U = [v1, v1] ⊂ R+, d ∈ D = [v2, v2] ⊂
R+, and model reduces to

ẋr = −u+ d cosψr

ẏr = d sinψr (1)
ψ̇r = 0

Compute and plot the subset of state space which is doomed (no matter what the controller
u does) to enter the 5-mile relative protected zone in T seconds. Here, our plane controlled
by u can not centrally coordinate with the plane controlled by d and so must work a security
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policy that plays robustly against even an adversarial d. You can choose T to be anything
you like; what happens as T → ∞?
For your code, use [v1, v1] = [2, 4], [v2, v2] = [1, 5], and consider four different values of ψr:
π/2, 0, −π/4, and −π/2.
Consider using the Hybrid System Lab’s “HelperOC” package with the “LSToolbox“ for
MATLAB. You can follow the tutorial here: https://github.com/HJReachability/helperOC/
blob/master/Intro%20to%20Reachability%20Code.pdf. And then change the tutorial dy-
namics to relative Dubins and control speed rather than angle.
Problem B: One mode switch = Discrete Choice
Consider the three mode example of Lectures Notes 7 illustrated in Figures 1 and 2. All
units are in miles.

120
R

Mode 1 Mode 2 Mode 3

Figure 1: Two aircraft in three modes of operation: in modes 1 and 3 the aircraft follow a
straight course and in mode 2 the aircraft follow a half circle. The initial relative heading
(120◦) is preserved throughout.
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Figure 2: In q1 both aircraft follow a straight course, in q2 a half circle, and in q3 both
aircraft return to a straight course.

Assume that in all modes v1 = v2 = 5, in the straight “Cruise” modes ω1 = ω2 = 0 and
in the circular arc “Avoid” mode ω1 = ω2 = 5/r where r is a designed arc radius. Assume
that in all modes, ψr = 2π/3. The constant velocities means that the controller only chooses
when to transition to Mode 2 from Mode 1 to start the avoidance maneuver.
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Show that increasing the radius r of the circular arc in the “avoid” mode will decrease the
set of initial states which is doomed (no matter the choice of controller) to enter the 5-mile
relative protected zone.
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