
EECS 291E: Lecture Notes 5. Sequence Properties and

Verification.

Claire J. Tomlin

February 1, 2018

The lecture notes for this chapter are based on the first draft of a research
monograph: Hybrid Systems. The monograph is copyright the authors:

c©John Lygeros, Shankar Sastry, Claire Tomlin
and these lecture notes must not be reproduced without consent of the authors.

One of our goals in this course is to develop tools for analyzing whether or not a hybrid
system satisfies certain desirable properties. A second goal is to design controllers for hybrid
systems, such that the closed loop hybrid system satisfies such properties. Thus, we would
like to be able to answer the questions of:

• Verification: Does the hybrid automaton meet the specification?

• Synthesis: Can a controller be designed such that the closed loop hybrid system
satisfies the specification?

In this chapter, we will discuss the safety property; in the next chapter, we will discuss the
stability property.

1 Reachability and Sequence Properties

• The problem we will address is, given a hybrid automaton H compute Reach(H).

• If we can solve this problem we can also answer questions about safety properties. A
safety property can generally be posed as:
Does the state (q, x) always remain in a set of states G ⊆ Q × X?
The set G can be used to encode “good” or “safe” states. For example, G could be the
set of states for which two aircraft always maintain the minimum required separation
distance. Using notation from temporal logic, the above safety property can be written
as

✷((q, x) ∈ G)

1

Here, ✷ stands for “always”, and the way to read the above formula is “the property
that (q, x) is in G is always satisfied”. We will also use the notation (Q ∪ X,✷G) to
indicate that for the hybrid automaton H with states Q∪X, it is always the case that
the state stays in G.

• The dual property of safety is known as liveness. A liveness property can be posed
as:
Does the state (q, x) eventually reach a set of states G ⊆ Q × X?,
This reflects the fact that something good should eventually happen to our system. In
temporal logic notation this property can be written as

✸((q, x) ∈ G)

Here, ✸ stands for “eventually”, and the way to read the above formula is “the property
that (q, x) eventually reaches G is satisfied”.

• Using concepts of “always” and “eventually”, one can encode arbitrarily complex prop-
erties, such as:

✷✸((q, x) ∈ G)

which means that the state visits the set G “infinitely often”, and

✸✷((q, x) ∈ G)

which means that the state reaches G at some point and stays there for ever after.

• In this course, we will focus on safety properties, and not liveness properties. This
is because, for most of the practical systems we deal with, we are either interested in
safety properties directly, or in the property that the state reaches a given set in a
finite amount of time. How would you pose this second property as a safety property?

Proposition 1 H satisfies (Q ∪ X,✷G) for G ⊆ Q × X if and only if Reach(H) ⊆ G.

• Different methods have been proposed for solving the reachability problem:

1. Optimal Control: The role of the “control” is often played by the non-determinism
of the system.

2. Deductive Techniques: Establish invariants to bound Reach(H).

3. Model Checking Techniques: Automatically compute Reach(H). Requires
one to be able to “compute” with sets of states. Class of systems to which it
applies is inherently limited.

4. Approximation: Works with all of the above

– For optimal control, approximate by sets and dynamics for which optimal
control problems are easier to solve (e.g. ellipsoidal sets and linear dynamics)

– Deductive techniques are inherently based on over-approximation

2

– For model checking, approximate by a system you can compute with.

– Also possible to do “brute force” over-approximation, based, for example, on
gridding.

• In all cases you stop once your question has been answered. For example, if your
question was “does H satisfy (Q ∪ X,✷G)”, you could stop if you found a reachable
state outside G.

• For approximation, you typically “over-approximate”.

• All methods are supported by computational tools:

1. typically uses optimal control and convex optimization tools

2. typically uses theorem provers

3. typically uses model checkers

4. done using “gridding” or polynomial manipulation packages.

• Simulation can also be used for reachability investigations. It is not a formal method
however since:

– It is a shot in the dark: we simulate. If GC , the complement of G, is reached,
fine, else we have to choose another initial condition and try again.

– No termination guarantee.

Still it is the best we can do for many classes of hybrid systems.

2 General Transition Systems

Definition 2 (Transition System) A transition system is a collection T = (S, Σ, →, S0,
SF), where

• S is a set of states;

• Σ is an alphabet of events;

• →: S × Σ → 2S is a transition relation;

• S0 ⊆ S is a set of initial states; and,

• SF ⊆ S is a set of final states.

Example: A finite automaton M = (Q, Σ, Init, R), with final states F specified, is a tran-
sition system with:

• S = Q

3

q0

q1 q2

q3 q4

b

a a

b c

aa

q5 q6

c b

Figure 1: Reachability example for finite automata

• Σ the same

• →= R

• S0 = Init

• SF = F

Example: An autonomous hybrid automaton H = (Q, X, Init, f , Dom, R) and a safety
property (Q ∪ X,✷G) form a transition system with:

• S = Q × X

• Σ not specified

• →= { discrete transitions } ∪ { continuous evolution}, all of which are characterized
by f , Dom, and R

• S0 = Init

• SF = GC

Problem 1 (Reachability) Given a transition system T , is any state sf ∈ SF reachable
from a state s0 ∈ S0 by a sequence of transitions?

Remark: For finite automata we can always “decide” reachability problems by brute force.

Example: Consider for example the finite automaton of Figure 1. We can start “exploring”
from q0 and keep going until we either visit a state in F or have nowhere else to go (have
visited all reachable states).

More formally, we can approach this problem using the predecessor operator:

Pre : 2S → 2S

4

which is defined as follows (for a set S ′ ⊆ S):

Pre(S ′) = {s ∈ S : ∃s′ ∈ S ′∃σ ∈ Σ such that s →σ s′}

In the above, →σ indicates that (s, σ) → s′. Thus, the predecessor of a set of states S ′

is the set of states that can reach S ′ in one transition. The set of reachable states for a
transition system can be computed using the following algorithm:

Algorithm 1 (Reachability)

Initialization:
W0 = SF , i = 0

repeat
if Wi ∩ S0 6= ∅

return “SF reachable”
end if
Wi+1 = Pre(Wi) ∪ Wi

i = i + 1
until Wi = Wi−1

return “SF not reachable”

• For the example of Figure 1, if event a happens at iteration 1, and events b, c happen
at iteration 2, then W0 = {q0}, W1 = {q0, q1, q2} and W2 = Q.

• For finite automata the algorithm can be implemented and always terminates.

• What properties of finite automata allow us to do this?

1. We can represent states in a finite way (by enumeration).

2. We can represent transitions among states in a finite way (by enumeration)

3. We are guaranteed that if we start exploring a particular execution, after a finite
number of steps we will either reach a state we visited already, or a state from
which we have nowhere else to go, or a final state.

• Enumeration is a fairly naive way of going about reachability analysis. In practice, sets
of states are not enumerated, but are represented more compactly, using, for example,
Binary Decision Diagrams, or BDDs.

• For general transition systems, this algorithm is conceptually useful, but not directly
implementable on a computer. To effectively implement this algorithm, on has to
devise effective ways to:

– store sets of states

– compute the Pre of a set of states

– take the union and intersection of sets of states

– check whether a set of states is empty

5

– check whether two sets of states are equal

If the number of states is finite, one can do all of these relatively easy using enumeration;
for non-finite state spaces, these are all difficult problems, which will be addressed in
theis chapter and later chapters. One way of addressing this is through bisimulation.

3 Bisimulation

• In the example of Figure 1, q1 and q2 have very similar properties, since they can both
be reached from q0 by a and all subsequent executions look similar.

• Suggests that these states are in some sense “equivalent”.

• Try to make this statement more precise by introducing the notion of bisimulation.

• Consider the set of states S. A relation on S is a subset of S × S.

Definition 3 (Equivalence Relation) A relation ∼⊆ S ×S is called an equivalence rela-
tion if it is:

1. Reflexive: (s, s) ∈∼ for all s ∈ S;

2. Symmetric: (s, s′) ∈∼ implies that (s′, s) ∈∼; and,

3. Transitive: (s, s′) ∈∼ and (s′, s′′) ∈∼ imply (s, s′′) ∈∼.

• For simplicity we write s ∼ s′ instead of (s, s′) ∈∼ and say s is equivalent to s′.

• An example of an equivalence relation: Equality.

• An equivalence relation partitions S to a number of equivalence classes:

S =
⋃

i

Si

such that for all s, s′ ∈ S, s, s′ ∈ Si if and only if s ∼ s′.

• Equivalence classes cover S (by symmetry)

• Equivalence classes are disjoint (by transitivity)

• For equality the equivalence classes are the singletons, for S × S there is only one
equivalence class, S itself.

• Given an equivalence relation ∼, let S/ ∼= {Si} denote the quotient space, i.e. the
set consisting of all equivalence classes.

6

• Given a set P ⊆ S, let P/ ∼ represent the part of the quotient space with which P
overlaps:

P/ ∼= {Si : Si ∩ P 6= ∅} ⊆ S/ ∼

• If S are the states of a transition system, T = (S, Σ, →, S0, SF), define the quotient
transition system as

T/ ∼= (S/ ∼, Σ,→∼, S0/ ∼, SF / ∼)

where for S1, S2 ∈ S/ ∼, S1 × σ →∼ S2 if and only if there exist s1 ∈ S1 and s2 ∈ S2

such that (s1 × σ → s2).

• Notice that the quotient transition system may be “non-deterministic”, even if the
original system is.

• Finally, we denote the predecessor under an event σ as Preσ:

Preσ(P) = {s ∈ S : ∃s′ ∈ P such that (s, σ) → s′}

Definition 4 (Bisimulation) Given T = (S, Σ, →, S0, SF), and ∼ an equivalence relation
over S, ∼ is called a bisimulation if:

1. S0 is a union of equivalence classes;

2. SF is a union of equivalence classes;

3. if one state (say s) in one equivalence class (say Si) can transition to another equiv-
alence class (say Sj), then all other states, s′ ∈ Si must be able to transition to some
state in Sj. More formally, for all i, j and for all states s, s′ ∈ Si, if s → Sj, then
s′ → Sj.

Note that the third condition above is equivalent to “for all σ ∈ Σ, if P is a union of
equivalence classes Preσ(P) is also a union of equivalence classes”.

• If ∼ is a bisimulation, T and T/ ∼ are called bisimilar.

• Equality is a bisimulation.

• In a sense bisimilar transition systems generate the same sequences of transitions (lan-
guage).

• Therefore, if ∼ is a bisimulation, we need not distinguish between the elements of an
equivalence class.

• More specifically, if a state in SF is reachable from a state in S0, a state in SF / ∼ is
reachable from a state in S0/ ∼.

Proposition 5 ∼ is a bisimulation if and only if:

7

1. (s1 ∼ s2) ∧ (s1 ∈ S0) ⇒ (s2 ∈ S0);

2. (s1 ∼ s2) ∧ (s1 ∈ SF) ⇒ (s2 ∈ SF); and,

3. (s1 ∼ s2) ∧ ((s1, σ) → s′1) ⇒ ∃s′2 such that (s′1 ∼ s′2) ∧ ((s2, σ) → s′2).

Proof: (⇒):

1. If for all s1 ∈ S0, s1 ∼ s2 implies s2 ∈ S0, S0 must be a union of equivalence classes.

2. Similarly for SF .

3. If P is an equivalence class and s1 ∈ Preσ(P), then s2 ∈ Preσ(P) for all s2 ∼ s1. Hence
Preσ(P) must be a union of equivalence classes.

(⇐): similar

Aside: More generally, two transition systems, T = (S, Σ,→, S0, SF) and T ′ = (S ′, Σ,→′

, S ′

0, S
′

F) are called bisimilar if there exists a relation ∼⊆ S × S ′ such that:

1. (s1 ∼ s2) ∧ (s1 ∈ S0) ⇒ (s2 ∈ S ′

0);

2. (s1 ∼ s2) ∧ (s2 ∈ S ′

0) ⇒ (s1 ∈ S0);

3. (s1 ∼ s2) ∧ (s1 ∈ SF) ⇒ (s2 ∈ S ′

F);

4. (s1 ∼ s2) ∧ (s2 ∈ S ′

F) ⇒ (s1 ∈ SF);

5. (s1 ∼ s2) ∧ ((s1, σ) → s′1) ⇒ ∃s′2 such that (s′1 ∼ s′2) ∧ ((s2, σ) →′ s′2).

4 Computing Bisimulations

• Bisimulations look useful since they preserve the language of the transition system.

• How does one find a bisimulation?

Algorithm 2 (Bisimulation)

Initialization:
S/ ∼= {S0, SF , S \ (S0 ∪ SF) }

while ∃P, P ′ ∈ S/ ∼ and σ ∈ Σ such that P ∩ Preσ(P ′) 6= P and P ∩ Preσ(P ′) 6= ∅ do
begin

P1 = P ∩ Preσ(P ′)
P2 = P \ Preσ(P ′)
S/ ∼= (S/ ∼ \{P}) ∪ {P1, P2}

end

8

q0

q1 q2

q3 q4

b

a a

b c

aa

q5 q6

c b

Figure 2: Bisimulation of previous example

• If the algorithm terminates, ∼ is a bisimulation, since:

1. S0 is a union of equivalence classes (note that S0 ∈ S/ ∼ initially, and we only
split sets)

2. SF is a union of equivalence classes (for the same reason).

3. Termination implies that for all P ′ ∈ S/ ∼ and for all σ, P ∩ Preσ(P ′) is either
equal to P or equal to ∅, therefore, Preσ(P ′) is a union of equivalence classes.

• Again, implementation and termination of this algorithm for general transition systems
are not obvious. For finite state systems we can implement the algorithm and guarantee
that it terminates because we can enumerate the states for the finite state system.

• Figure 2 shows the results of applying this algorithm to our previous finite state ex-
ample.

• Why is this an improvement?

1. No need to enumerate all the states, therefore may have a computational advan-
tage.

2. Extends to systems with infinite states. If the bisimulation quotient can be com-
puted and is finite, then the reachability computation is decidable.

5 Bisimulations of Timed Automata

• Consider X = {x1, . . . , xn} a finite collection of variables, each of which takes values
in R. and let x = (x1, . . . , xn) ∈ Rn

Definition 6 (Clock Constraints) The set, Φ(X), of clock constraints of X, is a set of
logical expressions defined inductively by δ ∈ Φ(X) if:

δ := (xi ≤ c)|(xi ≥ c)|¬δ|δ1 ∧ δ2

9

where xi ∈ X and c ≥ 0 is a rational number.

• Examples: let X = {x1, x2}.

– (x1 ≤ 1) ∈ Φ(X)

– (0 ≤ x1 ≤ 1) ∈ Φ(X), since (0 ≤ x1 ≤ 1) ⇔ (x1 ≥ 0) ∧ (x1 ≤ 1)

– (x1 = 1) ∈ Φ(X), since (x1 = 1) ⇔ (x1 ≥ 1) ∧ (x1 ≤ 1)

– (x1 < 1) ∈ Φ(X), since (x1 < 1) ⇔ (x1 ≤ 1) ∧ ¬(x1 ≥ 1)

– True ∈ Φ(X), since True ⇔ ¬((x1 = 1) ∧ ¬(x1 = 1))

– (x1 ≤ x2) 6∈ Φ(X)

• Given δ ∈ Φ(X), we say x ∈ X satisfies δ if δ(x) = True.

• To each δ ∈ Φ(X) we can associate a set:

δ̂ = {x ∈ X : δ(x) = True}

• The original definition of a timed automaton, found in [1] is given below.

Definition 7 (Timed Automaton) A timed automaton is a hybrid automaton H = (Q,
X, Init, f , Dom, R), where

• Q is a set of discrete variables, Q = {q1, . . . , qm};

• X = {x1, . . . , xn}, X = Rn;

• Init = {{qi} × Înitqi
}m

i=1 where Initqi
∈ Φ(X);

• f(q, x) = (1, . . . , 1) for all (q, x);

• Dom(q) = X for all q ∈ Q;

• R : Q × Φ(X) → Q × X where R(q, x) either leaves xi unaffected or resets it to 0
(notice that R is single valued).

Example: As an example consider the timed automaton of Figure 3.

• Q = {q1, q2};

• X = {x1, x2}, X = R2;

• Init = {(q1, 0, 0)};

• f(q, x) = (1, 1) for all (q, x);

• Dom(q) = R2 for all q ∈ Q;

10

.
x1=1.
x2=1

.
x1=1.
x2=1

q2

x1 < 1-

q1
x1 := 0x1 := 0

x2 := 0

- -x1 < 3 ^ x2 < 2

Figure 3: Example of a timed automaton

• E = {(q1, q2), (q2, q1)};

• G(q1, q2) = {x ∈ R2 : (x1 ≤ 3) ∧ (x2 ≥ 2)}, G(q2, q1) = {x ∈ R2 : (x1 ≤ 1)};

• R(q1, q2, x) = {(0, x2)}, R(q2, q1, x) = {(x1, 0)}

where the graphical notation for hybrid automata has been used (E edge, G guard).

6 Timed Automata are Bisimilar to Finite Systems

• Without loss of generality, all constants can be assumed to be integers.

• Let T be the transition system defined by a timed automaton, H.

• Consider an arbitrary λ > 0, rational.

• Let Hλ denote the timed automaton obtained by replacing all constants, c, in H by
λc.

• Let Tλ denote the transition system associated with Hλ.

Proposition 8 T and Tλ are bisimilar.

Proof: Consider the relation (q, x) ∼ (q, λx). Note that, since λ > 0, (xi ≤ c) ⇔ (λx ≤ λc)
and (xi ≥ c) ⇔ (λx ≥ λc). Therefore:

(q, x) ∈ Init ⇔ (q, λx) ∈ Initλ (1)

(q, x) ∈ F ⇔ (q, λx) ∈ Fλ (2)

(q, x) e−→ (q′, x′) ⇔ (q, λx) e−→ (q′, λx′) (3)

(q, x) τ−→ (q′, x′) ⇔ (q, λx) τ−→ (q′, λx′) (4)

For the discrete transition, (q, x) e−→ (q′, x′) if e = (q, q′) ∈ E, Ge(x) = True and x′ ∈ R(e, x).
Therefore, (q, λx) e−→ (q′, λx′), since e = (q, q′) ∈ E, Geλ

(λx) = True and λx′ ∈ Rλ(e, λx).
For the continuous transition, recall that (q, x) τ−→ (q′, x′) if q = q′, and there exists t ≥ 0
such that x′ = x + t(1, . . . , 1). Therefore, (q, λx) τ−→ (q′, λx′) since q = q′ and λx′ = λx +
λt(1, . . . , 1).

11

1 2 3

1

2

x2

x1

q1

1 2 3

1

2

x2

x1

q2

Figure 4: Equivalence classes for the example

• We can therefore assume all constants are integers. If they are not, we let λ be a
common multiple of their denominators and consider the bisimilar system Tλ.

• Let ci denote the largest constant with which xi is compared.

• In the above example, c1 = 3 and c2 = 2.

• Let ⌊xi⌋ denote the integer part of xi and 〈xi〉 denote the fractional part of xi. In other
words, xi = ⌊xi⌋ + 〈xi〉, ⌊xi⌋ ∈ Z and 〈xi〉 ∈ [0, 1).

• Consider the relation ∼⊆ Q × X with (q, x) ∼ (q′, x′) if:

1. q = q′;

2. for all xi, ⌊xi⌋ = ⌊x′

i⌋ or (⌊xi⌋ > ci) ∨ (⌊x′

i⌋ > ci)

3. for all xi, xj with xi ≤ ci and xj ≤ cj

(〈xi〉 ≤ 〈xj〉) ⇔ (〈x′

i〉 ≤ 〈x′

j〉)

4. for all xi with xi ≤ ci,
(〈xi〉 = 0) ⇔ (〈x′

i〉 = 0)

Proposition 9 ∼ is an equivalence relation.

• What do the equivalence classes look like?

• The equivalence classes are either open triangles, open line segments, open parallelo-
grams or points.

• For the example introduced above, they are shown in Figure 4.

• Notice that the number of classes is 2× (12 points + 30 lines + 18 open sets). Quite a
few, but definitely finite!

12

Proposition 10 ∼ is a bisimulation.

Proof: We need to show:

1. Init is a union of equivalence classes.

2. F is a union of equivalence classes.

3. If P is an equivalence class and e ∈ E, Pree(P) is a union of equivalence classes.

4. If P is an equivalence class, Preτ (P) is a union of equivalence classes.

The proof will be somewhat informal.

• First, note that if δ ∈ Φ(X),

δ̂ = {x ∈ X : δ(x) = True}

is “a union of equivalence classes” (for the X variables only). Recall that δ̂ can be
written as the product of unions and intersections of sets of the form:

{xi ≥ c}, {xi ≤ c}, {xi < c}, {xi > c}, {xi = c}

where c is an integer constant. All these sets are unions of equivalence classes for the
X variables.

• This takes care of the requirements on Init and F .

• To deal with Pree(P), let:

R−1(e, P) = {(q, x) ∈ Q × X : ∃(q′, x′) ∈ P with e = (q, q′), x′ ∈ R(e, x)}

• Notice that:
Pre(q,q′)(P) = R−1(q, q′, P) ∩ ({q} × G(q, q′))

Proposition 11 If P is an equivalence class, R−1(e, P) is a union of equivalence
classes. Hence Pree(P) is a union of equivalence classes.

• Easier to demonstrate by examples. For the timed automaton of Figure 3, consider
the equivalence classes P1, . . . , P4 shown in Figure 5. Notice that:

Pree1
(P1) = ∅,

Pree2
(P1) = Q1 ∩ ({q2} × {x1 ≤ 1}) = ∅

Pree1
(P2) = ∅,

Pree2
(P2) = Q2 ∩ ({q2} × {x1 ≤ 1}) = Q2

Pree1
(P3) = ∅ ∩ ({q1} × {x1 ≤ 1 ∧ x2 ≤ 2}) = ∅,

Pree2
(P3) = ∅

Pree1
(P4) = {q1} × ({x1 ≥ 0 ∧ 1 < x2 < 2} ∩ {x1 ≤ 1 ∧ x2 ≤ 2})

= {q1} × {0 ≤ x1 ≤ 3 ∧ 1 < x2 < 2},

Pree2
(P4) = ∅

13

1 2 3

1

2

x2

x1

q2

1 2 3

1

2

x2

x1

q1

P2

P4

Q2

Q1P1

P3

Figure 5: Examples of Pree computation

1 2 3

1

2

x2

x1

q1

1 2 3

1

2

x2

x1

q2
P

P3

P4
P5 P2

P1

Figure 6: Examples of Preτ computation

In all cases the result is a union of equivalence classes.

• Finally, notice that

Preτ (P) = {(q, x) ∈ Q × X : ∃(q′, x′) ∈ P, t ≥ 0 with q = q′, x′ = x + t(1, . . . , 1)}

These are all points that if we move in the (1, . . . , 1) direction we will eventually reach
P . If P is an equivalence class, this set is also a union of equivalence classes.

• For example, in Figure 6, Preτ (P) = P ∪ P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5

7 Complexity Estimates and Generalizations

• The above discussion indicates that reachability questions for timed automata can be
answered on a finite state system, defined on the quotient space of the bisimulation ∼
(also known as the region graph).

• What is the “size” of this finite state system?

14

• For the example, the number of equivalence classes is 2(12points+30lines+18open sets) =
120. Quite a few!

• For an arbitrary system, one can expect up to m(n!)(2n)
∏n

i=1(2ci + 2) discrete states.

• Of course, in general, one need not construct the entire region graph:

1. On the fly reachability: run the reachability algorithm. Typically it will terminate,
without constructing the entire region graph.

2. Construct coarser bisimulations: run the bisimulation algorithm. Typically the
bisimulation generated will have fewer equivalence classes than the region graph.

• Still the problem is PSPACE complete!

• The finite bisimulation result is preserved under some simple extensions:

1. I(q) = Îq for some Iq ∈ Φ(X).

2. f(q, x) = (k1, . . . , kn) for some rational k1, . . . , kn and all (q, x).

3. R mapping equivalence classes to equivalence classes.

8 Rectangular Hybrid Automata

• The largest class of systems of this form that is known to be decidable is the class of
initialized rectangular automata [2, 3, 4, 5].

• A set R ⊂ Rn is called a rectangle if R =
∏n

i=1 Ri where Ri are intervals whose finite
end points are rational.

Definition 12 (Rectangular Automaton) A rectangular automaton is a hybrid au-
tomaton H = (Q, X, Init, f , Dom, R), where

– Q is a set of discrete variables, Q = {q1, . . . , qm};

– X = {x1, . . . , xn}, X = Rn;

– Init = ∪m
i=1{qi} × Init(qi) where Init(qi) is a rectangle;

– f(q, x) = F (q) for all (q, x), where F (q) is a rectangle;

– Dom(q) is a rectangle for all q ∈ Q;

– R(q, x) either leaves xi unaffected or resets to an arbitrary value in a rectangle.

15

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–
235, 1994.

[2] R. Alur, C. Courcoubetis, T.A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine. The algorithmic analysis of hybrid systems. In G. Cohen and J.-P.
Quadrat, editors, Proceedings of the 11th International Conference on Analysis and Op-
timization of Systems: Discrete-event Systems, number 199 in LNCS, pages 331–351.
Springer Verlag, 1994.

[3] T.A. Henzinger. Hybrid automata with finite bisimulations. In Z. Fülöp and F. Gécseg,
editors, ICALP 95: Automata, Languages, and Programming, number 944 in LNCS,
pages 324–335. Springer Verlag, 1995.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, et al. The algorithmic analysis
of hybrid systems. Theoretical Computer Science, Vol.138(1):3–4, 1995.

[5] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho. Hybrid automata: An algo-
rithmic approach to the specification and verification of hybrid systems. In Robert L.
Grossman, Anil Nerode, Anders P. Ravn, and Hans Rischel, editors, Hybrid Systems,
LNCS, pages 366–392. Springer Verlag, New York, 1993.

16

