
EE291E Lecture Notes 4

Existence of Executions

Claire J. Tomlin

January 29, 2018

The lecture notes for this course are based on the first draft of a research mono-
graph: Hybrid Systems. The monograph is copyright the authors:

c©John Lygeros, Shankar Sastry, Claire Tomlin
and these lecture notes must not be reproduced without consent of the authors.

1

1 Reachable States

Reachability is a crucial concept in the study of hybrid systems. Roughly speaking, a state,
(q, x) ∈ Q × X is called reachable if the hybrid automaton H can “steer” its way to (q, x)
while moving along one of its executions. The importance of the concept of reachability
is difficult to overstate. In the next section we will show how reachability plays a central
role in the derivation of existence and uniqueness conditions for executions. In subsequent
sections, reachability will also turn out to be a key concept in the study of safety properties
for hybrid systems. In this section we provide some basic definitions and results to motivate
subsequent discussion.

Definition 1 (Reachable State) A state (q′, x′) ∈ Q × X of an autonomous hybrid au-
tomaton H is called reachable if there exists a finite execution (τ, q, x) ending in (q′, x′), i.e.
τ = {[τi, τ

′

i]}
N
0 with N < ∞ and (qN(τ ′

N), xN(τ ′

N)) = (q′, x′).

We use Reach ⊆ Q×X to denote the set of all states reachable by H. Clearly, Init ⊆ Reach
(since we may choose N = 0 and τ ′

0 = τ0).

Computing the set of reachable states is in general very difficult. Much of the rest of this
course will be devoted to different methods that have been proposed for performing this
computation.

Definition 2 (Invariant Set) Consider an autonomous hybrid automaton H. A set of
states M ⊆ Q × X is called invariant if for all (q0, x0) ∈ M , and all (τ, q, x) starting from
(q0, x0), (qi(t), xi(t)) ∈ M for all i ≤ 〈τ〉 and t ∈ Ii.

One requirement imposed on hybrid automata is that the state never leave the domain
Q×Dom. This is often the case when modeling physical systems, where the domain typically
encodes hard constraints on the state that should be satisfied along all executions. This
requirement can be characterized in terms of the reachable states.

Definition 3 (Domain Preserving) An autonomous hybrid automaton, H, is called do-
main preserving if Reach ⊆ Q × Dom.

A simple way to determine whether a hybrid automaton is domain preserving is using in-
duction arguments along its executions: if the initial set of states is in the domain, and the
reachable states from these initial states is in the domain, the hybrid automaton is domain
preserving.

Example (Water Tank (continued)) Consider again the water tank automaton WT , and
assume that w > max{v1, v2}. Notice that InitWT ⊆ DomWT . Here, we can show that WT
is domain preserving since InitWT is an invariant set.

Consider an arbitrary initial state (q0, x0) ∈ InitWT and an arbitrary execution (τ, q, x)
starting in this initial state. We argue that (qi(t), xi(t)) ∈ InitWT for all i ≤ 〈τ〉, and all

2

t ∈ Ii by induction. By assumption, (q0, x0) ∈ InitWT . Assume (qi(τi), xi(τi)) ∈ InitWT

for some i ≤ 〈τ〉. If τ ′

i > τi, (qi(t), xi(t)) ∈ DomWT for all t ∈ [τi, τ
′

i), by the definition
of an execution. The only way the state can leave InitWT along continuous evolution is if
x1 = r1 or x2 = r2. Assume qi(τi) = q1 (the case qi(τi) = q2 is symmetric). Then, since
w > max{v1, v2}, ẋ1 > 0. Therefore, the only way the state can leave InitWT is if x2 = r2.
But x2 = r2 implies a discrete transition takes place, since Dom(q1) = {x ∈ R

2 | x2 ≥ r2}
and Dom(q2) = {x ∈ R

2 | x1 ≥ r1} and ẋ2 = −v2 < 0. Therefore, (qi(t), xi(t)) ∈ InitWT

for all t ∈ [τi, τ
′

i]. Moreover, R(q1, x) = {(q2, x)}, therefore (qi(τi+1), xi(τi+1)) ∈ InitWT . By
induction, InitWT is an invariant set.

It is easy to see that the thermostat automaton T is not domain preserving, since the initial
states are unconstrained, and therefore ReachT = InitT = XT ⊃ DomT .

2 Transition States

Another important concept in the study of existence properties is the set of states from
which continuous evolution is impossible, sometimes referred to as the transition states.

For (q̂, x̂) ∈ Q × X and some ǫ > 0, consider the set of solutions, x(·) : [0, ǫ) → X to the
differential equation:

dx

dt
= f(q̂, x) with x(0) = x̂. (1)

To characterize the states from which continuous evolution is impossible, we define the set
Trans ⊆ Q × X by

Trans = {(q̂, x̂) ∈ Q × X | ∀x(·) ∀ǫ > 0 ∃t ∈ [0, ǫ) such that x(t) 6∈ Dom(q̂)} .

In words, Trans is the set of states for which continuous evolution along the differential
inclusion forces the system to exit the domain instantaneously.

The exact characterization of the set Trans may be quite involved. We conclude the section
by giving some suggestions on how this can be done in certain simple cases. We restrict our
attention to cases in which the domain is sufficiently smooth. If f is Lipschitz continuous
in x, the following is an immediate consequence of the existence of solutions of ordinary
differential equations.

Proposition 4 If an autonomous hybrid automaton is such that f is locally Lipschitz con-
tinuous in x, then Trans ∩ Q × Dom ⊆ ∂(q × Dom).

Here, the notation ∂ refers to the boundaries of the domains in each state q. The simplest
case is the one in which the domain is an open set.

Proposition 5 Consider an autonomous hybrid automaton. If Q × Dom is open and f is
locally Lipschitz continuous in x, then Trans = (Q × Dom)c.

3

q q′
x ≤ −2

x ≤ −3

x :∈ (−∞, 0]

x :∈ (−∞, 0]

ẋ = 1
x ≤ 0

ẋ = −1
x ≤ 0

Figure 1: Examples of blocking and non-determinism.

3 Local Existence and Uniqueness

Next, we turn our attention to questions of existence of executions. We derive conditions
under which all executions can be extended to infinite executions and conditions under which
this extension can be done uniquely. An execution, (τ, q, x), of a hybrid automaton H is
called maximal if it is not a strict prefix of any other execution of H.

Definition 6 (Non-Blocking and Deterministic) An autonomous hybrid automaton H
is called non-blocking if for all initial states (q0, x0) ∈ Init, there exists an infinite execution
starting at (q0, x0). It is called deterministic if for all initial states (q0, x0) ∈ Init there exists
at most one maximal execution starting at (q0, x0).

Roughly speaking, the non-blocking property implies that executions exist for all initial
states, while the deterministic property implies that the infinite executions (if they exist)
are unique. In continuous dynamical systems the existence property is satisfied when the
vector field is continuous, while the uniqueness property is satisfied when it is locally Lipschitz
continuous. In hybrid systems, however, more things can go wrong. Consider for example
the autonomous hybrid automaton of Figure 1. Let (q0, x0) denote the initial state, and
notice that q0 = q. If x0 = −3, executions starting at (q0, x0) can either flow along the
vector field, or jump back to q resetting x anywhere in (−∞, 0], or jump to q′ leaving x
unchanged. If x0 = −2 executions starting at (q0, x0) can either flow along the vector field,
or jump to q′. If x0 = −1 executions stating at (q0, x0) can only flow along the vector field.
Finally, if x0 = 0 there are no executions starting at (q0, x0), other than the trivial execution
defined over [τ0, τ

′

0] with τ0 = τ ′

0. Therefore, the hybrid automaton of Figure 1 accepts no
infinite executions for some initial states and multiple infinite executions for others.

Intuitively, a hybrid automaton is non-blocking if for all reachable states for which continuous
evolution is impossible a discrete transition is possible. This fact is stated more formally in
the following lemma.

Lemma 7 H is non-blocking if for all (q, x) ∈ Trans ∩ Reach, there exists q′ ∈ Q such that
(q, q′) ∈ E and x ∈ G(q, q′). If H is deterministic, then it is non-blocking if and only if this
condition holds.

4

In the case in which H is non-deterministic the conditions of Lemma 7 are not necessary.
The reason is that the conditions ensure that a blocking execution exists for some initial
conditions, but are not sufficient to show that for some initial conditions all executions will
block. For example, in the system of Figure 1 some executions starting at s0 = (q, 2) are
cannot be extended to infinite executions (the ones that start by flowing) while others can
(the ones that start by a transition to q′).

Intuitively, a hybrid automaton may be non-deterministic if either there is a choice between
continuous evolution and discrete transition, or if a discrete transition can lead to multiple
destinations. More specifically, the following lemma states that a hybrid automaton is deter-
ministic if and only if (1) each discrete transition has a unique destination, and (2) whenever
a discrete transition is possible continuous evolution is impossible.

Lemma 8 An autonomous hybrid automaton H is deterministic if and only if for all (q, x) ∈
Reach: (1) if x ∈ G(q, q′) for some (q, q′) ∈ E, then (q, x) ∈ Trans; (2) if (q, q′) ∈ E and
(q, q′′) ∈ E, where q′ 6= q′′, then x 6= G(q, q′)∩G(q, q′′); and (3) if (q, q′) ∈ E and x ∈ G(q, q′)
then R(q, x) = (q′, x′) (ie. the set contains a single element).

Theorem 9 (Existence and Uniqueness) A hybrid automaton H accepts a unique infinite
execution for each initial state if it satisfies all of the conditions of Lemmas 7 and 8.

Example (Water Tank (continued)) Recall that

ReachWT = {(q, x) ∈ Q × X | x1 ≥ r1 ∧ x2 ≥ r2},

TransWT = {q1} × {x ∈ X | x2 ≤ r2} ∪ {q2} × {x ∈ X | x1 ≤ r1}.

Therefore,
ReachWT ∩ TransWT ={q1} × {x ∈ X | x1 ≥ r1 ∧ x2 = r2}∪

{q2} × {x ∈ X | x2 ≥ r2 ∧ x1 = r1}.

Notice that RWT (s) 6= ∅ for all s ∈ ReachWT ∩TransWT , therefore the conditions of Lemma 7
are satisfied. Moreover, for all s ∈ ReachWT , RWT (s) contains either no elements (if s ∈
Transc

WT), or one element (if s ∈ TransWT). Therefore, the conditions of Lemma 8 are also
satisfied, and the water tank automaton accepts a unique infinite execution for each initial
state.

4 Zeno Executions

The conditions of Theorem 9 ensure that a hybrid automaton accepts infinite executions for
all initial states. They do not, however, ensure that the automaton accepts executions defined
over arbitrarily long time horizons. We know by assumption of Lipschitz continuity that
the state cannot escape to infinity in finite time along continuous evolution. However, the
infinite executions may be such that the state takes an infinite number of discrete transitions
(〈τ〉 = ∞) in finite time (i.e. |τ | < ∞). Executions with this property are known as Zeno
executions.

5

Figure 2: Zeno of Elea

4.1 Examples of Zeno Behavior

The name Zeno executions comes from the ancient Greek philosopher, Zeno of Elea (Fig-
ure 2). Born around 490BC, Zeno was a philosopher in the Eleatic school and a student
of Parmenides. The teachings of Parmenides rejected the ideas of plurality and change as
illusions generated by our senses. The main contribution of Zeno was a series of paradoxes
designed to support the view of his mentor by showing that accepting plurality and motion
leads to logical contradictions. One of the better known ones is the race of Achilles and the
turtle.

Achilles, a renowned runner, was challenged by the turtle to a race. Being a
fair sportsman, Achilles decided to give the turtle a 100 meter head-start. To
overtake the turtle, Achilles will have to first cover half the distance separating
them, i.e. 50 meters. To cover the remaining 50 meters, he will first have to cover
half that distance, i.e. 25 meters, and so on, ad infinitum. Covering each one of
the segments in this series requires a non zero amount of time. Since there is an
infinite number of segments, Achilles will never overtake the turtle.

This paradox may seem simple minded to the modern reader, but it was not until the
beginning of the 20th century that it was resolved satisfactorily by mathematicians and
philosophers. And it was not until the end of the 20th century that it turned out to be a
practical problem, in the area of hybrid systems.

To motivate the subsequent discussion we list a few examples to illustrate different aspects
of the Zeno phenomenon.

Example (Chattering System) Consider the autonomous hybrid automaton of Figure 3.
It is easy to show that the hybrid automaton accepts a unique infinite execution for all initial
states. However, all infinite executions are Zeno. An execution starting in x0 at τ0 reaches
x = 0 in finite time τ ′

0 = τ0 + |x0| and takes an infinite number of transitions from then on,
without time progressing further. Thus ‖τ‖ = τ0 + |x0|.

6

replacemen

q1 q2

x ≥ 0

x ≤ 0

x :∈ (−∞, 0] x :∈ [0,∞)

ẋ = 1
x ≤ 0

ẋ = −1
x ≥ 0

x

t

Figure 3: Chattering system.

q1 q2

ρ(x) ≥ 0

ρ(x) ≤ 0

x :∈ (−∞, 0)

ẋ = 1
ρ(x) ≤ 0

ẋ = 1
ρ(x) ≥ 0

ρ(x)

x

Figure 4: System with a smooth, non-analytic domain.

Example (Non-analytic Domain) Consider the hybrid automaton of Figure 4. Assume
that the function ρ : R → R that determines the boundary of the domain is of the form

ρ(x)

{

sin
(

1

x2

)

exp
(

− 1

x2

)

if x 6= 0
0 x = 0

The function ρ is smooth, but is not analytic in a neighborhood of the origin. It is easy to
check that the automaton is non-blocking and deterministic.

For any ǫ > 0, ρ has an infinite number of zero crossings in the interval (−ǫ, 0]. Therefore,
the execution of the hybrid automaton with initial state (q1, x0) will take an infinite number
of discrete transitions in the finite interval [τ0, τ0 + |x0|) (notice that x0 < 0).

Example (Water Tank (continued)) We have already shown that the water tank hybrid
automaton accepts a unique infinite execution for each initial state. In addition, if the inflow
is greater than each of the outflows but is less than their sum (max{v1, v2} < w < v1 + v2),
then all infinite executions are Zeno. One can show that

‖τ‖ = τ0 +
x1(τ0) + x2(τ0) − r1 − r2

v1 + v2 − w

7

fly

{x ∈ R
2 | x1 ≥ 0}

x2 := −cx2

ẋ1 = x2

ẋ2 = −g

x1 ≥ 0

x1 = 0∧
x2 ≤ 0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−15

−10

−5

0

5

10

time (s)

x 1 a
nd

 x
2

x
1

x
2

Figure 5: The bouncing ball automaton and one of its Zeno executions.

Example (Bouncing Ball) The bouncing ball automaton (Figure 5) is a model of an
elastic ball bouncing on a level surface. x1 denotes the height of the ball above the surface
and x2 its vertical velocity. It is assumed that the ball loses a fraction c2 ∈ [0, 1] of its energy
at each bounce. g is the acceleration due to gravity and the mass of the ball is assumed to
be 1.

One can show that the bouncing ball hybrid automaton is non-blocking and deterministic.
Moreover, if c < 1 all infinite executions are Zeno. The first bounce occurs at time:

τ ′

0 = τ1 = τ0 +
x2(τ0) +

√

x2
2(τ0) + 2gx1(τ0)

g

The second bounce occurs at time:

τ2 = τ ′

1 = τ0 + τ1 +
2x2(τ1)

g

More generally, the N th bounce occurs at time:

τN = τ ′

1 = τ0 + τ1 +
2x2(τ1)

g

N
∑

k=1

ck−1

where x2(τ1) = −cx2(τ
′

0) = c
√

x2
2(τ0) + 2gx1(τ0). Since for c ∈ [0, 1),

N
∑

k=1

ck−1 →
1

1 − c
as N → ∞ (2)

8

we have that

‖τ‖ = τ0 +
x2(τ0) +

√

x2
2(τ0) + 2gx1(τ0)

g
+

2x2(τ1)

g(1 − c)

= τ0 +
x2(τ0)

g
+

(1 + c)
√

x2
2(τ0) + 2gx1(τ0)

g(1 − c)

Figure 5 shows a Zeno execution in which ‖τ‖ = 4.

It can be argued that Zeno behavior is little more than a mathematical curiosity and should
not be an issue when dealing with physical systems. However, modeling abstraction, often
employed by engineers to simplify models for the purpose of analysis and control, can easily
lead to Zeno hybrid models of physical systems, as the water tank and bouncing ball examples
illustrate. Zeno executions turn out to be a source of a number of problems in the simulation
and analysis of hybrid automata. When faced with Zeno executions, simulation algorithms
are likely to stall or produce incorrect results. Analysis algorithms may result in misleading
claims as the following example illustrates.

Example (Water Tank (continued)) Consider the water tank automaton and assume
that max{v1, v2} < w < v1 + v2. We have already shown that under this assumption InitWT

is an invariant set. Therefore, along all executions, the water in both tanks remains above
the corresponding levels (x1 ≥ r1 and x2 ≥ r2 for all times).

Though mathematically sound, the above argument is misleading from a practical point of
view. If the amount of water coming in to the system is less that the amount of water going
out, we know that sooner or later at least one of the tanks will have to drain (just as we
know that sooner or later Achilles will overtake the turtle). The point is that one would
never be able to infer this fact by analyzing the hybrid automaton model of the water tank
system.

4.2 Zeno Hybrid Automata

Zeno executions are a fundamentally hybrid phenomenon. They can not appear in purely dis-
crete or purely continuous systems, since they require the interaction of continuous dynamics
(in the form of time) and discrete dynamics (in the form of discrete transitions).

Definition 10 (Zeno Automaton and Zeno Time) An autonomous hybrid automaton H
is called Zeno if for some (q0, x0) ∈ Init all infinite executions are Zeno (〈τ〉 = ∞ and
‖τ‖ < ∞). The continuous extent, ‖τ‖, of a Zeno execution is called the Zeno time.

Definition 11 (Zeno State) Consider an autonomous hybrid automaton H that accepts a
Zeno execution. A state (q, x) is called a Zeno state of this execution if there exists a sequence
{θj}

∞

j=1 with θj ∈ Iij ∈ τ and limj→∞ θj = ‖τ‖ such that for all N > 0 and all ǫ > 0 and
d((qij(θj), xij(θj)), (q, x)) < ǫ for some i > N .

9

The Zeno state is a special case of an ω limit point of an infinite execution. The discrete
part of the Zeno state consists of a discrete state that is visited infinitely often by a Zeno
execution.

4.3 Resolving the Zeno Phenomenon

In both the bouncing ball and water tank automata, the Zeno behavior is due to modeling
simplifications. In the water tank example, the switching dynamics associated with the
inflow have been abstracted with an ideal switch, and in the bouncing ball example, the
bounce dynamics have been replaced with a simple reset map. In these two examples, an
infinite number of transitions takes place in the time interval (τ∞ − ǫ, τ∞) for any ǫ > 0.

The first example above (hybrid automaton modeling chatter) is an example of a Zeno hybrid
automaton for which there exists an interval (τ∞ − ǫ, τ∞) in which no transitions take place,
while an infinite number of transitions take place at τ∞. The classical way of analyzing (and
controlling!) such systems is by introducing the concept of sliding modes [1, 2].

For the bouncing ball and water tank, we consider an approach known as regularization. In
the study of differential equations, regularization is a fairly standard process in which one
attempts to slightly alter a differential equation whose solution is not well defined, to one
whose solution is well defined. The approach can be extended to Zeno hybrid automata,
to extend Zeno executions beyond the Zeno time. The general idea and some examples are
given below.

• Let H be a non-blocking and deterministic hybrid automaton.

• Assume that for every (q0, x0) ∈ Init the execution starting at (q0, x0) is Zeno.

• We regularize H by constructing a family of deterministic, non-blocking, and non-Zeno
automata Hǫ, parameterized by a real valued parameter ǫ > 0, and a continuous map:

φ : Qǫ × Xǫ → Q × X (3)

which relates the state of each Hǫ to the state of H.

• In general φ((τǫ, qǫ, xǫ) will not be an execution of H. However, the construction of Hǫ

is such that Hǫ tends to H as ǫ tends to 0.

Example (Regularization of bouncing ball): Consider again the bouncing ball automa-
ton of Figure 5.

1. Temporal Regularization: Assume each bounce of the ball takes time ǫ > 0. The
regularized automaton is shown in Figure 6. One can shown that the automaton of Figure
6 accepts a unique, non-Zeno execution for each initial state. The state of the regularized
system is related to the state of the system by

φ(q0, (x1, x2, x3)) = φ(q1, (x1, x2, x3)) = (q, (x1, x2)) (4)

10

x2 := - c x
2

q
0

x = -g
2

>x1 0

>

x =
3 0

x1 = 0 x2 0<

= x

x =
2

1

= x
2x1

x3 ε

x :=
3 0

x1 < 0

0

0

x3 ε<

x =
3 1

q
1

Figure 6: Temporal regularization of bouncing ball automaton.

Figure 7 shows simulation results for the regularized system: x1, x2 and q are plotted as
functions of time for ǫ = 0.1 and ǫ = 0.01. As ǫ decreases, the execution of the regularized
automaton converges to the execution of the actual automaton for t ∈ (0, τ∞). For t > τ∞,
the execution converges to the constant x1(t) = x2(t) = 0.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−15

−10

−5

0

5

10

time (s)

x 1, x
2

x
1

x
2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−15

−10

−5

0

5

10

time (s)

x 1, x
2

x
1

x
2

Figure 7: Temporal regularization of bouncing ball automaton (ǫ = 0.1 and ǫ = 0.01).

2. Dynamic Regularization: Assume that the ground is modeled as a stiff spring with
spring constant 1/ǫ and no damping. The regularized automaton is shown in Figure 8. One
can show that the automaton of Figure 8 accepts a unique, non-Zeno execution for each
initial state. The state of the regularized system is related to the state of the system by

φ(q0, (x1, x2)) = φ(q1, (x1, x2)) = (q, (x1, x2)) (5)

11

q
0

>x1 0

>

x1 = 0 x2 0<

x = -g
2

= x
2x1

x =
2

x 0x1 < 0

x <

q
1

1

= x
2x1

- x
1/ ε

01

x2 := x
2

 c

Figure 8: Dynamic regularization of bouncing ball automaton.

Figure 9 shows simulation results for the regularized system: x1, x2 and q are plotted as
functions of time for ǫ = 0.01 and ǫ = 0.001.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−15

−10

−5

0

5

10

15

20

time (s)

x 1, x
2, a

nd
 (

q−
15

)

x
1

x
2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−15

−10

−5

0

5

10

15

20

time (s)

x 1, x
2, a

nd
 (

q−
15

)

x
1

x
2

Figure 9: Dynamic regularization of bouncing ball automaton (ǫ = 0.01 and ǫ = 0.001).

Notes and Bibliography

Local existence is arguably the most important of the fundamental properties studied above
(and the easiest to check!). One can argue that Zeno is also important, since the presence
of Zeno executions makes hybrid automata difficult to simulate, and may lead to misleading
claims of safety. However, Zeno hybrid automata can in some sense be very useful (even

12

realistic) models of physical systems. Therefore, instead of requiring that hybrid automata
do not accept Zeno executions, it may be better to deal with Zeno problems when they arise,
for example by defining appropriate extensions of Zeno execution beyond the Zeno time.
This is the approach taken in [3] motivated by the classical definition of “sliding” flows for
discontinuous vector fields.

Uniqueness of execution may also be desirable, since it makes simulation and analysis eas-
ier. However, requiring that hybrid automata are deterministic is usually an unnecessarily
strict restriction. It is sometimes very desirable to work with non-deterministic hybrid au-
tomata, since they allow one to model uncertainty in a physical process and its environment.
Moreover, analysis of non-deterministic hybrid automata is not much more difficult. Instead
of arguing about the execution of the system, one simply has to ensure that all possible
executions of the system are considered.

References

[1] A. F. Filippov. Differential equations with discontinuous right hand sides. Kluwer Aca-
demic Publishers, Boston, 1988.

[2] V. I. Utkin. Sliding Modes in Control Optimization. Springer Verlag, Berlin, 1992.

[3] K. J. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry. On the regularization of zeno
hybrid automata. Systems and Control Letters, 38:141–150, 1999.

13

