
EE291E Hybrid Systems and Intelligent Control

Lecture Notes 2

Mathematical Background: Discrete and Continuous

Systems

Claire J. Tomlin

January 11, 2018

The lecture notes for this course are based on the first draft of a research mono-
graph: Hybrid Systems. The monograph is copyright the authors:

c©John Lygeros, Shankar Sastry, Claire Tomlin
and these lecture notes must not be reproduced without consent of the authors.

1

The formal definitions of hybrid systems build on a number of concepts from continuous
state and discrete state dynamical systems.

A continuous state dynamical system in one in which the state x takes on values in R
n,

that is x ∈ R
n. Continuous state systems may evolve in either continuous time (for example,

ẋ = f(x, u)), or discrete time (for example, xk+1 = f(xk, uk)).

A discrete state dynamical system is one in which the state q takes on values in a finite
set {q1, q2, q3, . . .}.

1 Finite Automaton models of discrete state systems

• Examples: digital switching circuit, lexical analyzers, digital computer . . .

• Definition [2, 3]: A finite automaton M is a mathematical model of a system repre-
sented as

(Q, Σ, Init, R) (1)

where

– Q is a finite set of discrete state variables

– Σ = Σ1 ∪ Σ2 is a finite set of discrete input variables, where Σ1 contains the
controller’s inputs and Σ2 contains the environment’s inputs, which cannot be
controlled

– Init ⊆ Q is a set of initial states

– R : Q × Σ → 2Q is a transition relation which maps the state and input space
to subsets of the state space and thus describes the transition logic of the finite
automaton

• Definition: An execution of the finite automaton M is defined to be a finite or infinite
sequence of states and inputs, written as:

(q(·), σ(·)) ∈ (Q × Σ)ω (2)

where (·)ω indicates infinite strings, and for i ∈ Z:

q(0) ∈ Init and q(i + 1) ∈ R(q(i), σ(i)) (3)

• Σ∗ is the set of strings of arbitrary length of elements of Σ (we denote by ǫ a string of
length 0)

• Definition: Consider a finite automaton M with a specified set of final states F ⊆ Q.
M is said to accept a string s = σ(0)σ(1)σ(2) . . . σ(n) ∈ Σ∗ if there exists a sequence
of states q = q(0)q(1)q(2) . . . q(n + 1) ∈ Q∗ such that:

– q(0) ∈ Init

2

– q(i + 1) ∈ R(q(i), σ(i))

– q(n + 1) ∈ F

• Definition: The language accepted by M , L(M), is the set of all strings accepted by
M

• Definition: Two automata, M1 and M2, are said to be equivalent if L(M1) = L(M2)

• Definition: The finite automaton M may block certain input strings if it does not
accept certain inputs at certain states

• Definition: The finite automaton M may be non-deterministic, meaning that it could
take different transitions from the same state in response to the same input symbol

• Remark: If the transition relation R is a function, that is |R(q, σ)| = 1 for all q ∈ Q
and all σ ∈ Σ, then M is deterministic

• Example: Consider the finite automaton M in Figure 1. In this case,

q0 q1

q2

a

b

b
a

Figure 1: Finite Automaton Example.

– Q = {q0, q1, q2}

– Σ = {a, b}

– q1 = R(q0, a), q2 = R(q1, b), q0 = R(q2, a), q0 = R(q1, b) (note that R is not a
function)

– Init = q0 (indicated by the straight arrow in Figure 1)

– F = q0 (indicated by a double circle in Figure 1)

– L(M) = {ǫ, ab, aba, abab, abaaba, . . .} = ((ab)∗(aba)∗)∗ ⊆ Σ∗

– non-deterministic

• Example [2]: Coordinating Finite Automata. Consider the crossroad traffic
controller problem as illustrated in Figure 2. The system consists of three components:
Avenue A, Boulevard B, and traffic Controller C. We model each of these components

3

avenue A

boulevard B

controller
C

Figure 2: Crossroad Traffic Controller.

as a finite state machine as shown in Figure 3. Each of A, B, and C has 2 states, as
shown in Figure 3.

The crossroad system is modeled by the synchronous composition of the 3 state ma-
chines, written as M = A ⊗ B ⊗ C:

– Q = {(stop, stop, goA), . . . , (go, go, goB)} (8 states)

– Σ = {a1, a2, a3, b1, b2, b3, c1, c2, c3}

– The transition relation for M is given in term of Boolean conjunctions of the
respective transition relations for the components, for example: (go, stop, goA) =
R((stop, stop, goA), a2 ∧ (b1 ∨ b2) ∧ c1)

– Init = {(stop, stop, goA), (stop, stop, goB)}

– L(M) is the set of finite sequences of Boolean conjunctions and disjunctions of
input symbols

Why is this modeling formalism interesting to us?

Because if we accept this model as reality, and we can prove (verify) that the system
never transitions into a state in which (A : carsgoing)∧ (B : carsgoing), then the system
is safe. Likewise, if we can verify that system allows all cars on each road to eventually
get through the intersection, then the system is live.

Consider the safety problem. It is possible to verify the safety of the system by con-
structing a monitor automaton as shown in Figure 4:

T1 has the initial state safe; the self-loop transition safe → safe marked by a “+”
is a recur edge, meaning that any infinite path through the transition structure of
T1 which crosses edge safe → safe infinitely often designates a behavior accepted by
T1. The else indicates that every behavior (of M) is accepted by T1 unless it involves
(A : carsgoing)∧(B : carsgoing), in which case T1 moves to state unsafe, which disallows

4

a1 = (A: no cars)

a2 = (A: cars_waiting)

a3 = (A: cars_going)

c3 c2 a2

c2 a2

B CA

go

stop go_A

go_Bgo

stop

b1 = (B: no cars)

b2 = (B: cars_waiting)

b3 = (B: cars_going)

c1 = (C: go_A)

c2 = (C: go_B)

c3 = (C: pause)

a1 c1

a2 c1

a2
b1 b2 c2

b2 c2

a3 c2
b3 c1

a1
a3 c2

b1
b3 c1

c3 c1 b2

c1 b2

Figure 3: Finite automata models of the crossroad traffic controller example.

an infinite number of recur-edge crossings, and thus disallows the acceptance by T1 of
any behavior which includes that collision event. More formally, the system is safe if

L(M) ⊂ L(T1) (4)

2 Differential Equations

• Definition: Continuous state, continuous time control systems may be represented as
differential equations evolving on a state space X [4, 5]:

ẋ(t) = f(x(t), v) (5)

where

– x ∈ X is the state, here X = Rn

– v ∈ V = U × D is the space of continuous input variables, where U = R
u is the

set of control inputs and D = R
d is the set of disturbance inputs

– f : R
n × U × D → R

n is a vector field, assumed to be Lipschitz continuous in x
and piecewise continuous in v

– the initial state x(0) ∈ Init where Init ⊆ X

5

safe

unsafe

true

else+

T1

a3 b3

Figure 4: T1: The monitor automaton which defines the state-invariant task “no cars collide”.

Definition 1 (Trajectory) A trajectory (execution, solution in the sense of Caratheodory)
of (5) over an interval [τ, τ ′] ⊆ R is a map: (x(·), v(·)) : [τ, τ ′] → R

n × V such that

x(τ ′) = x(τ) +

∫ τ ′

τ

f(x(s), v(s))ds (6)

Definition 2 (Lipschitz Continuous) The function f : R
n → R

n is said to be Lip-
schitz continuous if there exists a λ > 0 such that for all x1, x2 ∈ R

n:

||f(x1) − f(x2)|| < λ||x1 − x2|| (7)

If f is Lipschitz continuous in x, then it is continuous is x. The converse is not
necessarily true; however, if f has bounded partial derivative in x, then it is Lipschitz
continuous.

• Theorem 1: Local Existence and Uniqueness. Assume f(x, v) is piecewise con-
tinuous in v and Lipschitz continuous in x, for x ∈ {x ∈ R

n :‖ x − x0 ‖≤ r, r > 0}
and for ||f(x0)|| ≤ h, h ≥ 0. Then there exists δ > 0 such the system (5) has a unique
solution (6) on [0, δ].

• Theorem 2: Global Existence and Uniqueness. Assume f(x, v) is piecewise
continuous in v and Lipschitz continuous in x, and that ‖ f(x0) ‖< h for h > 0,
x ∈ R

n. Then the system (5) has a unique solution (6) ∀t.

• Examples: Consider systems which violate some of the conditions:

– f discontinuous in x: ẋ = −sgn(x). The solution starting at x0 = 0 is undefined
for all t > 0.

6

– f continuous but not Lipschitz in x: ẋ = x1/3. Solution is not unique (x(t) =
(2t/3)3/2, x(t) = 0 are both valid solutions for x0 = 0)

– f Lipschitz but not globally Lipschitz in x: ẋ = −x2. The solution for x0 = −1
is x(t) = 1/(t − 1) and is not defined when t = 1.

• Theorem 3: Continuous dependence on initial conditions. Assume f(x, v)
satisfies the conditions of Theorem 2, and let x and y be two solutions of (5) starting
at x0 and y0 respectively. Then for all ǫ > 0 there exists δ(ǫ, T) > 0 such that

‖ x0 − y0 ‖≤ δ ⇒‖ x(t) − y(t) ‖≤ ǫ (8)

for all t ∈ [0, T], T finite.

• Remarks: These theorems provide conditions for a continuous system to be non-
blocking (solutions exist locally), deterministic (solutions are unique), non-Zeno (solu-
tions can be extended over arbitrarily long horizons).

References

[1] J. R. Munkres. Topology: a first course. Prentice-Hall, Englewood Cliffs, 1975.

[2] R. P. Kurshan. Computer Aided Verification of Coordinating Processes: The Automata
Theoretic Approach. Princeton University Press, Princeton, N. J., 1994.

[3] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, Menlo Park, 1979.

[4] S. S. Sastry. Nonlinear Systems: Analysis, Stability and Control. Springer Verlag, 1999.

[5] J. Lygeros, S. S. Sastry, and students. Lecture notes for eecs291e (hybrid systems).
UCB/ERL M99/34, University of California at Berkeley, 1999.

7

