
EE291E Lecture Notes 7. Controller Synthesis for

Hybrid Systems I: Introduction to Discrete Games

Claire J. Tomlin

March 5, 2018

This lecture is first in a series of lectures on designing control laws for hybrid systems. What
is a control law? It is a method by which we steer the automaton using input variables, so
that the closed loop exhibits certain desirable properties. A control problem involves:

1. A plant

2. A specification

3. A controller

Controller synthesis involves coming up with a methodology for designing controllers that
meet the specification. The discussion in this lecture is based on [1] and [2, 3]. Here, we will
deal mostly with safety specifications; although the methodology in this part of the course
can be extended to a much more general class of properties.

1 Controlled Hybrid Automata

1.1 Fundamental Definitions

We augment the autonomous hybrid automaton definition of Lecture Notes 3 (page 4) with
inputs and outputs:

Definition 1 (Hybrid Automaton) A hybrid automaton H is a collection H = (Q, X,
Init, In, f , Dom, R, Out), where

• Q = {q1, q2, . . .} is a set of discrete states;

• X = R
n is a set of continuous states;

• Init ⊆ Q×X is a set of initial states;

1



• In is a finite collection of input variables. We assume that In = Σ∪W : Σ = ΣU ×ΣD

where ΣU contains discrete input variables and ΣD contains discrete disturbance input
variables; W = U ∪ D where U contains continuous control input variables and D
contains continuous disturbance input variables;

• f : Q×X × In → R
n is a vector field;

• Dom : Q→ 2X×In is a domain;

• R : Q×X × In → 2Q×X is a reset relation.

• Out is a finite collection of output variables. We assume that Out = P ∪ Y , where P
contains discrete output variables, and Y contains continuous output variables.

We refer to (σ,w) ∈ In as the input of H, and (p, y) ∈ Out as the output of H.

The control objective is assumed to be encoded by means of a safety property ✷F (always
F ) with F ⊆ Q×X.

• The inputs are chosen by a “controller”; typically some input variables can be controlled
(their values can be assigned at will by a controller), while others cannot be controlled
(their values are determined by the environment);

• Uncontrollable variables (or disturbances) typically represent:

– noise in the sensors, numerical computations, etc.

– external forces, wind for the aircraft etc.

– unmodeled dynamics

– uncertainty about the actions of other agents (such as in the air traffic control
and highway system examples)

2 Controllers

A controller can be defined as a map from state executions to sets of allowable inputs:

C : (executions of H) → 2ΣU∪U

The interpretation is that the controller restricts the valuations of the control input variables
that are allowed along the trajectory. The controller may still be able to “cheat” by forcing
the execution to be Zeno. Typically one assumes that all loops among discrete states require
a non zero amount of time. This assumption may be somewhat restrictive and is difficult to
enforce by manipulating the primitives of the model.

2



Memoryless Controllers

A controller, C, is called memoryless (or sometimes pure feedback) if for all executions of
the hybrid system ending at the same state, the controller would be the same. A memoryless
controllers can be characterized by a feedback map:

g : Q×X → 2ΣU×U

Given a plant, H, and a memoryless controller, g, we can define the closed loop hybrid
automaton, H = (Q, X, Init, In, f , Dom, R, Out, g).

Controlled Invariant Sets

Typically, for a controller synthesis problem one treats the set of initial conditions, Init, as
variable and attempts to establish the largest set of states for which there exists a controller
that satisfies the specification. This set of initial conditions turns out to be a “controlled
invariant set”.

Definition 2 (Controlled Invariant) A set W ⊆ Q × X is called controlled invariant if
there exists a controller that solves the controller synthesis problem (H ′,✷W ) where H ′ is
identical to H except for Init′ which is equal to W .

A controlled invariant setW is called maximal if it is not a proper subset of another controlled
invariant set. We say a controller renders W invariant if it solves the controller synthesis
problem (H ′,✷W ) where Init′ = W .

Least Restrictive Controllers

We would like to derive a memoryless controller that solves the problem while imposing
minimal restrictions on the controls it allows. There are at least two reasons why such a
controller is desirable:

1. As discussed above, safety properties can sometimes be satisfied using trivial controllers
(that cause deadlocks or zeno executions for example). Imposing as few restrictions as
possible allows us to find a meaningful controller whenever possible.

2. In many cases multiple, prioritized specifications are given for a particular problem.
Imposing fewer restrictions on the controls when designing controllers for higher pri-
ority specifications allows us greater flexibility when trying to satisfy lower priority
specifications.

Memoryless controllers that solve the synthesis problem (H,✷F ) can be partially ordered
by the relation:

g1 � g2 ⇔ g1(x) ⊆ g2(x) for all x ∈ X

Definition 3 A memoryless controller that solves (H,✷F ) is called least restrictive if it is
maximal among the controllers that solve (H,✷F ).

3



120
R

Mode 1 Mode 2 Mode 3

Figure 1: Two aircraft in three modes of operation: in modes 1 and 3 the aircraft follow a
straight course and in mode 2 the aircraft follow a half circle. The initial relative heading
(120◦) is preserved throughout.

Some Remarks on Implementation

The notion of a controller introduced above may be inadequate when it comes to imple-
mentation. For one thing, the set valued map g allows non-deterministic choices of control
inputs. Since in practice only one input can be applied to the system at any time, this non-
determinism has to somehow be resolved when it comes time to implement such a controller.
The set valued map can in this sense be thought of as a family of single valued controllers;
implementation involves choosing one controller from this family.

Normally, one would implement a controller by using another hybrid automaton, which,
when composed with the plant automaton yields the desired behavior.

We assume that the entire state is available to the controller. In general this will not be
the case. If a controller is to be implemented by a hybrid automaton, the information the
controller has about the plant is obtained through the valuations of the output variables of
the plant, which are not necessarily in one to one correspondence with the valuations of the
state variables. The controller synthesis problem under partial observation (output feedback)
is much more complicated than the full observation (state feedback) problem addressed here
and is a topic of current research.

3 Motivating Example

We present as motivating example a model for the kinematic motions of two aircraft, labeled
1 and 2, at a fixed altitude. Let (xr, yr, ψr) ∈ R

2 × [−π, π) represent the relative position
and orientation of aircraft 2 with respect to aircraft 1. In terms of the absolute positions
and orientations of the two aircraft xi, yi, ψi for i = 1, 2, it may be verified that xr =
cosψ1(x2 − x1) + sinψ1(y2 − y1), yr = − sinψ1(x2 − x1) + cosψ1(y2 − y1), ψr = ψ2 − ψ1, and

4



q
2

<z π

q
3

z π=

σ
1 = 1

xr
yr

:=
2

π
( ) xr

yr
Rot

xr
yr

:=
2

π
( ) xr

yr
Rot

z := 0 z := 0

xr = u d+ cos r

yr = d sin

ψ
ψr

ψr= 0
z = 0

xr = u d+ cos r + yr

yr = d sin

ψ
ψr xr

ψr= 0
z = 1

xr = u d+ cos r

yr = d sin

ψ
ψr

ψr= 0
z = 0

q
1

avoid

σ
1 = 0

cruise1 cruise2

Figure 2: In q1 both aircraft follow a straight course, in q2 a half circle, and in q3 both
aircraft return to a straight course.

it is easy to derive that

ẋr = −v1 + v2 cosψr + ω1yr

ẏr = v2 sinψr − ω1xr (1)

ψ̇r = ω2 − ω1

where vi is the linear velocity of aircraft i and ωi is its angular velocity. The protected zone
of aircraft 2 may be translated to the origin of this relative frame, and thus the relative
position (xr, yr) must remain outside of the disk {(xr, yr, ψr) : x2

r + y2
r < 52}. The flight

modes for this system of two aircraft are based on the linear and angular velocities of the
aircraft. We consider two possibilities: ωi = 0, meaning that aircraft i follows a straight line,
and ωi = 1, meaning that aircraft i follows an arc of a circle if vi is kept constant. These
maneuvers approximate closely the behavior of pilots flying aircraft: straight line segments
(constant heading) and arcs of circles (constant bank angle) are easy to fly both manually
and on autopilot. Consider a maneuver in which there are three modes in sequence: a cruise
mode in which both aircraft follow a straight path; an avoid mode in which both aircraft
follow a circular arc path; and a second cruise mode in which the aircraft return to the
straight path. The protocol of the maneuver is that as soon as the aircraft are within a
certain distance of each other, each aircraft turns 90◦ to its right and follows a half circle.
Once the half circle is complete, each aircraft returns to its original heading and continues
on its straight path (Figure 1). We assume that both aircraft switch modes simultaneously,
so that the relative orientation ψr is constant, and we assume that both aircraft fly an arc
with the same radius at the same velocity. These assumptions simply allow us to display the
evolution of the continuous state in two dimensions, making the results easier to present:
in a true conflict resolution scenario these assumptions would be removed. This maneuver
generalizes to n-aircraft as a “roundabout” maneuver, discussed in [4].

The dynamics of the maneuver can be encoded by the hybrid automaton of Figure 2, where q1
corresponds to cruising before the avoid maneuver, q2 corresponds to the avoid mode, and q3
corresponds to cruising after the avoid maneuver has been completed. There is one discrete
control input σ1, such that the switch from σ1 = 0 to σ1 = 1 triggers the transition from q1 to

5



q2. The transition from q2 to q3 is required to take place after the aircraft have completed a
half circle: note that with ωi = 1, for i = 1, 2, it takes π time units to complete a half circle.
The continuous state space is augmented with a timer z ∈ R

+ to force this transition. Let
x = (xr, yr, ψr, z)

T . At each transition, both aircraft change heading instantaneously by π/2
radians; we represent this with the standard rotation matrix Rot(π

2
). Assuming computation

in the flight management system of aircraft 1, we assume that v1 is controllable, and v2 is
known to within some uncertainty. Safety is defined in terms of the relative distance between
the two aircraft:

F c = G = {q1, q2, q3} × {x ∈ X : x2
r + y2

r ≤ 52} (2)

Thus the state space of this two aircraft system is Q×X = {q1, q2, q3}× (R2× [−π, π)×R
+).

The discrete input space is Σ = ΣU = {0, 1} (ΣD = ∅), and the continuous input space is
W = U × D, where U = [v1min

v1max
] and D = [v2min

v2max
]. We assume Init = q1 × (G◦)c,

that f is described by the relative aircraft dynamics (1) augmented with a timer, as shown
in Figure 2, and that Dom is given as follows:

Dom(q1) = (X, {In : σ1 = 0}); Dom(q2) = ({x ∈ X | 0 ≤ z ≤ π}, In); Dom(q3) = (X, In)
(3)

The map R which resets xr, yr in transitions from q1 to q2 and q2 to q3 is described in Figure
2. Output variables are the same as the state variables, in this example.

The controller synthesis problem is therefore to generate continuous control inputs for aircraft
1, as well as the conditions under which aircraft 1 is allowed to switch modes, so that that
the 5 nautical mile separation is maintained, despite the disturbance actions of aircraft 2
(unknown but within known bounds).

Controllers for Safety for Discrete Systems

Before solving this hybrid control problem, let’s start with something simpler: a finite au-
tomaton model of a discrete system. Recall from Lecture 2:

• Definition: A finite automaton M is a mathematical model of a system represented
as

(Q,Σ, Init, R) (4)

where

– Q is a finite set of discrete state variables

– Σ = Σ1 ∪ Σ2 is a finite set of discrete input variables, where Σ1 contains the
controller’s inputs and Σ2 contains the environment’s inputs, which cannot be
controlled

– Init ⊆ Q is a set of initial states

– R : Q × Σ → 2Q is a transition relation which maps the state and input space
to subsets of the state space and thus describes the transition logic of the finite
automaton

6



• Now consider a set of states F ⊆ Q.

Problem statement: Design a control law to guarantee ✷F (χ) (where χ represents
executions of the discrete system) despite possible worst case action of the disturbance
inputs.

There could be many such control laws: we would like to establish the largest set of
states for which there exists a controller that manages to keep all executions inside F .
This is called least restrictive control; its practical importance is that one can compose
any other control design with this least restrictive control law, and the least restrictive
control law will only come into effect when one is in danger of violating ✷F (χ).

1
q

q
2

q
3

q
4

q
6

q
7

q
8

q
5

q
9

q
10

F

F

c

(1,1)

(1,*)

(2,1)

(2,2)

(*,*)

(1,1) (2,2)

(1,2)

(2,*)

(2,2)

(2,1)

(1,1)

(1,*)

(1,*)

(1,2)

(*,*)

(2,*)

(*,*)

(2,1)

(1,1)

(1,*)

(2,*)

(2,1)(*,2)

Figure 3: Example for controller synthesis for discrete systems.

• This is easiest to demonstrate by the following example, illustrated in Figure 3. Con-
sider the finite automaton shown in Figure 3 whereQ = {q1, . . . , q10}, Σ1 = Σ2 = {1, 2},
F = {q1, q2, . . . q8}, and the transition relation is as shown in the figure, where the dis-

7



crete inputs are listed in the order (σ1, σ2) which represents the “order of play”1, and
∗ denotes a “wild-card” (either 1 or 2).

• Let us denote by W ∗ the largest set of states such that there exists a feedback controller
that keeps the execution inside F . Clearly:

W ∗ ⊆ F = {q1, q2, . . . , q8} (5)

• Next, look at states that can end up in F c in one transition: (q4, q5, and q8). Now,
from q4, if σ1 = 1 then whatever σ2 chooses to do the system will remain in F ; however
from q5 and q8, whatever σ1 chooses to do, the system leaves F . Thus

W ∗ ⊆ {q1, q2, q3, q4, q6, q7} (6)

• Now, we continue to iterate backwards. Consider states that can leave the above set
in one transition: q4 and q6. Note that from q4, whatever σ1 chooses to do, if σ2 = 1
then the system leaves the set, and from q6, whatever σ1 chooses to do, σ2 can play a
value to force the system out of the set. Thus

W ∗ ⊆ {q1, q2, q3, q7} (7)

• From these remaining states, if σ1 chooses according to the following feedback map:

g(q) =







{1} if q = q7
{2} if q ∈ {q1, q3}
{1, 2} if q = q2

(8)

then the system is guaranteed to remain in {q1, q2, q3, q7} forever.

• Thus,
W ∗ = {q1, q2, q3, q7} (9)

and g is called the least restrictive control scheme that renders W ∗ invariant.

• More generally, we may encode the above as the following algorithm:

We define the winning states W ∗ for the controller as the subset of F from which the
system has a sequence of control actions σ1(·) which can force the system to remain in
F despite the actions of the environment σ2(·). The set W ∗ can be calculated as the
fixed point of the following iteration (where a negative index i ∈ Z− is used to indicate
that each step is a predecessor operation):

Algorithm 1 (Maximal Controlled Invariant Set for Finite State Automata)

1As we shall see, this order gives the disturbance action the benefit of knowing what the control has just

played, and thus represents a conservative solution.

8



initialization: W 0 = F , W−1 = ∅, i = 0.
while W i 6= W i−1 do

W i−1 = W i ∩ {q ∈ Q | ∃σ1 ∈ Σ1 ∀σ2 ∈ Σ2 R(q, σ1, σ2) ⊆ W i }
i = i− 1

end while

The iteration terminates when W i = W i−1 ∆

= W ∗. At each step of the iteration,
W i−1 ⊆ W i. Since |Q| is finite the iteration terminates in a finite number of steps.
The set W i contains those states for which the controller has a sequence of actions
which will ensure that the system remains in F for at least i steps, for all possible
sequences σ2(·) ∈ Σ2.

This problem can be formulated as a game.

In order to characterize this iteration mathematically, we associate a value function J(q, i)
to each state at each iteration, representing the future reward or cost to be incurred by the
system given that its current state is q and iteration i:

J(q, i) : Q× Z− → {0, 1} such that J(q, i) =

{

1 q ∈ W i

0 q ∈ (W i)c (10)

Therefore, W i = {q ∈ Q | J(q, i) = 1}. Since the most logical action of the controller is to
keep the system inside F in the face of unknown and therefore possibly hostile actions of the
environment:

max
σ1∈Σ1

min
σ2∈Σ2

min
q′∈R(q,σ1,σ2)

J(q′, i) =

{

1 if ∃σ1 ∈ Σ1 ∀σ2 ∈ Σ2, R(q, σ1, σ2) ⊆ W i

0 otherwise
(11)

The “minq′∈R(q,σ1,σ2)” in the above compensates for the nondeterminism in R; the order
of operations maxσ1

minσ2
means that the controller plays first, trying to maximize the

minimum value of J(·). This representation gives the environment the advantage, since it
has “prior” knowledge of the controller’s action when making its own choice. Therefore, in
general,

max
σ1∈Σ1

min
σ2∈Σ2

min
q′∈R(q,σ1,σ2)

J(·) ≤ min
σ2∈Σ2

max
σ1∈Σ1

min
q′∈R(q,σ1,σ2)

J(·) (12)

with equality occurring when the action (σ1, σ2) is a saddle solution, or a no regret solution
for each player. Here, we do not need to assume the existence of a saddle solution, rather
we always give advantage to the environment, the player doing its worst to drive the system
out of F , in order to ensure a conservative solution. Strictly speaking this is a Stackelberg
solution of the game with the controller as leader.

The iteration process in Algorithm 1 may be summarized by the difference equation:

J(q, i− 1) − J(q, i) = min{0, max
σ1∈Σ1

min
σ2∈Σ2

[ min
q′∈R(q,σ1,σ2)

J(q′, i) − J(q, i)]} (13)

9



We refer to equation (13) as a “discrete Hamilton-Jacobi equation.” The first “min” in the
equation ensures that states outside W i that can be forced by the controller to transition
into W i are prevented from appearing in W i−1. This means that once a state has associated
to it a value of zero, the value stays at zero for all subsequent iterations: enforcing the
requirement that “once a state becomes unsafe, it remains unsafe”.

Proposition 4 (Winning States W ∗) For finite sets Q and Σ, a fixed point J∗(q) of (13)
is reached in a finite number of steps. The set of winning states for the controller is W ∗ =
{q ∈ Q | J∗(q) = 1}. W ∗ is the largest controlled invariant subset of F .

Additional References

The problem of synthesizing control laws g : Q → 2Σ1 in the presence of uncertain actions
σ2(·) ∈ Σω

2 for the finite automaton described by (4) was first posed by Church in 1962 [5],
who was studying problems in digital circuit design, and was solved by Büchi and Landweber
[6] and Rabin [7] in the late 1960’s and early 1970’s using a version of the von Neumann-
Morgenstern discrete game [8]. More recently, Ramadge and Wonham [9] added new insight
into the structure of the control law. A temporal logic for modeling such games is introduced
in [10]. The “discrete Hamilton-Jacobi equation” to model such a process was introduced in
[2].

References

[1] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications for
hybrid systems. Automatica, 35(3):349–370, 1999.

[2] C. Tomlin, J. Lygeros, and S. Sastry. Synthesizing controllers for nonlinear hybrid
systems. In T. Henzinger and S. Sastry, editors, Hybrid Systems: Computation and
Control, number 1386 in LNCS, pages 360–373. Springer Verlag, New York, 1998.

[3] C. J. Tomlin, J. Lygeros, and S. Sastry. A game theoretic approach to controller design
for hybrid systems. Proceedings of the IEEE, 88(7):949–970, July 2000.

[4] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic management:
A case study in multi-agent hybrid systems. IEEE Transactions on Automatic Control,
43(4):509–521, April 1998.

[5] A. Church. Logic, arithmetic, and automata. In Proceedings of the International
Congress of Mathematicians, pages 23–35. 1962.

[6] J. R. Büchi and L. H. Landweber. Solving sequential conditions by finite-state operators.
In Proceedings of the American Mathematical Society, pages 295–311, 1969.

10



[7] M. O. Rabin. Automata on infinite objects and Church’s problem. In Regional Confer-
ence Series in Mathematics, 1972.

[8] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Prince-
ton University Press, 1947.

[9] P. J. G. Ramadge and W. M. Wonham. The control of discrete event dynamical systems.
Proceedings of the IEEE, Vol.77(1):81–98, 1989.

[10] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In
Proceedings of the 38th Annual Symposium on Foundations of Computer Science, pages
100–109. IEEE Computer Society Press, 1997.

11


