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We develop definitions to formalize the notion of hybrid systems as dynamical systems that
describe the evolution in time of the values of a set of discrete and continuous variables. In
this chapter, we restrict our attention to autonomous hybrid automata, that is time invariant
hybrid systems without inputs. In subsequent chapters we will extend this class of hybrid
models and introduce input variables to allow us to state and solve control problems.

1 Hybrid Time Sets and Trajectories

Since we are interested in hybrid phenomena that involve both continuous and discrete
dynamics, we introduce the hybrid time trajectory, which will encode the set of times over
which the evolution of the system is defined. Hybrid time sets will be used to define the
time horizon of executions of hybrid systems.

Definition 1 (Hybrid Time Set) A hybrid time set is a finite or infinite sequence of in-

tervals τ = {Ii}
N
i=0, such that

• Ii = [τi, τ
′

i ] for all i < N ;

• if N < ∞ then either IN = [τN , τ ′

N ] or IN = [τN , τ ′

N); and

• τi ≤ τ ′

i = τi+1 for all i.

An example of a hybrid time trajectory is given in Figure 1. We will use T to denote the
set of all hybrid time sets.

Consider τ = {Ii}
N
i=0 ∈ T . Notice that, for i < N , the right endpoint, τ ′

i , of the interval Ii

coincides with the left endpoint, τi+1 of the interval Ii+1. The interpretation is that these are
the times at which discrete transitions of the hybrid system take place. τ ′

i corresponds to the
time instant just before a discrete transition, whereas τi+1 corresponds to the time instant just
after the discrete transition. Discrete transitions are assumed to be instantaneous, therefore
τ ′

i = τi+1. The advantage of this convention is that it allows one to capture situations in
which multiple discrete transitions take place one after the other at the same time instant,
since it is possible for τ ′

i−1 = τi = τ ′

i = τi+1.

For each hybrid time set, τ ∈ T , we define a precedence relation ≺ on τ . For t1 ∈ [τi, τ
′

i ] ∈ τ
and t2 ∈ [τj, τ

′

j] ∈ τ we say that t1 precedes t2 (denoted by t1 ≺ t2) if t1 < t2 or i < j. It is
easy to show that this relation is a linear order on τ . In Figure 1, we have t1 ≺ t2 ≺ t3 ≺
t4 ≺ t5 ≺ t6.

On the set T of hybrid time sets we define a prefix relation. We say that τ = {Ii}
N
i=0 is a

prefix of τ̂ = {Îi}
M
i=0 (and write τ ⊑ τ̂) if either they are identical, or τ is finite, N ≤ M ,

Ii = Îi for all i = 0, . . . , N − 1, and IN ⊆ ÎN . We say that τ is a strict prefix of τ̂ (and write
τ ⊏ τ̂) if τ ⊑ τ̂ and τ 6= τ̂ . It is easy to show that the prefix relation is a partial order on
T . In Figure 2, τ is a strict prefix of both τ̂ and τ̃ , but τ̂ is not a prefix of τ̃ and τ̃ is not a
prefix of τ̂ .
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Figure 1: A hybrid time set τ = {[τi, τ
′

i ]}
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Figure 2: τ ⊏ τ̂ and τ ⊏ τ̃ .

Since hybrid time sets incorporate both discrete and continuous aspects one can consider
two notions of “length” for them. One notion is discrete and reflects the number of intervals
contained in the hybrid time set. The discrete extent can be defined as a function 〈·〉 : T →
N ∪ {∞} that for τ ∈ T returns

〈τ〉 =

{

N if τ is a finite sequence
∞ if τ is an infinite sequence

The second notion of length is continuous, and reflects the length of time over which the
hybrid time set is defined. More formally, the continuous extent can be defined as a function
‖ · ‖ : T → R+ that for τ = {Ii}

N
i=0 ∈ T returns

‖τ‖ =
N

∑

i=0

(τ ′

i − τi)

Clearly, if τ ⊑ τ̂ , 〈τ〉 ≤ 〈τ̂〉 and ‖τ‖ ≤ ‖τ̂‖.

Definition 2 (Classification of Hybrid Time Sets) A hybrid time set τ ∈ T is called
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Figure 3: τA finite, τB finite-open, τC and τD infinite, τE and τF Zeno.

• finite, if 〈τ〉 is finite and the last interval in τ is closed;

• finite-open, if 〈τ〉 is finite, and the last interval in τ is bounded and right open;

• infinite, if 〈τ〉 = ∞, or if ‖τ‖ = ∞;

• Zeno, if it is infinite but ‖τ‖ < ∞.

Figure 3 shows examples of finite, finite open, infinite and Zeno hybrid time sets

Definition 3 (Hybrid Trajectory) A hybrid trajectory (τ, q, x) consists of a hybrid time

set τ = {Ii}
N
0 ∈ T and two sequences of functions q = {qi(·)}

N
0 and x = {xi(·)}

N
0 with

qi(·) : Ii → Q and x(·) : Ii → R
n.

2 Autonomous Hybrid Automata

2.1 Fundamental Definitions

Definition 4 (Autonomous Hybrid Automaton) An autonomous hybrid automaton H
is a collection H = (Q, X, Init, f , Dom, R), where

• Q = {q1, q2, . . .} is a set of discrete states;

• X = R
n is a set of continuous states;

• Init ⊆ Q × X is a set of initial states;
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Figure 4: The water tank system.

• f(·, ·) : Q × X → R
n is a vector field;

• Dom(·) : Q → 2X is a domain;

• R(·, ·) : Q × X → 2X is a reset relation.

Recall that 2X denotes the power set (set of all subsets) of X. We refer to (q, x) ∈ Q × X
as the state of H.

Roughly speaking, autonomous hybrid automata define possible ways that their state can
evolve over time. These possible evolutions take the form of hybrid trajectories, (τ, q, x).
Starting from an initial value (q0, x0) ∈ Init, the continuous state, x, flows according to the
differential equation ẋ = f(q0, x), x(0) = x0, while the discrete state, q, remains constant at
q0. Continuous evolution can go on as long as x(t) ∈ Dom(q0). If at some point R(q0, x) 6= ∅
a discrete transition can take place. During a discrete transition both the continuous and
the discrete state may be reset to some value in R(q0, x). After the discrete transition,
continuous evolution resumes and the whole process is repeated.

Before we give the formal definition of this process we give an example to illustrate how
autonomous hybrid automata can be used to model physical systems.

Example (Water Tank) The two tank system, shown in Figure 4, consists of two tanks
containing water. Both tanks are leaking at a constant rate. Water is added at a constant
rate to the system through a hose, which at any point in time is dedicated to either one tank
or the other. It is assumed that the hose can switch between the tanks instantaneously.

For i ∈ {1, 2}, let xi denote the volume of water in Tank i and vi > 0 denote the constant
flow of water out of Tank i. Let w denote the constant flow of water into the system. The
objective is to keep the water volumes above r1 and r2, respectively, assuming that the water
volumes are above r1 and r2 initially. This is to be achieved by a controller that switches
the inflow to Tank 1 whenever x1 ≤ r1 and to Tank 2 whenever x2 ≤ r2.
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It is straightforward to define an autonomous hybrid automaton to describe this process:

• Q = {q1, q2};

• X = R
2;

• Init = Q × {x ∈ R
2 | x1 ≥ r1 ∧ x2 ≥ r2};

• f(q1, x) = (w − v1,−v2) and f(q2, x) = (−v1, w − v2);

• Dom(q1) = {x ∈ R
2 | x2 ≥ r2} and Dom(q2) = {x ∈ R

2 | x1 ≥ r1};

• R(q1, x) = (q2, x) if x2 ≤ r2, R(q2, x) = (q1, x) if x1 ≤ r1 and R(q, x) = ∅ otherwise.

Though very simple, the water tank hybrid automaton has a number of interesting properties,
and will be used throughout this section (and beyond) to illustrate various concepts.

An execution of an autonomous hybrid automaton is a hybrid trajectory, (τ, q, x), over its
state variables. The elements listed in Definition 4 impose restrictions on the elements of
the set of possible trajectories that the hybrid automaton finds “acceptable”.

Definition 5 (Execution) An execution of a hybrid automaton H is a hybrid trajectory,

(τ, q, x), which satisfies the following conditions:

• initial condition: (q0, x0) ∈ Init

• discrete evolution: (qi+1(τi+1), xi+1(τi+1)) ∈ R(qi(τ
′

i), xi(τ
′

i));

• continuous evolution: for all i,

1. qi(·) : Ii → Q is constant over t ∈ Ii, that is, qi(t) = qi(τi) for all t ∈ Ii;

2. xi(·) : Ii → X is the solution to the differential equation ẋi = f(qi(t), xi(t)) over

Ii starting at xi(τi); and,

3. for all t ∈ [τi, τ
′

i), xi(t) ∈ Dom(qi(t)).

Definition 5 specifies which subset of the hybrid trajectories over (Q,X) are executions of
H by imposing a number of restrictions. The first restriction dictates that the executions
should start at an acceptable initial state in Init. The second restriction determines when
discrete transitions may take place and what the state after discrete transitions may be.
The requirement is that the state after a discrete transition is related to the state before a
discrete transition through the reset relation R. In this context, it is convenient to think of
R as enabling discrete transitions: the execution may take a transition from a state s as long
as R(s) 6= ∅. The third restriction determines what happens along continuous evolution, and
when continuous evolution must give way to a discrete transition. The first part implies that
along continuous evolution the discrete state remains constant. The second part requires
that along continuous evolution the continuous state flows according to the vector field f .
The third part requires that along continuous evolution the state must remain in the domain,
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Figure 5: Example of an execution of the water tank hybrid automaton.

Dom. In this context, it is convenient to think of Dom as forcing discrete transitions: the
execution must take a transition if the state is about to leave the domain. The definition
is somewhat subtle here. Notice that the execution is required to remain in the domain
throughput continuous evolution, except at the time instant just before a discrete transition.
This assumption provides some additional generality, since one can define hybrid automata
whose executions leave the domain for an instant. It will prove useful when studying the
fundamental properties of hybrid automata in subsequent sections; for example, it will allow
us to deal with hybrid automata whose domain is an open set.

Example (Water Tank Automaton) Figure 5 shows a finite execution of the water tank
automaton. The hybrid time set τ of the execution in the figure consists of three intervals,
τ = {[0, 2], [2, 3], [3, 3.5]}. The evolution of the discrete state is shown in the upper plot, and
the evolution of the continuous state is shown in the lower plot. The values chosen for the
constants are r1 = r2 = 0, v1 = v2 = 1/2 and w = 3/4. The initial state is (q1, 0, 1).

To simplify the notation, we will use s0 = s(τ0) to denote the initial state of an execution
(τ, s). Since we restrict attention to autonomous hybrid automata, we can assume that
τ0 = 0, without loss of generality.

Unlike continuous dynamical systems, the interpretation is that a hybrid automaton accepts

(as opposed to generates) an execution. This difference in perspective allows one to consider,
for example, hybrid automata that accept multiple executions for some initial states, a
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property that can prove very useful when modeling uncertain systems, as the following
example indicates.

Example (Thermostat) The thermostat system models the temperature variation in a
room. The temperature is regulated by a thermostat, which switches on a heater when the
temperature gets too low.

Let x ∈ R denote the temperature in the room. The heater is in one of two states, either on,
or off. It is assumed that when the heater is on the temperature in the room rises towards
100 degrees according to the differential equation ẋ = −x + 100. When the heater is off on
the other hand, the temperature decreases towards 0 degrees according to the differential
equation ẋ = −x. The goal of the thermostat is to keep the temperature close to 75 degrees.
To accomplice this it switches the heater on if the temperature reaches 70 degrees and off
if the temperature reaches 80 degrees. There is, however some uncertainty in the switching
process; the temperature may reach 68 degrees before the heating takes effect, and it may
reach 82 degrees before the room begins to cool.

It is straight forward to define an autonomous hybrid automaton, T , to describe this process:

• Q = {on, off};

• X = R;

• Init = X;

• f(on, x) = −x + 100 and f(off, x) = −x;

• Dom(on) = {x ∈ XT | x ≤ 82}Dom(off) = {x ∈ XT | x ≥ 68};

• R(on, x) = (off, x) if x ≥ 80, R(off, x) = (on, x) if x ≤ 70 and R(q, x) = ∅ otherwise.

It is easy to see that T accepts a whole family of executions for each initial condition. Some
examples are given in Figure 6.

2.2 Graphical Representation

It is often convenient to represent hybrid automata as directed graphs, (Q, E). The vertices,
Q, of the graph correspond to values of the discrete state, while the edges, E ⊆ Q × Q,
represent possible transitions between the discrete states,

E = {(q, q′) ∈ Q × Q | (q′, x′) ∈ R(q, x) for some x, x′ ∈ X}.

With each vertex q ∈ Q, we associate a set of continuous initial states

Initq = {x ∈ X | (q, x) ∈ Init} ⊆ X,

a differential equation, fq : X → 2X, given by

Fq(x) = F (q, x),
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Figure 6: Examples of executions of the thermostat hybrid automaton.

and a domain,
Domq = {x ∈ X | (q, x) ∈ Dom} ⊆ X.

With each edge, (q, q′) ∈ E, we associate a guard,

Guard(q,q′) = {x ∈ X | (q′, x′) ∈ R(q, x) for some x′ ∈ X} ⊆ X,

and a reset relation, Reset(q,q′) : X → 2X, given by

Reset(q,q′)(x) = {x′ ∈ X | (q′, x′) ∈ R(q, x)}.

Example (Water Tank and Thermostat (continued)) The thermostat and the water
tank automata can be represented by the directed graphs of Figure 7a and Figure 7b respec-
tively. In each vertex of the graph, we specify the value of the discrete state, a differential
equation (implied by the vector field), and the domain. We write the continuous part of
the initial state on an arrow pointing to the vertex corresponding to the discrete part of the
initial state. The edges are represented by arrows pointing from the starting state to the
destination state. The guard is written near the beginning of the arrow, and the reset near
the end. Assignment is denoted by := (deterministic assignment) or :∈ (non-deterministic
assignment).

To simplify the figures, the reset will be suppressed for edges (q, q′) ∈ E with Reset(q,q′)(x) =
{x} (as in the above examples). Likewise, the initial state arrow is suppressed for nodes
q ∈ Q with Initq = ∅.

Notice that the graph associated with a hybrid automaton contains the same information
as the definition of the automaton itself. The graphs, therefore, can also be treated as
formal definitions of hybrid automata. We will take advantage of this fact in the examples
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Figure 7: Graphical representation of the thermostat and water tank hybrid automata.

introduced in subsequent sections and use the more intuitive graphical representation to
replace the formal (but occasionally cumbersome) definitions. In fact, graphs with guards,
reset relations, etc. are commonly used in the hybrid systems literature as fundamental
objects of modeling frameworks.

A subtle point here is that the correspondence of graphs to hybrid automata is not unique.
The graphical representation may contain redundant elements. For example, one can define
an edge (q, q′) ∈ E with Guard(q,q′) = ∅, or allow Reset(q,q′)(x) = ∅ for some x ∈ Guard(q,q′).
Situations like these are impossible in graphs generated from autonomous hybrid automata.
Such graphs have the property that for all (q, q′) ∈ E, Guard(q,q′) 6= ∅ and Reset(q,q′)(x) 6= ∅
for all x ∈ Guard(q,q′). Graphs with these properties can be thought of as some form of
“canonical” representations.
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