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Figure 1: Aleksandr Mikhailovich Lyapunov, 1857 - 1918

For the purpose of studying stability of hybrid automata, we will again drop reference to
inputs (and outputs) of the system and focus on the state trajectory. Later, we will bring
the inputs (and outputs) back in when we talk about stabilizing controllers.

1 Review of Stability for Continuous Systems

For reference to the following material, see [1, 2], Chapters 3 and 2 respectively.

Consider the following continuous system:

ẋ = f(x), x(0) = x0 (1)

where f : R
n → R

n is globally Lipschitz continuous.
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• Definition (Equilibrium of (1)): x = xe is an equilibrium point of (1) if f(xe) = 0.
Without loss of generality in the following we will assume that xe = 0.

• Definition (Stability of (1)): The equilibrium point xe = 0 of (1) is stable (in the
sense of Lyapunov) if for all ǫ > 0 there exists a δ > 0 such that

||x0|| < δ ⇒ ||x(t)|| < ǫ,∀t ≥ 0 (2)

where x : [0,∞) → R
n is the solution to (1), starting at x0.

The equilibrium point xe = 0 of (1) is asymptotically stable if it is stable and δ can be
chosen so that

||x0|| < δ ⇒ lim
t→∞

||x(t)|| = 0 (3)

• More definitions for stability: exponentially stable, globally (asymptotically, exponen-
tially) stable, locally (asymptotically, exponentially) stable, unstable . . .

• Note that the definition of stability allows xe = 0 to be stable without x(t) converging
to 0; note also that for system (1) with a single unstable equilibrium point, for all x0

the solution can be bounded.

Consider a continuously differentiable (C1) function V : R
n → R. The rate of change of V

along solutions of (1) is computed as:

V̇ (x) =
n

∑

i=1

∂V

∂xi

ẋi =
n

∑

i=1

∂V

∂xi

fi(x) =
∂V

∂x
f(x) (4)

This function is denoted the Lie derivative of V with respect to f .

Theorem 1 (Lyapunov Stability Theorem) Let xe = 0 be an equilibrium point of ẋ =
f(x), x(0) = x0 and D ⊂ R

n a set containing xe = 0. If V : D → R is a C1 function such
that

V (0) = 0 (5)

V (x) > 0,∀x ∈ D\{0} (6)

V̇ (x) ≤ 0,∀x ∈ D (7)

then xe is stable. Furthermore, if xe = 0 is stable and

V̇ (x) < 0,∀x ∈ D\{0} (8)

then xe is asymptotically stable.

Note that the Lyapunov function defines level sets {x ∈ R
n : V (x) ≤ c} for c > 0 (see Figure

2). If a state trajectory enters one of these sets, it has to stay inside it, since V̇ (x) ≤ 0
implies that if V (x) = c at t = t0, then V (x(t)) ≤ V (x(0)) ≤ c, ∀t ≥ t0.
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xe

V(x) = 1
V(x) = 2

V(x) = 3

Figure 2: Level sets V (x) = 1, V (x) = 2, and V (x) = 3 for a Lyapunov function V ; thus if
a state trajectory enters one of these sets, it has to stay inside it since V̇ (x) ≤ 0.
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xe

Figure 3: Figure for Proof of Lyapunov Stability Theorem (for continuous systems); WLOG
xe = 0.

Proof: For stability, we need to prove that for all ǫ > 0 there exists δ > 0 such that:

||x0|| < δ ⇒ ||x(t)|| < ǫ,∀t ≥ 0 (9)

We will use the following notation: for any r > 0, let Br = {x ∈ R
n : ||x|| < r}, Sr = {x ∈

R
n : ||x|| = r}, and Ωr = {x ∈ R

n : V (x) < r}.
See Figure 3. Choose r1 ∈ (0, ǫ) such that Br1

⊆ D (we do this because there is no guarantee
that Bǫ ⊆ D). Let c1 = minx∈Sr1

V (x). Choose c2 ∈ (0, c1). Note that there is no guarantee
that Ωc2 ⊂ Br1

. Why not? However, if δ > 0 is chosen so that Bδ ⊆ Ωc2 , then V (x0) < c2.
Since V is non-increasing along system executions, executions that start inside Bδ cannot
leave Ωc2 . Thus for all t > 0 we have x(t) ∈ Br1

⊂ Bǫ. Thus ||x(t)|| ≤ ǫ for all t > 0.

• Example (Pendulum) Consider the pendulum, unit mass, unit length, where x1

is the angle of the pendulum with the vertical, and x2 is the angular velocity of the
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pendulum.

ẋ1 = x2

ẋ2 = −g sin x1

To show that xe = 0 (pendulum pointing downwards) is a stable equilibrium, consider
the candidate Lyapunov function:

V (x) = g(1 − cos x1) +
x2

2

2
(10)

defined over the set {x ∈ R
n : −π < x1 < π}. Clearly, V (0) = 0, and V (x) > 0,∀x ∈

{x ∈ R
n : −π < x1 < π}\{0}. Also,

V̇ (x) = [g sin x1 x2]

[

x2

−g sin x1

]

= 0

so the equilibrium point xe = 0 is stable. Is it asymptotically stable?

• Finding Lyapunov functions in general is HARD. Often a solution is to try to use the
energy of the system as a Lyapunov function (as in the example above). However, for
linear systems, finding Lyapunov functions is easy: For a stable linear system ẋ = Ax,
a Lyapunov function is given by V (x) = xT Px, where P is a positive definite symmetric
matrix which solves the Lyapunov Equation AT P +PA = −I. (Recall that a matrix P
is said to be positive definite if xT Px > 0 for all x 6= 0. It is called positive semidefinite
if xT Px ≥ 0 for all x 6= 0.)

2 Stability of Hybrid Systems

Consider an autonomous hybrid automaton H = (S, Init, f , Dom, R).

Definition 2 (Equilibrium of a Hybrid Automaton) The continuous state xe = 0 ∈
R

n is an equilibrium point of H if:

1. f(q, 0) = 0 for all q ∈ Q, and

2. R(q, 0) ⊂ Q × 0.

• Thus, discrete transitions are allowed out of (q, 0), as long as the system jumps to a
(q′, x) in which x = xe = 0.

• It follows from the above definition that if (q0, 0) ∈ Init and (τ, (q, x)) represents the
hybrid execution starting at (q0, 0), then x(t) = 0 for all t ∈ τ .

As we did for continuous systems, we would like to characterize the notion that if the
continuous state starts close to the equilibrium point, it stays close, or converges, to it.
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• Definition (Stable Equilibrium of a Hybrid Automaton): Let xe = 0 be an
equilibrium point of the hybrid automaton H. Then xe = 0 is stable if for all ǫ > 0
there exists δ > 0 such that for all (τ, (q, x)) starting at (q0, x0),

||x0|| < δ ⇒ ||x(t)|| < ǫ,∀t ∈ τ (11)

• Definition (Asymptotically Stable Equilibrium of a Hybrid Automaton):
Let xe = 0 ∈ X be an equilibrium point of the hybrid automaton H. Then xe = 0
is asymptotically stable if it is stable and δ can be chosen so that for all (τ, (q, x))
starting at (q0, x0),

||x0|| < δ ⇒ lim
t→τ∞

||x(t)|| = 0 (12)

• Remark: In the above, (τ, (q, x)) is considered to be an infinite execution, with τ∞ =
∑

i(τ
′

i − τi). Notice that τ∞ < ∞ if χ is Zeno and τ∞ = ∞ otherwise.

One would expect that a hybrid system for which each discrete state’s continuous system is
stable would be stable, at least if R(q, x) ∈ Q×{x} for all x. But this is NOT NECESSARILY
the case:

• Example: Consider the hybrid automaton H with:

– Q = {q1, q2}, X = R
2

– Init = Q × {x ∈ X : ||x|| > 0}
– f(q1, x) = A1x and f(q2, x) = A2x, with:

A1 =

[

−1 10
−100 −1

]

, A2 =

[

−1 100
−10 −1

]

– Dom = {q1, {x ∈ R
2 : x1x2 ≤ 0}} ∪ {q2, {x ∈ R

2 : x1x2 ≥ 0}}
– R(q1, {x ∈ R

2 : x1x2 ≥ 0}) = (q2, x) and R(q2, {x ∈ R
2 : x1x2 ≤ 0}) = (q1, x)

• Remark 1: Since f(q1, 0) = f(q2, 0) = 0 and R(q1, 0) = (q2, 0), R(q2, 0) = (q1, 0),
xe = 0 is an equilibrium of H.

• Remark 2: Since the eigenvalues of both systems are at −1± j
√

1000, the continuous
systems ż = Aix for i = 1, 2 are asymptotically stable. (See phase portraits for each
in Figure 4.)

• Remark 3: xe = 0 is unstable for H! If the switching is flipped, then xe = 0 is stable!
(See phase portraits for each in Figure 5.)

• Remark 4: This simple example (drawn from [3]) shows that in general we cannot ex-
pect to analyze the stability of a hybrid system by studying the continuous components
separately.
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x ’ = ( − x + 10 y) 
y ’ = ( − 100 x − y)
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Figure 4: (a) Phase portrait of ẋ = A1x; (b) Phase portrait of ẋ = A2x. Figure gen-
erated using phase plane software from http://math.rice.edu/̃polking/odesoft/, freely
downloadable.

Theorem 3 (Lyapunov Stability Theorem (for hybrid systems)) Consider a hybrid
automaton H with xe = 0 an equilibrium point, and R(q, x) ∈ Q × {x}. Assume that there
exists an open set D ⊂ Q × R

n such that (q, 0) ∈ D for some q ∈ Q. Let V : D → R be a
C1 function in its second argument such that for all q ∈ Q:

1. V (q, 0) = 0;

2. V (q, x) > 0 for all x, (q, x) ∈ D\{0}, and

3. ∂V (q,x)
∂x

f(q, x) ≤ 0 for all x, (q, x) ∈ D

If for all (τ, q, x) starting at (q0, x0) where (q0, x0) ∈ Init ∩ D, and all q′ ∈ Q, the sequence
{V (q(τi), x(τi)) : q(τi) = q′} is non-increasing (or empty), then xe = 0 is a stable equilibrium
of H.

• We call such function “Lyapunov-like” (see Figure 6).

• A drawback of this Theorem is that the sequence {V (q(τi), x(τi))} must be evaluated
(which may require integrating the vector field and then we lose the fundamental
advantage of Lyapunov theory)
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x ’ = (x y<=0) ( − x + 10 y) + (x y>0) ( − x + 100 y)
y ’ = (x y<=0) ( − 100 x − y) + (x y>0) ( − 10 x − y)
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Figure 5: (a) Phase portrait of H; (b) Phase portrait of H, switching conditions flipped.

• Also, it is in general difficult to derive such a function V

• HOWEVER, for certain classes of hybrid automata, which have vector fields linear in
x, computationally attractive methods exist to derive Lyapunov-like functions V

Proof: We sketch the proof for Q = {q1, q2} and (q, ·) /∈ R(q, ·). Define the sets in Figure 7
similar to the previous proof, ie.

Ωc2i
= {x ∈ Br1i

: V (qi, x) < c2i
} (13)

where c2i
∈ (0, c1i

) where c1i
= minx∈Sr1i

V (qi, x). Now let r = min{δ1, δ2}, and inside Br,

in each of q1 and q2, repeat the construction above, ie.

Ωc2i
= {x ∈ Br : V (qi, x) < c2i

} (14)

where c2i
∈ (0, minx∈Sr

V (qi, x)). Also, let Bδi
⊂ Ωc2i

. Let δ = min{δ1, δ2}. Consider the
hybrid trajectory (τ, q, x) starting at x0 ∈ Bδ, and assume that the initial discrete state
q0 is equal to q1. By the corresponding continuous Lyapunov theorem, x(t) ∈ Ωc21

for
t ∈ [τ0, τ

′

0]. Therefore, x(τ1) = x(τ ′

0) ∈ Ωc22
(where equality holds because of the restricted

definition of the transition map). By the continuous Lyapunov Theorem again, x(t) ∈ Ωc22
and thus x(t) ∈ Bǫ for t ∈ [τ1, τ

′

1]. By the assumption of the non-increasing sequence,
x(τ ′

1) = x(τ2) ∈ Ωc21
. The result follows by induction.
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Figure 6: Showing V (q1, x) and V (q2, x). Solid segments on qi mean that the system is in qi

at that time, dotted segments mean the system is in qj, j 6= i.
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Figure 7: Figure for Proof of Lyapunov Stability Theorem (for hybrid systems).

Corollary 4 (A more restrictive Lyapunov Stability Theorem (for hybrid systems))
Consider a hybrid automaton H with xe = 0 an equilibrium point, and R(q, x) ∈ Q × {x}.
Assume that there exists an open set D ⊂ R

n such that 0 ∈ D. Let V : D → R be a C1

function such that for all q ∈ Q:

1. V (0) = 0;

2. V (x) > 0 for all x ∈ D\{0}, and

3. ∂V (x)
∂x

f(q, x) ≤ 0 for all x ∈ D

Then xe = 0 is a stable equilibrium of H.

Proof: Define V̂ : Q×R
n → R by V̂ (q, x) = V (x) for all q ∈ Q, x ∈ R

n and apply Theorem
3.
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3 Lyapunov Stability for Piecewise Linear Systems

Theorem 5 (Lyapunov Stability for Linear Systems) The equilibrium point xe = 0 of
ẋ = Ax is asymptotically stable if and only if for all matrices Q = QT > 0 there exists a
unique matrix P = P T > 0 such that

PA + AT P = −Q (15)

Proof: For the “if” part of the proof, consider the Lyapunov function (from Lecture Notes
4) V (x) = xT Px. Thus,

V̇ = xT Pẋ + ẋT Px = xT (PA + AT P )x) = −xT Qx < 0 (16)

For the “only if” part of the proof, consider

P =

∫

∞

0

eAT tQeAtdt (17)

which is well-defined since Re(λi(A)) < 0. Clearly,

PA + AT P =

∫

∞

0

eAT tQeAtAdt +

∫

∞

0

AT eAT tQeAtdt (18)

=

∫

∞

0

d

dt
eAT tQeAtdt = −Q (19)

Also, P is unique: to prove this, assume there exists another solution P̂ 6= P . Then,

0 = eAT t(Q − Q)eAt (20)

= eAT t[(P − P̂ )A + AT (P − P̂ )]eAt (21)

=
d

dt
eAT t(P − P̂ )eAt (22)

which means that eAT t(P − P̂ )eAt is constant for all t ≥ 0. Thus,

eAT 0(P − P̂ )eA0 = lim
t→∞

eAT t(P − P̂ )eAt (23)

thus P = P̂ , which contradicts the assumption and thus concludes the proof.

• Equation (15) is called a Lyapunov equation. We may also write the matrix condition
in the Theorem of Lyapunov Stability for Linear Systems as the following inequality:

AT P + PA < 0 (24)

which is called a linear matrix inequality (LMI), since the left hand side is linear in the
unknown P .
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Example: Switched Linear System, Revisited.

Consider the linear hybrid system example from page 5 (with the switching flipped):

• Q = {q1, q2}, X = R
2

• Init = Q × {x ∈ X : ||x|| > 0}

• f(q1, x) = A1x and f(q2, x) = A2x, with:

A1 =

[

−1 10
−100 −1

]

, A2 =

[

−1 100
−10 −1

]

• Dom = {q1, {x ∈ R
2 : x1x2 ≥ 0}} ∪ {q2, {x ∈ R

2 : x1x2 ≤ 0}}

• R(q1, {x ∈ R
2 : x1x2 ≤ 0}) = (q2, x) and R(q2, {x ∈ R

2 : x1x2 ≥ 0}) = (q1, x)

Proposition 6 x = 0 is an equilibrium of H.

Proof: f(q1, 0) = f(q2, 0) = 0 and R(q1, 0) = (q2, 0), R(q2, 0) = (q1, 0).

Proposition 7 The continuous systems ẋ = Aix for i = 1, 2 are asymptotically stable.

Recall that Pi > 0 (positive definite) if and only if xT Pix > 0 for all x 6= 0, and I is the
identity matrix.

Consider the candidate Lyapunov function:

V (q, x) =

{

xT P1x if q = q1

xT P2x if q = q2

Check that the conditions of the Theorem hold. For all q ∈ Q:

1. V (q, 0) = 0

2. V (q, x) > 0 for all x 6= 0 (since the Pi are positive definite)

3. ∂V
∂x

(q, x)f(q, x) ≤ 0 for all x since:

∂V

∂x
(q, x)f(q, x) =

d

dt
V (q, x(t))

= ẋT Pix + xT Piẋ

= xT AT
i Pix + xT PiAix

= xT (AT
i Pi + PiAi)x

= −xT Ix

= −‖x‖2 ≤ 0
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It remains to test the non-increasing sequence condition. Notice that the level sets of xT Pix
are ellipses centered at the origin. Therefore each level set intersects the switching line
xi = 0 (for i = 1, 2) at exactly two points, x̂ and −x̂. Assume that x(τi) = x̂ and q(τi) = q1.
The fact that V (q1, x(t)) does not increase for t ∈ [τi, τ

′

i ] (where q(t) = q1) implies that
the next time a switching line is reached, x(τ ′

i) = α(−x̂) for some α ∈ (0, 1]. Therefore,
‖x(τi+1)‖ = ‖x(τ ′

i)‖ ≤ ‖x(τi)‖. By a similar argument, ‖x(τi+2)‖ = ‖x(τ ′

i+1)‖ ≤ ‖x(τi+1)‖.
Therefore, V (q(τi), x(τi)) ≤ V (q(τi+2), x(τi+2)).

3.1 Globally Quadratic Lyapunov Function

The material in this section and the next is drawn from the work of Mikael Johansson [4, 5],
and also from [6, 7, 8].

Theorem 8 (Globally Quadratic Lyapunov Function) Consider a hybrid automaton
H = (S, Init, f, Dom, R) with equilibrium xe = 0. Assume that for all i:

• f(qi, x) = Aix,Ai ∈ R
n×n

• Init ⊆ Dom

• for all x ∈ R
n

|R(qi, x)| =

{

1 if (qi, x) ∈ ∂Dom
0 otherwise

(25)

and {(q′, x′) ∈ R(qi, x)} ⇒ {(q′, x′) ∈ Dom, x′ = x}. Furthermore, assume that for all
χ ∈ E∞

H , τ∞(χ) = ∞. Then, if there exists P = P T > 0 such that

AT
i P + PAi < 0,∀i (26)

xe = 0 is asymptotically stable.

Proof: First note that there exists γ > 0 such that

AT
i P + PAi + γI ≤ 0,∀i (27)

Also, note that with the given assumptions there exists a unique, infinite, and non-Zeno
execution χ = (τ, q, x) for every (q0, x0) ∈ Init. For all i ≥ 0, the continuous evolution
x : τ → R

n of such an execution satisfies the following time-varying linear differential
equation:

ẋ(t) =
∑

i

µi(t)Aix(t), t ∈ [τi, τ
′

i ] (28)

where µi : τ → [0, 1] is a function such that for t ∈ [τi, τ
′

i ],
∑

i µi(t) = 1. Letting V (q, x) =
xT Px, we have that for t ∈ [τi, τ

′

i ],

V̇ (q(t), x(t)) =
∑

i

[µi(t)x(t)T (AT
i P + PAi)x(t)] (29)

≤ −γ||x(t)||2
∑

i

µi(t) (30)

= −γ||x(t)||2 (31)
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Now, since V (q, x) = xT Px, we have that

λmin||x||2 ≤ V (q, x) ≤ λmax||x||2 (32)

where 0 < λmin ≤ λmax are the smallest and largest eigenvalues of P respectively. It follows
that

V̇ (q(t), x(t)) ≤ − γ

λmax

V (q(t), x(t)), t ∈ [τi, τ
′

i ] (33)

and hence
V (q(t), x(t)) ≤ V (q(τi), x(τi))e

−γ(t−τi)/λmax , t ∈ [τi, τ
′

i ] (34)

Thus, from (32):

λmin||x(t)||2 ≤ λmax||x(τi)||2e−γ(t−τi)/λmax , t ∈ [τi, τ
′

i ] (35)

Since the execution χ by assumption is non-Zeno, we have that τi → ∞ as i → ∞. Hence,
||x(t)|| goes to zero exponentially as t → τ∞, which implies that the equilibrium point xe = 0
is asymptotically (actually exponentially) stable.

Example 1: Consider the hybrid automaton H of Figure 8, with

>

q1 q2

= A  xx

<0x1

x 
1 0

> 0x1x1< 0

= x  A  x
1 2

Figure 8: Example 1

A1 =

[

−1 1
−1 −1

]

, A2 =

[

−2 1
−1 −2

]

(36)

Since the eigenvalues of A1 are λ(A1) = {−1 ± i} and of A2 are λ(A2) = {−2 ± i}, both
ẋ = A1x and ẋ = A2x have an asymptotically stable focus. H satisfies the assumptions of
the previous theorem; indeed, AT

1 + A1 < 0 and AT
2 + A2 < 0, so the inequalities in the

theorem are satisfied for P = I. Hence, the origin is an asymptotically stable equilibrium
point for H.

Example 2 [5]: Consider the hybrid automaton from Figure 1 again, but let

A1 =

[

−5 −4
−1 −2

]

, A2 =

[

−2 −4
20 −2

]

(37)

The eigenvalues of A1 are λ(A1) = {−6,−1} and of A2 are λ(A2) = {−2 ± 4
√

5i} so that
ẋ = A1x has an asymptotically stable node and ẋ = A2x has an asymptotically stable focus.
The evolution of the continuous state is shown in Figure 10 for four different initial states.
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x ’ = (x<=0) ( − x + y) + (x>0) ( − 2 x + y)
y ’ = (x<=0) ( − x − y) + (x>0) ( − x − 2 y)
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Figure 9: Example 1

The origin seems to be a stable equilibrium point – indeed, the Lyapunov function indicated
by the dashed level sets proves asymptotic stability of the origin. Yet from the shape of
its level sets, we see that the Lyapunov function is not globally quadratic, but piecewise
quadratic, in the sense that it is quadratic in each discrete mode. (In fact, we can show for
this example that it is not possible to find a quadratic Lyapunov function).

3.2 Piecewise Quadratic Lyapunov Function

If we assume that the hybrid automaton is restricted further so that the domains are given
by polyhedra, then we can make some more general statements about the stability of the
hybrid system:

Dom = ∪i{qi} × {x ∈ R
n : Ei1x ≥ 0, . . . , Einx ≥ 0} (38)

where

Ei =







Ei1
...

Ein






∈ R

n×n (39)

It then follows that (qi, 0) ∈ Dom for all i. Suppose that the reset relation R satisfies:

|R(qi, x)| =

{

1 if (qi, x) ∈ ∂Dom
0 otherwise

(40)

such that
(qk, x

′) ∈ R(qi, x) ⇒ Fkx = Fix, qk 6= qi, x
′ = x (41)
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x ’ = (x<=0) ( − 5 x − 4 y) + (x>0) ( − 2 x − 4 y)
y ’ = (x<=0) ( − x − 2 y) + (x>0) (20 x − 2 y)    

Figure 10: Continuous evolution for a hybrid automaton that does not have a globally
quadratic Lyapunov function. Still, the origin is an asymptotically stable equilibrium point,
which can be proved by using a Lyapunov function quadratic in each discrete state.

where Fk, Fi ∈ R
m×n are given matrices (which hence define the boundaries of Dom). The

LMI condition in Theorem 1 would require that

xT (AT
i P + PAi)x < 0,∀x 6= 0, (qi, x) ∈ Q × R

n (42)

It is however sufficient to require that

xT (AT
i P + PAi)x < 0,∀x 6= 0, (qi, x) ∈ Dom (43)

This can be done by specifying a matrix Si such that xT Six ≥ 0 for all x with (qi, x) ∈ Dom.
Then,

AT
i P + PAi + Si < 0 (44)

still implies that
xT (AT

i P + PAi)x < 0,∀x 6= 0, (qi, x) ∈ Dom (45)

but xT (AT
i P + PAi)x < 0 does not have to hold for x 6= 0 with (qk, x) ∈ Inv and i 6= k. The

matrix Si may be given as Si = ET
i UiEi, where Ei is given by the representation of H and

Ui = UT
i ∈ R

n×n is chosen to have non-negative elements.

We can also let V depend on the discrete state, ie. V (qi, x) = xT Pix for (qi, x) ∈ Inv. We
choose Pi = F T

i MFi, where Fi is given by the representation of H, and M = MT ∈ R
n×n is

to be chosen.
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Theorem 9 (Piecewise Quadratic Lyapunov Function) H = (S, Init, f, Dom, R) with
equilibrium xe = 0. Assume that for all i:

• f(qi, x) = Aix,Ai ∈ R
n×n

• Dom = ∪i{qi} × {x ∈ R
n : Ei1x ≥ 0, . . . , Einx ≥ 0}

• Init ⊆ Dom

• for all x ∈ R
n

|R(qi, x)| =

{

1 if (qi, x) ∈ ∂Dom
0 otherwise

(46)

such that
(qk, x

′) ∈ R(qi, x) ⇒ Fkx = Fix, qk 6= qi, x
′ = x (47)

where Fk, Fi ∈ R
n×n.

Furthermore, assume that for all χ ∈ E∞

H , τ∞(χ) = ∞. Then, if there exists Ui = UT
i ,

Wi = W T
i , and M = MT such that Pi = F T

i MFi satisfies:

AT
i Pi + PiAi + ET

i UiEi < 0 (48)

Pi − ET
i WiEi > 0 (49)

where Ui,Wi are non-negative, then xe = 0 is asymptotically stable.

Example 3: Consider the hybrid automaton of Figure 11 with

A1 = A3 =

[

−0.1 1
−5 −0.1

]

, A2 = A4 =

[

−0.1 5
−1 −0.1

]

(50)

Here, we may choose

E1 = −E3 =

[

−1 1
−1 −1

]

, E2 = −E4 =

[

−1 1
1 1

]

(51)

and

Fi =

[

Ei

I

]

∀i ∈ {1, 2, 3, 4} (52)

The eigenvalues of Ai are −1/10 ±
√

5i. The evolution of the continuous state is shown in
Figure 12. We can use a Lyapunov function given by:

P1 = P3 =

[

5 0
0 1

]

, P2 = P4 =

[

1 0
0 5

]

(53)

to prove asymptotic stability of the hybrid automaton.
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Figure 11: Example 3

3.3 Linear Matrix Inequalities

LMIs appear in many problems in systems and control theory (for example, see the reference
[9]). For example, in the last Theorem we would like to solve

ET
i MEi > 0 (54)

AT
i Pi + PiAi + ET

i UiEi < 0 (55)

Pi − ET
i WiEi > 0 (56)

for the unknowns M , Ui, and Wi. This problem may be cast as an optimization problem,
which turns out to be convex, so that it can be efficiently solved. In MATLAB, there is a
toolbox called LMI Control Toolbox:
>> help lmilab

Try the demo:
>> help lmidem

and you’ll see there is a graphical user interface to specify LMIs; you can enter this directly
through:
lmiedit

After specifying an LMI, ie.:

P = P T ≻ 0 (57)

AT P + PA ≺ 0 (58)

where A is a matrix that you’ve already entered in MATLAB’s workspace in lmisys, a
feasible solution P is found (if it exists) by running the commands:
[tmin, pfeas] = feasp(lmisys)

p = dec2mat(lmisys,pfeas,p)
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Figure 12: Example 3

The feasibility problem is solved as a convex optimization problem, which has a global min-
imum. This means that if the feasibility problem has a solution, the optimization algorithm
will (at least theoretically) always find it.
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