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In the last several lectures, we have discussed controller synthesis for:

• Discrete Systems: design is characterized by a fixed point of a difference equation

• Continuous Systems: design is characterized by a fixed point of a partial differential
equation

In each case, the solution is characterized as a fixed point of an equation, which we refer to as
the Hamilton-Jacobi equation. In these lecture notes, we bring the discrete and continuous
parts together, and discuss the problem of designing controllers for hybrid systems. Our
treatment follows that of [1, 2, 3, 4].

1 Problem Formulation

Recall that the plant is modeled by a hybrid automaton H = (Q, X, Init, In, f , Dom, R,
Out) as described in Lecture Notes 7.

To avoid technical problems we assume that:

1. f is Lipschitz continuous in x and continuous in w ∈ In;

2. for all q ∈ Q and for all σ ∈ Σ, w ∈W , Dom(q) is an open set.

3. for all (q, x) ∈ Q×X, and for all (σ1, u) ∈ Σ1 × U there exists (σ2, d) ∈ Σ2 ×D such
that:

[(x, (σ1, σ2), (u, d)) ∈ Dom(q)] ∨ [R(q, x, (σ1, σ2), (u, d)) 6= ∅]

Part 1 is standard, and is needed for existence of continuous evolution. Part 2 implies that
we need not worry about what happens on the boundary of the invariant set. Finally, part 3
(together with part 2) implies that the controller cannot block the system execution. Notice
that this assumption is not symmetric for (σ1, u) and (σ2, d). The reason is that, since we
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are dealing with safety specifications, it will never be to the benefit of (σ2, d) to stop the
execution.

As in the discrete and continuous cases, we will try to establish the largest controlled invariant
subset of a given set F ⊆ Q × X, and design a controller that renders this set invariant.
Again, to avoid technical problems, we will assume that F is a closed set.

We will again take an adversarial approach and treat the design as a game between (σ1, u)
and (σ2, d). Whenever possible we will give the advantage to (σ2, d), in particular:

1. In the order of play ((σ1, u) will be the “leader” of the game).

2. When resolving non-determinism.

2 Definitions of Operators

Notice that the disturbance has two choices. It can:

1. Try to make the system “jump” outside F .

2. Try to “steer” the system outside F along continuous evolution.

The control also has two choices:

1. Try to “jump” to another state in F when the disturbance tries to steer out of F .

2. Try to “steer” the system and keep it in F along continuous evolution.

To characterize alternative 1 for the control, introduce the controllable predecessor operator,
Pre1 : 2Q×X → 2Q×X , which, given a set K ⊆ Q×X returns:

Pre1(K) = {(q, x) ∈ K : ∃(σ1, u) ∈ Σ1 × U, ∀(σ2, d) ∈ Σ2 ×D, (x, σ1, σ2, u, d) /∈ Dom(q)

∧R(q, x, σ1, σ2, u, d) ⊆ K}

To characterize alternative 1 for the disturbance, introduce the uncontrollable predecessor
operator, Pre2 : 2Q×X → 2Q×X , which, given a set K ⊆ Q×X returns:

Pre2(K) = {(q, x) ∈ K : ∀(σ1, u) ∈ Σ1 × U ∃(σ2, d) ∈ Σ2 ×D

R(q, x, σ1, σ2, u, d) ∩K
c 6= ∅} ∪Kc

Therefore Pre1(K) contains all states in K for which controllable actions (σ1, u) can force
the state to remain in K for at least one step in the discrete evolution. Pre2(K), on the
other hand, contains all states in Kc, the complement of K, as well as all states from which
uncontrollable actions (σ2, d) may be able to force the state outside of K. In the definition
of Pre1, the controllable actions are required to be able to force a transition (hence the Inv in
the formula). In contrast, for Pre2, we simply require that a transition be possible, giving the
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advantage to the uncontrollable actions. The controllable and uncontrollable predecessors
will form the discrete part of the algorithm for computing controlled invariant sets.

Some simple facts about these two operators:

Proposition 1 For all K ⊆ Q×X, Pre1(K) ⊆ K, Pre2(K) ⊇ Kc and Pre1(K)∩Pre2(K) =
∅

Remarks:

• The two operators are asymmetric.

• The order of the quantifiers is consistent with the control being the leader in the game.

• Since all non-determinism is resolved in favor of the disturbance, the control has to
work harder:

– it has to ensure a transition back into K exists (second condition in the definition
of Pre1(K)),

– it has to be able to “force” the transition (no mention of Dom in the definition
of Pre2(K)),

– it has to ensure all possible transitions stay in K (first condition in the definition
of Pre1(K)).

Finally, to characterize alternative 2 for both control and disturbance, we define the Reach :
2Q×X × 2Q×X → 2Q×X operator:

Definition 2 (Reach) Consider two subsets G ⊆ Q×X and E ⊆ Q×X such that G∩E =
∅. The Reach operator is defined as

Reach(G,E) = {(q, x) ∈ Q×X | ∀u ∈ U ∃d ∈ D and t ≥ 0 such that
(q(t), x(t)) ∈ G and (q(s), x(s)) ∈ Π(Dom) \ E for s ∈ [0, t]}

(1)

where (q(s), x(s)) is the continuous state trajectory of ẋ = f(q(s), x(s), u(s), d(s)) starting
at (q, x) and Π(Dom) represents the state space components of Dom. The set Reach(G,E)
describes those states from which, for all u(·) ∈ U , there exists a d(·) ∈ D, such that the
state trajectory (q(s), x(s)) can be driven to G while avoiding an “escape” set E.

3 Basic Algorithm

Using the above definitions, the following algorithm can now be formulated for computing
the largest controlled invariant subset of a given set F .

Algorithm 1 (Controlled Invariant Set)
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Initialization:
W 0 = F , W 1 = ∅, i = 0

while W i 6= W i+1 do
begin

W i−1 = W i \ Reach(Pre2(W
i),Pre1(W

i))
i = i− 1

end

In the first step of this algorithm, we remove from F all states from which there is a distur-
bance d(·) ∈ D forcing the system either outside F or to states from which an environment
action σ2 ∈ Σ2 may cause transitions outside F , without first touching the set of states from
which there is a control action σ1 ∈ Σ1 keeping the system inside F . Since at each step,
W i−1 ⊆ W i, the set W i decreases monotonically as i decreases. If the algorithm terminates,
we denote the fixed point as W ∗.

In order to implement this algorithm, we need to calculate Pre1, Pre2, and Reach. The
computation of Pre1 and Pre2 requires inversion of the transition relation R subject to the
quantifiers ∃ and ∀; existence of this inverse can be guaranteed subject to well understood
conditions on the map R. The computation of Reach, for each discrete state q, may be
formulated as a constrained Hamilton-Jacobi equation or variational inequality.

Recall that along continuous evolution the value of the discrete state remains constant.
Therefore, since the computation of the Reach operator involves only continuous evolution
it can be carried out for each discrete state separately. Fix the value of q ∈ Q and let
lG : X → R and lE : X → R be differentiable functions such that G

∆

= {x ∈ X : lG(x) ≤ 0}

and E
∆

= {x ∈ X : lE(x) ≤ 0}.

Then the set of states which reaches G without entering E is

G(t) = {x ∈ X : JG(x, t) ≤ 0} (2)

E = {x ∈ X : JE(x) ≤ 0} (3)

(4)

where

∂JG(x, t)

∂t
+ min(0, H(x,

∂JG(x, t)

∂x
)) = 0 (5)

subject to JG(x, t) ≥ JE(x) (6)

This is a constrained Hamilton-Jacobi equation – the constraint JG(x, t) ≥ JE(x) ensures
that the evolution of J∗

G(x, t) is frozen in set E. Figure 1 illustrates a sample evolution.

Remarks

In general, one cannot expect to solve for W ∗ using a finite computation. The class of
hybrid systems for which algorithms like the one presented here are guaranteed to terminate
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Figure 1: The computation of Reach(G,E) in a single discrete state q.
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is known to be restricted [5]. In general, the basic algorithm of the previous section is
semi-decidable when the operators Pre1,Pre2,Reach are computable. For example, when
the continuous state dynamics are constant and the guards and resets are polyhedra, then
the operators Pre1,Pre2,Reach map polyhedral sets back into polyhedral sets. These hybrid
systems are referred to as linear hybrid automata.

Consider the three-mode aircraft conflict resolution example from Lecture 7.

120
R

Mode 1 Mode 2 Mode 3

Figure 2: Two aircraft in three modes of operation: in modes 1 and 3 the aircraft follow a
straight course and in mode 2 the aircraft follow a half circle. The initial relative heading
(120◦) is preserved throughout.
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Figure 3: In q1 both aircraft follow a straight course, in q2 a half circle, and in q3 both
aircraft return to a straight course.

We assume that for this example the speeds (v1, v2) of both aircraft are constant even in
the straight modes, so that the input and disturbance sets are singletons (U = v1, D = v2)
and u∗ = v1, d

∗ = v2. The general case, in which U and D are ranges of possible speeds, is
considered in the examples in [6, 7]. Recall that our goal is to calculate the relative distance at
which the system may safely switch from mode 1 to mode 2, and the minimum turning radius
R in mode 2, to ensure that separation between aircraft is maintained. The evolution of the
protected zone in each mode, assuming no switches, is computed using the continuous-time
Hamilton-Jacobi method. The unsafe set G is defined as: G = {q1, q2, q3} × {x ∈ X | l(x) ≤
0} where l(x) = x2

r + y2
r − 52. Let Gi = (qi, {x ∈ X | l(x) ≤ 0}) represent the unsafe set in

mode i. Thus the set {x ∈ X | J∗

Gi
(x) ≤ 0} where J∗

Gi
is the optimal cost, is the backwards

evolution of the protected zone in mode i, assuming no switches between modes.
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Gi
(x) ≤ 0 for (a) Modes 1 and 3 (i = 1, 3), ω1 = ω2 = 0 (the jagged edge means

the set extends infinitely), (b) Mode 2 (i = 2), ω1 = ω2 = 1. In both cases, ψr = 2π/3, and
v1 = v2 = 5.
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Figure 5: (W 0)c.

These sets are shown in Figure 4. In both cases, the relative heading between aircraft is
assumed fixed at ψr = 2π/3 (because of our assumption that aircraft switch modes instan-
taneously).

We implement Algorithm 1 for this example, at each step computing the sets Pre1, Pre2,
and Reach(Pre2,Pre1). In the first step, W 0 = F

∆

= Gc, the complement of G:

W 0 = ((q1, {x ∈ X | l(x) ≤ 0}c ∩ {x ∈ X | z = 0}) ∪ (q2, {x ∈ X | l(x) ≤ 0}c)

∪(q3, {x ∈ X | l(x) ≤ 0}c ∩ {x ∈ X | z = 0})) (7)

as shown in Figure 5 (the complement is shown in the figure).

Pre1(W
0) = (q1, {x ∈ X | l(x) ≤ 0}c ∩ {x ∈ X | z = 0}) (8)

Pre2((W
0)c) = G (9)

Note that Pre1(W
i) ⊆ {(q1, X)} for all i, since σ1 labels transitions from q1. The set W−1

(Figure 6) is
W−1 = W 0\Reach(Pre2((W

0)c),Pre1(W
0)) (10)

The set W−2 involves computing Reach(Pre2((W
−1)c),Pre1(W

−1)), this computation is il-
lustrated in Figure 7(a) and the set is shown in Figure 7(b) as the shaded region. Continuing,
a fixed point is reached after 3 iterations: Figure 8 illustrates this fixed point W ∗ = W−3 in
q1. Since we assumed in this example that the continuous control input u = v1 is fixed, we
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Figure 6: (W−1)c. The jagged edge in q3 means that the set extends infinitely.
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Figure 7: (a) Pre1(W
−1) and Pre2(W

−1) in q1; (b) Reach(Pre2(W
−1),Pre1(W

−1)) in q1.
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need only design the discrete part of the controller σ1 and the radius of the maneuver R. The
design is as illustrated in Figure 8(a): the enabling and forcing of σ1 occurs at the boundary
of W ∗ as shown, as explained below. The transition from q1 to q2, governed by σ1, must
be disabled until the relative position of the two aircraft reach the dashed line as shown,
otherwise the aircraft will lose separation with each other either during the maneuver or after
the maneuver is complete. At the dashed line, σ1 is enabled, meaning the transition from
q1 to q2 may occur at any time. σ1 remains enabled until the dynamics reach the solid line
(boundary of W ∗), at which point it must be both enabled and forced: otherwise the aircraft
lose separation immediately. Note that there are states (xr, yr) which are not rendered safe
by the maneuver. Indeed, if the initial state is in the darker shaded region shown in Figure
8(a), then the aircraft are doomed to collide. Figure 8(b) displays the result of increasing
the radius of the turn in q2. Notice that the set W ∗ (the complement of the shaded region)
increases as the turning radius increases. This implies that the maneuver renders a larger
subset of the state space safe. Figure 8(b) shows the critical value of the turning radius, for
which the maneuver is guaranteed to be safe, provided the conflict is detected early enough.

We have designed a tool for computing reachable sets for hybrid systems based on this level
set technique [8, 3], have implemented it in C, and we have used it to compute reachable
sets for several examples, including the first example in this paper. Using a grid spacing of
∆x = 0.1 (or about 90000 grid points) each iteration of this example required about 1400
timesteps on a Sun UltraSparc 10 (a 300 MHz UltraSparc processor with 512 KB cache and
128 MB main memory).

Using this for the computation of the continuous evolution in the hybrid system algorithm,
the three-mode conflict resolution example may be computed automatically as shown in
Figure 9 below.

4 Other Computational Methods involving Approxi-

mations

Other methods have been presented for approximating the reach set calculation. One idea
has been to use rectangular hybrid automata to approximate conservatively the reach set of
general hybrid automata. This procedure consists of sub-dividing the state space into regions
where one can find upper and lower bounds for each component of the right hand side of the
continuous dynamics and using the reach set analysis for the resulting rectangular hybrid
system. The package HyTech does precisely this computation provided that the guards and
invariants are polyhedra [9]. A synthesis procedure based on this appears in the paper of
Wong-Toi [10]. The main advantage of this approximation procedure is that it deals with a
class of systems for which the synthesis algorithm is semi-decidable. The main drawback is
that there is an exponential growth in the number of discrete states in approximating the
continuous dynamics. The successor to HyTech is a package called HyperTech [11] which
reduces the conservativeness of HyTech by using interval arithmetic with some systematic
checks to reduce the divergence of interval arithmetic estimates to approximate reach sets.
A controller design procedure using HyperTech has yet to be completed.
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Approximating Dynamics with Differential Inclusions. Suppose the continuous dy-
namics in the nonlinear hybrid system were approximated with the differential inclusion

ẋ ∈ g(q, x) (11)

where g(q, x) = {f(q, x, u, d) | ∀u ∈ U, d ∈ D}. A computationally efficient method for
approximating the reach set of g(q, x) is to conservatively approximate g(q, x) by a set of
constant inclusions, each of the form

ẋ ∈ [gmin, gmax] (12)

and then to compute the reach set of the constant inclusions. This method is presented in
[12], [13] where it is proved that the approximation error can be made arbitrarily small by
approximating the differential inclusion arbitrarily closely (ǫ-approximation). An advantage
of this method is that the class of constant inclusions used to approximate the differential
inclusion is known to be decidable, thus one can guarantee that the reachable set as t→ −∞
can be computed in a finite number of steps. The amount of preprocessing required to
initially approximate the dynamics may be quite formidable however, especially to achieve
a close approximation of the true reach set.

Approximating non-smooth sets with smooth sets. We have shown that the reach
set at any time t ∈ (−∞, 0] may have a non-smooth boundary due to switches in (u∗, d∗),
non-smooth initial data, or the formation of shocks. The level set scheme propagates these
discontinuities, yet its implementation may require a very small time step to do this accu-
rately. In [14] we present a method for over-approximating such non-smooth sets with sets
for which the boundary is continuously differentiable, by using smoothing functions to derive
smooth inner and outer approximations. By applying Algorithm 2 to smooth inner and outer
approximations of the sets G and E, we calculate smooth inner and outer approximations
to the true reach set.

Ellipsoidal Methods. A similar idea is to use ellipsoids as inner and outer approximations
to the reach set [15], [16]. To preserve the propagation of ellipsoids the continuous dynamics
in each of the discrete locations needs to be approximated by linear dynamics. Bounds on
the conservativeness of this approximation and their validity have not yet been worked out.
However, [16] presents efficient algorithms for calculating both the minimum volume ellipsoid
containing given points, and the maximum volume ellipsoid in a polyhedron, using a matrix
determinant maximization procedure subject to linear matrix inequality constraints.
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