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6 CHAPTER 1. INTRODUCTION

1.1 Introduction

1.1.1 What is the emerging data market?

1.1.2 Informational Content of Data

1.1.3 Incentive Structure of the Data Market

The Internet of Things (IoT) is a term that represents a huge technological trend that is taking
place: almost every device is being imbued with the intelligence of a microprocessor and an Internet
connection. The interconnection in IoT promises an infrastructure that can drastically change how
consumers live their day-to-day lives, with huge gains in efficiency, value, and possibility due to
the shared knowledge and autonomy allowed. In profound ways, as the technology develops, the
modalities of existence people experience will grow and shift.

However, the scale and scope of IoT raises new problems for engineers to consider. These
problems are significantly different from ones previously explored in the design of comparatively
isolated systems, and require a new theoretical underpinning to analyze IoT with models that
capture all salient facets of these new technologies. This document contains a handful of theoretical
frameworks, and their applications, as a first step into this new research frontier.

First, we consider the problem of large amounts of data. For example, in the energy sector,
advanced metering infrastructures collect energy consumption data for a large number of consumers
at relatively high frequencies. This glut of data isn’t useful for most operational purposes, such
as phase-alignment, and is often aggregated for control purposes. Additionally, these smart meter
readings are usually at a household level, and themselves represent an aggregate of several devices
inside an energy consumer’s home.

Furthermore, if these devices are thought of as dynamical systems, these smart meter readings
only capture the ‘output’ of the system: both the internal state dynamics and the driving inputs
remain unobserved. This generally is a trend with IoT sensors: they capture a process but not
the ‘inputs’ driving it. As another example, smart phone data tracks the location of users, which
can be thought of as a random process whose distribution depends on the user’s itinerary, which is
often not a direct ‘input’ into Google Maps.

In Chapter ??, we address these two problems.

We define the disaggregation problem as the recovery of component signals yi from observations
of an aggregate

ř

i yi. We focus on an application in energy disaggregation, and outline assumptions
motivated by this context. Under these assumptions, we can phrase the disaggregation problem
as a hybrid optimal control problem. Using adaptive filtering techniques, we provide an algorithm
that can tractably find the optimal solutions to the disaggregation problem.

Additionally, we provide a blind system identification method to simultaneously identify the
inputs and dynamics of systems when only output observations are available. This, in and of itself,
is an ill-posed problem, so we find prior knowledge that can be supported by IoT sensors. For
example, if we are tracking occupancy in a building, IoT sensors can detect when a door is opened.
This serves as regularizing knowledge for blind system identification: we know the discrete time
points when occupancy of a sector can change.

Chapter ?? outlines some new estimation problems due to the scale and nature of IoT sensor
measurements.

A reader who is sensitive about the abundance of collected and transmitted technology may be
unnerved by some of the results in Chapter ??, and rightfully so. In Chapter ??, we outline some
of the work in preserving privacy in new IoT systems. Fundamentally, we suppose IoT sensors
are collecting data for some estimation or control tasks that are not directly in line with privacy
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violations of the user. In other words, privacy risks are a byproduct of a system designed to do
something else.

In Chapter ??, we outline methods to quantify the privacy of a system. We review the literature
on quantitative measures for privacy, and discuss some of our contributions, predominantly in
inferential privacy. We discuss different design paradigms for the incorporation of privacy into IoT
systems as a design level: from a passive privacy audit of a system, to an optimal design perspective
that creates sensors that provide measurements that optimally benefit the control objective while
minimizing privacy threats to users. Finally, we implement these privacy design concepts with
examples in ground transportation, smart grid control, and air quality regulation.

As IoT technologies permeate our socioeconomic spheres more and more, users will become
more privacy-aware and conscious of their data flows. A common saying heard these days in tech
circles is: ‘If you are not paying for a service, you the product, not the customer.’ This applies
to services such as Gmail or Facebook. Individual users are increasingly aware that their data is,
in many ways, the currency of new technologies. Web services such as PrivacyFix allow users to
calculate how much revenue is generated by Google from their data alone, and change their privacy
settings.

In Chapter ??, we model users who are strategic about their data sharing, and how the actions of
data buyers and advertisers must change when users become more strategic. The existing literature
has some methods that can handle strategic data sources, and we extend these results to consider
how these methods work when multiple data buyers are competing to create better estimators.

Additionally, IoT allows new means and modes of providing feedback into our systems. This
can come in the form of economic rebates for products that change the energy consumption profiles
inside a house, or warning lights inside a vehicle outfitted with intelligent sensors, or cell-phone
messages suggesting faster routes. None of these are direct control actions in a control-theoretic
sense, but can be thought of as actions that have an effect on the distribution of system behaviors
after the fact.

Furthermore, these are often imputations on endogenous variables inside a system. For example,
the price of an eco-friendly fridge is determined by supply and demand in the market, but a rebate
can, in a sense, manually force the market price to something else, at some cost to the entity issuing
the rebates. We argue that this phenomena can be modeled as causal imputations, and discuss a
framework for finding the optimal imputations under some system performance objective and a
cost of imputation. This is also discussed in Chapter ??.

1.2 Running examples

1.2.1 Example 1: Curbside Management

Curbside usage includes all of the follow, and more:

• floating micro-transit vehicles (bikes, scooters, etc.)

• flex zones (load zones, passenger pick-up zones, ride-share zones, etc.)

• curbside parking for personal vehicles

• floating car shares

• bus zones
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Even as our transportation systems evolves to accommodate autonomous vehicles, there is always
going to be a need for curbside management.

Curbside management, and on-street parking in particular, is surprisingly a huge bottleneck for
cities. It not only impacts congestion in dense cities, but also business district vitality, residential
access and usage, and even provisioning of construction permits (cities often require ample parking
in order to build new buildings).

Curbside management includes the following:

1. Active learning for robustly inferring curbside demand

2. Algorithmic mechanism design (co-design of information and incentives/pricing)

3. game theoretic models of user behavior

4. dynamical systems (queuing) models of system level behavior (e.g., networks of queues with
rejections transitioning from ”server” to ”server”, sort of dual the classical model for queuing
networks)

5. behavioral models of users choosing where to park based on various perceptions about things
like wait time, likelihood of getting a ticket, price, etc.; includes understanding the value of
information and can tie into algorithmic mechanism design

6. competition between firms: mobile payment platforms, auctions for private curb space usage
(happens in places like boston e.g.)

1.2.2 Example 2: Resource Allocation and Goods Distribution

E-commerce is increasingly becoming the norm. Even classically brick and mortar businesses such
as Walmart have increased their online presence in order to compete with powerhouses such as
Amazon. This is a global phenomena as well.

Essentially, e-commerce platforms allow users to shop for items online and have them delivered
to their homes. The mechanisms by which goods are delivered are varied and include, e.g., the
postal service, distribution companies such as DHL, FedX and UPS, the e-commerce company
themseleves, and flex drivers (individuals who contract with the e-commerce company or other
third parties to deliver goods for money).

e-commerce includes the following interesting features:

1. Active learning for robustly inferring users preferences (ranking and matching algorithms;
experimental design)

2. Algorithmic mechanism design (design of incentives, auctions, and other mechanisms)

3. game theoretic models of user behavior, both online users as well as delivery persons

4. dynamical systems models of system level behavior (e.g., inventory models, etc.)

5. behavioral models of users choosing which items to buy or when/where to log-on to participate
in flex driving market

6. competition between firms
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1.2.3 Example 3: Labor Markets

Labor markets have seen a revolution over the last decade. We have seen, e.g., the emergence of
crowdsourcing platforms such as Amazon’s Mechanical Turk (MTurk) and the rise of contract based
employees for services such as food delivery (Uber Eats), house cleaning and repair (task rabbit),
goods delivery (Amazon Flex) and, the most prominent of them all, ride-sharing (Uber, Lyft,
Didi, etc.). Labor markets for short term contracts present interesting dynamics and a plethora of
unintended consequences and challenges.

e-commerce includes the following interesting features:

1. Active learning (matching, ranking, etc.)

2. Algorithmic mechanism design (design of incentives, auctions, micro-markets, etc.)

3. Multi-sided markets

4. game theoretic models of user behavior in interesting settings such as multi-sided markets in
which both adverse selection and moral hazard issues present themselves due to information
asymmetries such as laborer’s skill and effort

5. dynamical systems models of system level behavior that include both market dynamics
which tend to operate in the cloud and physical system dynamics which operate on dif-
ferent timescales (e.g., the time it takes to physically drive from one location to another to
for instance deliver a good or pick up a passenger is much much longer than the time it takes
to resolve a match between a driver and passenger)

6. behavioral models of users

7. competition between firms (this example is prime for discussing and modeling competition
between firms)
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Chapter 2

Game Theory

The purpose of this chapter is to provide an overview of the game theoretic tools that serve as
the underpinning for many of the concepts presented in later chapters. In particular, we aim
to familiarize the reader with game theoretic abstractions in order to show that many design
challenges in societal-scale systems can be analyzed through a game theoretic lens and further,
aims to illuminate the essence of problems in this domain as they are conceptualized. For instance,
the reader will learn through examples how to analyze a given problem and identify who the
stakeholders are and what each stakeholder’s objective is, the nature of the interactions between
stakeholders, and learn to conceptualize what aspects of such interactions are subject to design.

Broadly, game theory provides a rigorous framework for reasoning about strategic decision mak-
ing in both competitive and cooperative environments. In particular, it is the study of multi-agent
decision problems and it is used in a variety of fields including economics, political science, biology,
engineering, etc. It is used, for instance, to understand competition or cooperation among agents,
understand carrot versus stick policies and their impacts in the long run, and to study adversarial
behavior (security attacks, terrorism, warfare), among many other applications. Sometimes the
game arises naturally and is the object of study (e.g., competition in a marketplace). Other times
games are a natural abstraction which may lead to insights about some underlying phenomena (e.g.,
evolutionary dynamics). Finally, game theoretic abstractions may also be leveraged to improve the
design of a decision making or machine learning algorithm (e.g., adversarial learning).

Examples in Science and Engineering:

• Network economics: games are used to model and understand policies for net neutrality.

• Adversarial learning: game theoretic abstractions are being leveraged to construct a frame-
work for learning algorithms or decision rules which are robust to adversarial input. For
example, in learning generative adversarial networks, it is common practice to abstract the
interaction between discriminator and generator as a zero-sum game thereby leading the
generator to learn a robust decision-making rule.

• Energy markets: game theory is often used to determine the best strategy for bidding in
energy markets as well as for the design of tariffs or demand response incentives.

• Crowdsourcing markets: mechanism design and game theory are used to design market mech-
anisms for facilitating crowdsourcing; e.g., in the study of incentivization of truthful partici-
pation while protecting privacy.

• Human-machine interaction: game theoretic models are quite often leveraged in modeling the
interaction between two boundedly rational agents who form beliefs about the intentions of
other agents with whom they are interacting.

11
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• Modern labor markets: similar to crowdsourcing markets, modern labor markets include
numerous examples of ‘crowdsourced’ contract-based laborers. Examples of such markets
include Amazon’s Mechanical Turk, flex drivers which deliver goods including food, and the
numerous vehicle-sharing platforms whose labor pool consists of drivers with extra capacity in
their vehicles. Such markets can be abstracted as multi-sided (generally, two-sided) markets
and the interactions between the different sides of the market are subject to design. Further,
competition between platforms (represented by firms/companies) is easily abstracted to a
game theoretic framework, which is the subject of many studies of these emerging markets.
• Biology: evolutionary dynamics of populations are often abstracted as games.
• Micro-financing: recently trending are micro-lending or crowdfunding markets. Game theo-

retic abstractions of such markets support the design of everything from regulatory policies
to adaptive mechanisms for matching lenders to lendees.

Figure 2.1: Abstraction of a data crowdsouring market.

The chapter is divided into two main threads: one on equilibrium concepts—e.g., Nash and
its refinements—and their characterization and one on learning algorithms employed by agents
or players seeking such equilibria. We start with some preliminary formalism that will be used
throughout the remainder of the chapter.

2.1 Preliminaries

The term player refers to an agent which facing a decision making problem. Often the term
player and the term agent are used interchangably. Loosely speaking, a game consists of a set of
players, a specification for the environment in which they interact, the objective structure for each
player, and the information structure for each player1. The environment describes the broader
context in which the agents are interacting; it may, e.g., include specifications for “nature” or some
auxiliary state which influences the decisions of agents through, e.g., their objectives. The objective
structure includes specifications on the individual objectives of players and their action spaces. The
information structure includes specifications on what information is available to players when they
make decisions; e.g.,

• Chess is a full-information game because the current state of the game is fully known to both
players as they make their decisions.

1Aside: we remark that in mechanism design (a subject of later chapters), either the environment and objective
structure are considered fixed and the information structure is subject to design (information design problem), or the
environment and information structure are considered fixed and the objective structure is subject to design (incentive
design problem).
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• In contrast, Poker is a partial-information game since players do not observe the hand dealt
to their opponents.

In general, there are two information settings: full/complete and partial information. At a high
level, in the former setting, knowledge about other players is available to all players where in the
latter setting, the knowledge set is incomplete, meaning some information is not available to one
or more of the players or is revealed overtime as the players interact. We will further characterize
these two settings once we have introduced more of the mathematical formalism.

For a mathematical solution to a game, one further needs to make assumptions on the player’s
rationality. In the classical game theoretic setting, it is commonly assumed that the players are
perfectly rational decision-makers, seeking to maximize their utility. However, it is well known that
humans are not perfectly rational and even when an agent is perfectly rational, it may be limited
by its computational ability in which case models of bounded rationality or myopic decision-making
become relevant. Such models have been introduced in behavioral psychology and economics, as
well as game theoretic learning approaches. Discussions on behavioral models are relegated to
subsequent sections in this chapter, and for the time being, we will assume that players are fully
rational decision makers.

Until otherwise stated, we assume players are rational in the sense that they are aware of their
alternatives, form expectations about any unknowns, have clear preferences, and choose their action
deliberately after some process of optimization.

In the remaining parts of this chapter, we will cover the formalism for strategic form games on
finite action spaces, games on continuous action spaces, and dynamic/differential games. For each
of these classes of games, we will provide formal definitions for different equilibrium concepts.

2.2 Games in Strategic Form and Nash Equilibria

Generally speaking, there are two categories of games: strategic and extensive form.

• Strategic form game: a model of interactive decision-making in which each player chooses
his plan of action once and for all, and all players decisions are made simultaneously (that
is, when choosing a plan of action each player is not informed of the plan of action chosen by
any other player).

• Extensive form game: specifies the possible orders of events; each player can consider his
plan of action not only at the beginning of the game but also whenever he has to make a
decision.

A strategic form (normal form) game on finite action spaces is a game that can be described using
a matrix or table. Typically a strategic form is used for simultaneous play games on finite action
spaces. This is in contrast to sequential games in which information is revealed to players in stages
which are more naturally modeled in extensive form2 (or tree form).

Let us review the basic constructs necessary for defining strategic form games.

Definition 1. (Strategic Form Game.) A strategic form game (normal form or matrix game) is a
tuple G “ ppUiqiPI , pJiqiPIq where

• The set I “ t1, . . . , nu indexes a finite set of players;

• For each i P I, Ui represents the available actions (action space) to player i and U “ U1 ˆ

¨ ¨ ¨ ˆ Un is the joint action space.

2While this is an important class of games, for brevity we will not review this game type and refer the reader to
more in depth game theory texts.
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• Each ui P Ui is an action for player i and u “ pu1, . . . , unq P U is a joint action.

• Indexed by i P I, the function Ji : U Ñ R is utility function for player i.

We denote by ´i “ Iztiu “ t1, . . . , i ´ 1, i ` 1, . . . , nu all players excluding the i-the player.
With this notation, u´i P U´i “

Ś

j‰i Uj with u´i “ pu1, . . . , ui´1, ui`1, . . . , unq denotes the joint
action profile of all players excluding player i.

Strategies (or policies) are complete contingent plans that specify the action to be taken in every
situation—as encoded by an information set—that could arise in the course of play. Strategies
represent an important concept in games in particular as they contrast with actions:

• An action is a possible move that is available to a player during a game.

• A strategy is a decision rule that a player uses to select actions, based on available information.

Remark 1. A strategy is a complete description of how to play the game (i.e., you could give it to
a computer like an algorithm for it to execute it). An action on the other hand is the result of the
strategy. In strategic form games, strategy and action are synonymous.

Another important concept in games is rationality and the assumed notion of common knowl-
edge.

Vignette 2.1 (Common Knowledge.) Think of each player as being in a separate room where
they are asked to choose a button, perhaps on a computer terminal, without communicating with
other players. Players know the strategic form G, and know their opponents know it, and know
their opponents know they know it, and so on ad infinitum. That is, G is common knowledge.

Later we will introduce the concept of bounded rationality where there is a bounded number of
layers in this knowledge structure.

Agents’ utility functions capture the preferences of the players in the following sense.

Definition 2. (Preference Relation.) For each player i P rns, a preference relation Ái on U is such
that u Ái u

1 if and only if Jipuq ě Jipu
1q where u, u1 P U .

Remark 2. As an alternative definition of strategic form games, we can use the preference relation
notation as follows: pI, pUiqiPrns, pÁiqiPrnsq.

If each Ui is finite, we say the game is a finite game. When the number of players and strategies
is small, representing the game in matrix form is useful. We will represent the payoffs as pairs pa, bq
where a “ J1pu, vq, b “ J2pu, vq and u P U1, v P U2. Given the mapping between joint actions and
payoffs, we can represent all the outcomes of the game in tabular or matrix form:

(a11,b11) (a12, b12)

(a21, b21) (a22, b22)

L R

T

B

P2

P1

Thus, the table describes all possible outcomes; e.g., J1pT, Lq “ a11, J2pT, Lq “ b11. . .
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Example 2.1 (Matching Pennies.) There are two players, each of which has a penny. The
game is played as follows. The players flip the pennies and if the pennies are both heads or both
tails then player 1 (even) keeps both pennies. On the other hand, if the pennies are one heads
and one tails, then player 2 (odd) keeps the pennies. Thus, the outcomes for this game can be
described by the following table or matrix:

(+1,-1) (-1,+1)

(-1,+1) (+1,-1)

heads tails

heads

tails

P2 (odd)

P1 (even)

The matching pennies game is a zero sum game and represents pure conflict (since the utility
of one player is the negative utility of the other player).

Definition 3. A two-player game is called zero sum if

J1pu, vq ` J2pu, vq “ 0, @ pu, vq P U1 ˆ U2,

and otherwise, we say the game is non-zero or general sum.

2.2.1 Equilibrium Notion

When there are n decision-makers each with their own objective Ji : U Ñ R for i P I where
U “ U1ˆ¨ ¨ ¨ˆUn and player i’s choice variable is ui P Ui, then the interaction between the players
is a modeled as a game. In the full information setting, the concept of a Nash equilibrium is used
to characterize their interaction.

Definition 4. (Nash Equilibrium.) For an n-player game pJ1, . . . , Jnq, a point u˚ P U is a Nash
equilibrium if, for each i P I,

Jipu
˚
i , u

˚
´iq ď Jipui, u

˚
´iq, @ ui P Ui. (2.1)

Alternatively, using the preference relation notation,

pu˚i , u
˚
´iq Ái pui, u

˚
´iq @ ui P Ui

Remark 3. In words, for u˚ to be a Nash equilibrium it must be the case that no player i has an
action yielding an outcome that they prefer to the outcome generated when they choose u˚i given
that every other player j chooses u˚j . That is, no player can profitably deviate, given the actions of
the other players.

Let’s consider some examples. The first example is a classic example in game theory used to
demonstrate cooperative solutions as Nash equilibria.

Example 2.2 (Bach or Stravinsky (aka Battle of the Sexes).) Players wish to coordinate
but have a conflict of interests.
For instance, consider two people that wish to go out together to a concert of music by either
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Bach or Stravinsky. One prefers Bach and the other Stravinsky.

(2,1) (0,0)

(0,0) (1,2)

B S

B

S

P2

P1

The game has two Nash equilibria: both choosing Bach pB,Bq or both choosing Stravinsky
pS, Sq. Indeed, for pB,Bq

2 “ J1pB,Bq ě J1pS,Bq “ 0

1 “ J2pB,Bq ě J2pB,Sq “ 0

and for pS, Sq,
1 “ J1pS, Sq ě J1pB,Sq “ 0

2 “ J2pS, Sq ě J2pS,Bq “ 0

where as for pB,Sq,
0 “ J1pB,Sq ď J1pS, Sq “ 1

and for pS,Bq,
0 “ J1pS,Bq ď J1pB,Bq “ 2

These choices can be thought of as “steady states”.

The next example is a classic example from game theory which demonstrates why completely
rational players may not cooperate even though it is in the best interest to do so.

Example 2.3 (Prisoner’s Dilemma) Two suspects of a crime are brought into separate
cells so that they cannot communicate with one another. The prosecutors do not have enough
evidence to convict the criminals of the main serious crime, yet they have enough evidence to
convict both for a misdemeanor. So, the prosecutors try the classic trick of getting the criminals
to confess. Prosecutors enter the criminals cells (simultaneously) and offer each one a ‘deal’:
each criminal is given the opportunity either to betray the other—by testifying that the other
committed the crime—or to cooperate with the other by remaining silent. In this game, players
are utility maximizers. The values in the matrix represent the number of years not in prison—
i.e., a value of ´2 means that the criminal will spend two years in prison. Based on the deal the
prosecutors offer, the possible outcomes are defined in the following table:

(-2,-2) (0,-3)

(-3,0) (-1,-1)

Betray Silent

Betray

Silent

P2

P1
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Then, surprisingly both players choosing to betray one another pB,Bq is a Nash equilibrium,
whereas the cooperative solution (leading to a lower prison sentence for both) is not! Indeed,
pB,Bq is a Nash equilibrium since

´2 “ J1pB,Bq ě J1pS,Bq “ ´3 and ´ 2 “ J2pB,Bq ě J2pB,Sq “ ´3,

while pS, Sq is not since

´1 “ J1pS, Sq ď J1pB,Sq “ 0 and ´ 1 “ J2pS, Sq ď J2pS,Bq “ 0.

The latter set of equations means that both players have an incentive to deviate from pS, Sq as
the the other option (betray) has a lower prison sentence.
In addition, neither are pB,Sq or pS,Bq since for pB,Sq, as we have stated above

0 “ J1pB,Sq ě J1pS, Sq “ ´1 yet ´ 3 “ J2pB,Sq ď J2pB,Bq “ ´2

and, similarly, for pS,Bq

0 “ J2pS,Bq ě J2pS, Sq “ ´1 yet ´ 3 “ J1pS,Bq ď J1pB,Bq “ ´2.

The general form of prisoners’ dilemma is given by

P2
silent betray

P1
silent (R,R) (S,T)
betray (T,S) (P,P)

where T ą R ą P ą S.

History. Prisoners’ Dilemma was originally framed by Merrill Flood and Melvin Dresher while
working at RAND in 1950. Albert W. Tucker formalized the game with prison sentence rewards
and named it “prisoner’s dilemma”.

2.2.2 Best Response

The definition of a Nash equilibrium is sometimes restated in terms of best response.

Definition 5. Best response mapping. For any u´i P U´i, define Bipu´iq to be the set of player
i’s best actions given u´i. That is,

Bipu´iq “ tui P Ui| Jipui, u´iq ě Jipu
1
i, u´iq @ u

1
i P Uiu

Note that Bipu´iq is potentially a set valued map.

Definition 6. (Best Response Definition of a Nash Equilibrium.) A Nash equilibrium u˚ P U is a
profile such that for each i,

u˚i P Bipu
˚
´iq

To show a game has a Nash equilibrium it suffices to show that there is a profile u˚ such that
for each i P I,

u˚i P Bipu
˚
´iq.
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Definition 7. Let B : U Ñ U be defined by Bpuq “ ˆiPIBipu´iq. Then we can rewrite the best
response Nash condition as u˚ P Bpu˚q.

Remark 4. Fixed point theorems give conditions on B under which there exists a value of u˚ for
which u˚ P Bpu˚q.

2.2.3 Mixed Strategies

It may be the case, that a Nash equilibrium in pure strategies does not exist. The following example
demonstrates that not every game as a Nash equilibrium in pure strategies.

Example 2.4 (Matching Pennies Revisited.)

(+1,-1) (-1,+1)

(-1,+1) (+1,-1)

heads tails

heads

tails

P2 (odd)

P1 (even)

There are no Nash equilibria. Indeed, if we check the Nash equilibrium conditions for all possible
strategies we will find that no joint action pair satisfies the conditions: e.g.,

1 “ J1pH,Hq ě J1pT,Hq “ ´1 yet ´ 1 “ J2pH,Hq ď J2pH,T q “ 1

John Nash showed in his seminal 1951 paper that all finite games admit Nash equilibria in mixed
strategies. Informally, the intuition is that there may not be a joint action profile (or pure strategy)
which satisfies the Nash equilibrium conditions, however, if players are allowed to randomize (i.e.,
choose actions from a distribution with support in their action space), then it may be possible to
satisfy the Nash equilibrium conditions in expectation given the distribution (or mixed strategy)
for each player.

Indeed, the mixed strategy Nash equilibrium concept is designed to model the steady state of
a game in which participants randomize their strategies.

Let ∆pUiq be the set of probability distributions over Ui and refer to a member of ∆pUiq as a
mixed strategy. For instance, recall again the matching pennies game. Player 1’s (even) strategy
space is U1 “ tH,T u. Then let p “ ppH , pT q P ∆pU1q where pH ` pT “ 1.

∆pUiq “

$

&

%

σi “ pσ
1
i , . . . , σ

|Ui|

i q :

|Ui|
ÿ

j“1

σji “ 1

,

.

-

where | ¨ | denotes the cardinality of the argument.

Remark 5. We will now refer to elements of Ui as pure strategies.

A profile pσiqiPI of mixed strategies induces a probability distribution over U .

Definition 8. (Extension of payoff functions to ∆pUq “
ś

iPI ∆pUiq.) Given independence of the
randomizations, the probability of the action profile u “ puiqiPI is

ś

iPI σipuiq so that player i’s
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evaluation of pσiqiPI is

Jipσi, σ´iq “
ÿ

uPU

˜

ź

jPI
σjpujq

¸

Jipuq

Definition 9. (Mixed Nash Equilibrium.) A mixed strategy profile σ˚ is a mixed strategy Nash
equilibrium if for each player i,

Jipσ
˚
i , σ

˚
´iq ě Jipσi, σ

˚
´iq @ σi P ∆pUiq

Proposition 1. (Mixed Nash Necessary and Sufficient Conditions.) Let G “ ppUiqiPI , pJiqiPIq be
a finite strategic form game. Then σ˚ P ∆pUq is a Nash equilibrium if and only if for each player
i P I, every pure strategy in the support of σ˚i is a best response to σ˚´i.

Let us return once again to the Matching Pennies example. We will refer to player 1 as P1 and
player 2 as P2. Let p “ ppH , pT q “ ppH , 1´pHq be the strategy for P2 and q “ pqH , qT q “ pqH , 1´qHq
be the strategy for P1. Since pT “ 1´pH and qT “ 1´qH , we only need to create the best response
maps in terms of one variable as the other is determined from it.

(+1,-1) (-1,+1)

(-1,+1) (+1,-1)

heads tails

heads

tails

P2 (odd)

P1 (even)

To plot the best response curve qHppHq “ B1ppHq for P1, we need to consider that P1 is the
even player, meaning it desires for the two pennies to match either as pH,Hq or pT, T q. This is to
say that when P1 observes P2 playing any value of 0 ď pH ă 0.5, P1 would like to place all the
weight on qH “ 0 since this gives the best opportunity to have a pH,Hq or pT, T q outcome. On
the other hand, when P1 observes P2 playing any values of 0.5 ă pH ď 1, P1 would like to place
all the weight on qH “ 1 for similar reasons. With P1 choosing pH “ 0.5, 0 ď qH ď 1 are all best
responses to P1 for P2.

1 pH

1

qHppHq

T
0

0

H

T

H

qHppHq

qH “ qHppHq “ B1ppHq “

"

0 pH ă 0.5
1 pH ą 0.5

P1 (even)

P2 (odd)
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On the other hand, to plot the best response curve for P2, i.e. pHpqHq “ B2pqHq, we need to
consider that P2 is the odd player, meaning it desires for the two pennies to NOT-match either as
pT,Hq or pH,T q.

This is to say that when P2 observes P1 playing any value of 0 ď qH ă 0.5, P2 would like to
place all the weight on pH “ 1 since this gives the best opportunity to have a pH,T q or pT,Hq
outcome. On the other hand, when P2 observes P1 playing any values of 0.5 ă qH ď 1, P2 would
like to place all the weight on pH “ 0 for similar reasons. With P2 choosing qH “ 0.5, 0 ď pH ď 1
are all best responses to P2 for P1.

1 pHpqHq

1

qH

0
T H

T

H

pHpqHq

pH “ pHpqHq “ B2pqHq “

"

0 qH ą 0.5
1 qH ă 0.5

P1 (even)

P2 (odd)

1 p

1

q

0
T H

T

H

P1 (even)

P2 (odd)

The unique mixed Nash equilibrium for Matching Pennies is thus ppH , qHq “ p0.5, 0.5q.

Remark 6. Smoothed best response removes discontinuities—e.g., using a soft-max function such
as

exppEpx1q{γq
exppEpx1q{γq ` exppEpx2q{γq

with smoothing parameter γ. This is particularly useful in capturing myopic behavior. Psychology
experiments (Luce-Shepard rule [11], e.g.) verify this smoothed response (when individuals are
roughly indifferent between two actions they appear to choose more or less at random). Some
learning rules based on smooth best response (as we will see with Fictitious play) can result in
players learning to play mixed Nash equilibrium [7].
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2.2.4 Strict Dominance of Mixed Strategies

Often games are such that certain strategies dominate other strategies.

Definition 10. (Dominant Strategies.) A strategy is dominant for a player if it yields the best
payoff for that player no matter what strategies the other players choose. If all players have a
dominant strategy, then it is natural for them to choose the dominant strategies and we reach a
dominant strategy equilibrium.

Recall the Prisoners’ Dilemma game from Example 2.3.

(-2,-2) (0,-3)

(-3,0) (-1,-1)

Betray Silent

Betray

Silent

P2

P1

The strategy pB,Bq is a dominant strategy equilibrium since no matter the other player does its
best for each player to stick with confessing.

Definition 11. An action ui is strictly dominated if there exists a mixed strategy σ1i P ∆pUiq such
that

Jipσ
1
i, u´iq ą Jipui, u´iq @ u´i P U´i

Strictly dominated strategies are never used with positive probability in a mixed strategy Nash
equilibrium.

Example 2.5 (Dominated Strategies.)

P1z P2 L R
U p2, 0q p´1, 0q
M p0, 0q p0, 0q
D p´1, 0q p2, 0q

In this example, player 1 (P1) has no pure strategies that strictly dominate M . However, M is
strictly dominated by the mixed strategy p0.5, 0, 0.5q.

The following procedure iteratively eliminates strictly dominated strategies”
1. Let U0

i “ Ui and ∆0pUiq “ ∆pUiq.

2. For each i and each k ě 1 define

Uki “ tui P U
k´1
i | E σi P ∆k´1pUiq s.t. Jipσi, u´iq ą Jipui, u´iq @u´i P U

k´1
´i u

3. Independently mix over Uki to generate/define ∆kpUiq.

4. Let U8i “
Ş8
k“1 U

k
i

The set U8i is the set of strategies for player i that survive iterated strict dominance.

Remark 7. If Ui is finite for each i, then U8i is non-empty. However, it might not be a singleton.
The order in which strategies are eliminated does not effect the set of strategies that survive.
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Example 2.6 (Iterated Elimination of Dominated Strategies.)

P1z P2 X Y
A p5, 2q p4, 2q
B p3, 1q p3, 2q
C p2, 1q p4, 1q
D p4, 3q p5, 4q

Both B and C are dominated strategies for P1, and X is dominated for P2. We can reduce the
game to

P1z P2 Y
A p4, 2q
D p5, 4q

In this newly reduced game, D dominates A for P1. Thus, we expect players choose pD,Y q.

2.3 Existence of Nash Equilibria

Theorem 1 (Nash, 1951). Every finite game has a mixed strategy Nash equilibrium.

Why is existence important? Without knowing whether an equilibrium exists, it is difficult
to try and understand its properties.

Recall the following:

A mixed strategy x˚ is a Nash equilibrium if and only if x˚i P Bipx
˚
´iq for each i.

Define the best response correspondence B : X Ñ X where X “ ˆiPIXi and

Xi “ txi “ pxi,1, . . . , xi,niq|1
Jxi “ 1, xi ě 0u

such that for all x P X we have

Bpxq “ pBipx´iqqiPI

The existence of Nash is equivalent to the existence of a mixed strategy x such that x P Bpxq—
that is x is a fixed point of the map Bp¨q.

Remark 8. Fixed point theorems give conditions on B under which there exists a value of x˚ for
which x˚ P Bpx˚q.

Lemma 1. (Kakutani’s Fixed Point Theorem). Let X be a compact, convex3 subset of Rn and let
f : X Ñ X be a set valued map for which the following hold:

• for each x P X, the set fpxq is non-empty and convex;

• the graph of f is closed (i.e., if txn, ynu Ñ tx, yu with yn P fpxnq for all n, then y P fpxq).

Then, there exists x˚ P X such that x˚ P fpx˚q.

3A set in Euclidean space is compact if and only if it is bounded and closed. A set S is convex if for any x, y P S
and any λ P r0, 1s, λx` p1´ λqy P S.
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x

y

Not convex

x

y

Graph not closed

The proof of Nash’s theorem is now fairly straightforward.
In order to apply Kakutani’s theorem to the best response map B : X Ñ X, we need to show

that B satisfies the conditions of the theorem.

Step 1: Check that X is compact, convex, and non-empty.

Indeed, by definition X “ ˆiPIXi where each Xi “ txi “ pxi,1, . . . , xi,niq|1
Jxi “ 1, xi ě 0u is a

simplex of dimension |Si| ´ 1 “ ni “ 1, thus each Xi is closed and bounded, hence compact. Their
product is also compact.

Step 2: Check that Bpxq is non-empty.

To do this we need the following theorem fo Weierstrass.

Theorem 2 (Weierstrass). Let Y be a non-empty compact subset of a finite dimensional Euclidean
space and let f : Y Ñ R be a continuous function. Then f must attain a maximum and a minimum,
each at least once. That is, there exists an optimal solution to

mintfpyq| y P Y u

Now, by definition,
Bipx´iq “ arg max

yPXi

fipy, x´iq

where Xi is non-empty and compact, and fi is linear in y. Hence, fi is continuous and by Weirstrass’
theorem Bpxq is non-empty.

Step 3: Check that Bpxq is a convex mapping.

We will argue an equivalent statement: Bpxq Ă X is convex if and only if Bipx´iq is convex for
all i. Let zi, yi P Bipx´iq. Then,

fipyi, x´iq ě fipv, x´iq @ v P Xi

and
fipzi, x´iq ě fipv, x´iq @ v P Xi.

This, in turn, implies that for all λ P r0, 1s, we have

λfipyi, x´iq ` p1´ λqfipzi, x´iq ě fipv, x´iq
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since

λfipyi, x´iq ě λfipv, x´iq @ v P Xi

and

p1´ λqfipzi, x´iq ě p1´ λqfipv, x´iq @ v P Xi

so that

λfipyi, x´iq ` p1´ λqfipzi, x´iq ě λfipyi, x´iq ` p1´ λqfipv, x´iq

ě λfipv, x´iq ` p1´ λqfipv, x´iq

“ fipv, x´iq.

By linearity of fi, we have that

fipλyi ` p1´ λqzi, x´iq ě fipv, x´iq @ v P Xi.

Hence, λyi ` p1´ λqzi P Bipx´iq showing that each Bi is convex so that B is convex.

Step 4: Check that Bpxq also has a closed graph.

Indeed, we show this by contradiction. Suppose not—i.e., Bpxq is assumed to not have a closed
graph. Then, D a sequence pxk, x̂kq Ñ px, x̂q with x̂k P Bpxkq, but x̂ R Bpxq, i.e., D some i such that
x̂i R Bipx´iq. This implies that D some x1i P Xi and some ε ą 0 s.t.

fipx
1
i, x´iq ą fipx̂i, x´iq ` 3ε. (˚)

Since fi is continuous and xk´i Ñ x´i, we have that for sufficiently large k,

fipx
1
i, x

k
´iq ě fipx

1
i, x´iq ´ ε (˚˚)

Combining (˚) and (˚˚), we have that

fipx
1
i, x

k
´iq ą fipx̂i, x´iq ` 2ε ě fipx̂

k
i , x

k
´iq ` ε

where the section inequality follows from the continuity of fi. This contradicts the assumption that
x̂ki P Bipx

k
´iq.

We have now shown that X and Bp¨q satisfy the assumptions of Kakutani’s fixed point theorem,
and hence we can apply it to get the existence of Nash.

2.4 Computation of Nash Equilibria in Finite Games

As we have seen, finite strategic form games can be represented in terms of the payoff matrices.
In the special case of two player settings, such games are referred to as bi-matrix games. For this
section, we will focus on bi-matrix games and how optimization techniques can be used to comptute
equilibria in such games.

Consider a game with two players characterized as follows.

• Player 1 (P1): strategy space S1 “ ts
1
1, . . . , s

1
m1
u with |S1| “ m1, payoff matrix A P Rm1ˆm2

• Player 2 (P2): strategy space S2 “ ts
2
1, . . . , s

2
m2
u with |S2| “ m2,payoff matrix B P Rm1ˆm2
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Let x denote the mixed strategy of P1, i.e. x P X “ ∆pS1q where

X “

#

x :
m1
ÿ

i“1

xi “ 1, xi ě 0

+

.

Similarly, let y denote the mixed strategy of P2, i.e. y P Y “ ∆pS2q where

Y “

#

y :
m2
ÿ

i“1

yi “ 1, yi ě 0

+

.

Given a mixed strategy profile px, yq, the payoffs of P1 and P2 can be expressed in terms of the
payoff matrices as follows:

J1px, yq “ xJAy and J2px, yq “ xJBy

Recall from the proceeding section that we used a single object to represent the game: e.g.,

P1zP2 s11 s12
s21 pa11, b11q pa12, b12q
s22 pa21, b21q pa22, b22q
s23 pa31, b31q pa32, b32q

Hence, the payoff matrices4 in this case are just

A “

»

–

a11 a12
a21 a22
a31 a32

fi

fl and B “

»

–

b11 b12
b21 b22
b31 b32

fi

fl .

Example 2.7 (Utility Representation in Bi-Matrix Games.) Suppose m1 “ 3 and
m2 “ 2 as above. Then x “ px1, x2, x3q with

řm1
i“1 xi “ 1, xi ě 0 and xi is the probability

assigned to strategy s1i in P1’s randomization over S1. Similarly, y “ py1, y2q with y1 ` y2 “ 1,
yi ě 0 and yi the probability P2 assigns to strategy s2i . The payoffs are given by

J1px, yq “ xJAy “
“

x1 x2 x3
‰

»

–

a11 a12
a21 a22
a31 a32

fi

fl

„

y1
y2



“

2
ÿ

k“1

3
ÿ

j“1

ykxjajk

J2px, yq “ xJBy “
“

x1 x2 x3
‰

»

–

b11 b12
b21 b22
b31 b32

fi

fl

„

y1
y2



“

2
ÿ

k“1

3
ÿ

j“1

ykxjbjk

Let’s redefine Nash in terms of this new notation.

Definition 12. (Mixed Nash.) A mixed strategy profile px˚, y˚q is a mixed strategy Nash if and
only if

px˚qJAy˚ ě xJAy˚ @ x P X

px˚qJBy˚ ě px˚qJBy @ y P Y
4Note that some references will write

J2px, yq “ yJBJx

and define BJ to be the payoff matrix for player 2. Keep this in mind when comparing these notes to other references.
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2.4.1 Zero Sum Games

In zero sum settings, it is the case that B “ ´A, and hence, the definition of Nash reduces to the
following two inequalities:

px˚qJAy˚ ě xJAy˚ @ x P X

px˚qJAy˚ ď px˚qJAy @ y P Y

which we can combine to get

xJAy˚ ď px˚qJAy˚ ď px˚qJAy @x P X, y P Y.

That is, a Nash equilibrium px˚, y˚q is a saddle point of the function xJAy defined over X ˆY .
Formally,

Definition 13. A vector px˚, y˚q is a saddle point of if x˚ P X and y˚ P Y and

sup
xPX

xJAy˚ “ px˚qJAy˚ “ inf
yPY
px˚qJAy (˚)

For any function f : X ˆ Y Ñ R we have the so-called minimax inequality which is given by

sup
xPX

inf
yPY

fpx, yq ď inf
yPY

sup
xPX

fpx, yq

Indeed, it is easy to see why the above inequality holds by the following reasoning: for every x̃ P X
write

inf
yPY

fpx̃, yq ď inf
yPY

sup
xPX

fpx, yq

and take the sup over x̃ P X of the left-hand side—i.e., it has to be true for all values, so certainly
true for the supremum.

Proposition 2. (Nash Equilibria in Bi-Matrix Games.)

px˚, y˚q is N.E. ðñ px˚qJAy˚ “ inf
yPY

sup
xPX

xJAy “ sup
xPX

inf
yPY

xJAy

Proof. Indeed,

p˚q ùñ inf
yPY

sup
xPX

xJAy ď sup
xPX

xJAy˚ “ px˚qJAy˚ “ inf
yPY
px˚qJAy ď sup

xPX
inf
yPY

xJAy

Combining this with the minimax inequality, we get that equality holds throughout.

Definition 14. (Game Value.) The value of the game is px˚qJAy˚.

Surprisingly, finding mixed Nash equilibrium of a finite zero-sum game can be written as a pair
of linear optimization problems. Indeed, for a fixed y, we have

max
xPX

xJAy “ max
i“1,...,m1

trAysiu

and thus,
min
yPY

max
xPX

xJAy “ min
yPY

maxtrAys1, . . . , rAysm1u “ min
yPY
tv| v1n ě Ayu

Similarly,

max
xPX

min
yPY

xJAy “ max
xPX

mintrAJxs1, . . . , rA
Jxsm2u “ max

xPX
tξ| ξ1m2 ď AJxu

Remark 9. Linear programs can be solved in polynomial (in m1 and m2) time.
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2.4.2 Non-Zero Sum Games

The fact that finding Nash in the zero sum setting reduces to solving a pair of linear programs is
nice outcome. Does this extend to the non-zero sum setting?

Recall that the joint strategy space is the cross product of simplexes:

#

x| x “ px1, . . . , xm1q,
ÿ

i

xi “ 1

+

ˆ

#

y| y “ py1, . . . , ym2q,
ÿ

i

yi “ 1

+

Nash equilibria can be strictly in the interior—that is, xi ą 0 and yj ą 0 for each i P t1, . . . ,m1u,
j P t1, . . . ,m2u—or on the boundary. Let us start by considering points on the interior first (inner
or totally mixed Nash equilibria).

Let ai denote the rows of A and let bj denote the columns of B. Recall the following charac-
terization of a Nash equilibrium: a point px˚, y˚q is a Nash equilibrium if and only if every pure
strategy in the support of x˚ is a best response to y˚. This implies that all pure strategies in the
support of a Nash equilibrium yield the same payoff which is also greater than or equal to the
payoffs for strategies outside the support.

If supppx˚q denotes the support of x˚, then for all sj , sk P supppx˚q we have J1psj , y
˚q “

J1psk, y
˚q and for each si P supppx˚q and s` R S̄1 we have J1psi, y

˚q ě J1ps`, y
˚q.

In other words, for purely mixed strategies (that is, ones where the support is the whole strategy
space, i.e. supppxq “ S1 and supppyq “ S2) we have that

px, yq is a Nash equilibrium ðñ

$

’

’

&

’

’

%

a1y “ aiy i “ 2, . . . ,m1

xJb1 “ xJbj j “ 2, . . . ,m2
řm1
i“1 xi “ 1

řm2
j“1 yj “ 1

This is a set of linear equations and can be solved efficiently.

Exercise 4.1 Try solving this for matching pennies to find the Nash equilibria. Try it also
using the zero sum calculation formulation (since matching pennies is a zero-sum game).

Remark 10. For n ě 2 (more than 2 players), we get a set of polynomial equations and we will
talk more about this case later.

We note that not all games have purely mixed Nash strategies!
Let us now formulation a naive or brute force extension of the purely mixed strategy computa-

tion strategy for cases where we do not have purely mixed strategies.
A mixed strategy profile px, yq P XˆY is a Nash equilibrium with supppxq Ă S1 and supppyq Ă

S2 if and only if
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

u “ aiy @ s1i P supppxq
u ě aiy @ s1i R supppxq
v “ xJbj @ s2j P supppyq

v ě xJbj @ s2j R supppyq

xi “ 0 @ s1i R supppxq
yj “ 0 @ s2j R supppyq

The issue with this computation method is that is requires finding the right support sets supppxq
and supppyq. There are 2m1`m2 different support sets; hence, this processes is exponential in
computation time!
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Optimization Formulation. As an alternative, we are going to formulate the problem of com-
puting Nash as a nonlinear program and use optimization tools that we know and are familiar
with.

Remark 11. We will make a similar connection for continuous games and we will use an inverse
formulation for designing feedback mechanisms to induce a Nash equilibrium. So this optimization
framework is quite important.

Recall the set of linear equations we wrote down for interior Nash equilibria. We can use those
to define best response polytopes.

Definition 15. (Best Response Polytopes.)

P “ tpx, vq P Rm1`1| xi ě 0, i “ 1, . . . ,m1, 1Jx “ 1, BJx ď 1vu

Q “ tpy, uq P Rm2`1| yj ě 0, j “ 1, . . . ,m2, 1Jy “ 1, Ay ď 1uu

Let NEpA,Bq be the set of Nash equilibria for the bi-matrix game pA,Bq.

Lemma 2. All mixed strategy Nash equilibria have zero optimal value to (P-1).

Proof. Recall that if a point px˚, y˚q P NEpA,Bq then x˚ is a best response to y˚ and vise versa.
That is,

x˚ P arg maxtxJAy˚| x P Xu

The dual of this problem is

min
p
tp|1np ě Ayu

Feasible points are optimal if and only if the two objective points are equal px˚qJAy˚ “ p˚. A
similar argument holds for px˚qJBy˚ “ q˚. Thus,

px˚qJAy˚ ` px˚qJBy˚ ´ p˚ ´ q˚ “ 0

Applying this lemma, we get that

ppx, vq, py, uqq P P ˆQ s.t. px, yq P NEpA,Bq ðñ

"

xJpAy ´ 1uq “ 0
pxJB ´ 1vqy “ 0

Proposition 3. (Necessary and Sufficient Conditions for Nash in Bi-Matrix Games.) A mixed
profile px, yq P X ˆ Y is a Nash equilibrium of the bimatrix game pA,Bq if and only if D pp, qq such
that px, y, u, vq is a solution to

max xJAy ` xJBy ´ u´ v (P-1)

s.t. Ay ď u1m1 (2.2)

BJx ď v1m2 (2.3)

x ě 0, y ě 0 (2.4)
řm1
i“1 xi “ 1,

řm2
j“1 yj “ 1 (2.5)
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proof sketch. Clearly,for ppx, vq, py, uqq P PˆQ we have that xJpAy´1uq ď 0 and pxJB´1vqy ď
0 so that

xJpAy ´ 1uq ` pxJB ´ 1Jvqy ď 0

Using the fact that xJ1 “ 1 and 1Jy “ 1, we have

xJAy ` xJBy ´ u´ v ď 0

and equality holds if and only if px, yq P NEpA,Bq.

Definition 16. A game pA,Bq is a symmetric game if B “ A (the strategy sets S1 and S2 are the
same).

Proposition 4. (Nash, 1951.) Any symmetric finite game has a symmetric Nash equilibrium.
That is, if px, yq P NEpA,Aq then x “ y.

In this case, a Nash equilibrium x satisfies u “ v and Ax ď 1u, and xJAx ´ u “ 0. We can
then formulate a quadratic program for finding all symmetric Nash equilibrium. Indeed,

max xJAx´ u

s.t. Ax ď 1u, 1Jx “ 1, x ě 0

Any bimatrix game pA,Bq can be converted to an equivalent symmetric game pÃ, Ãq where

Ã “

„

0 A
BJ 0



with strategy vector

z “

„

x
y



Exercise 4.2 Check that any symmetric Nash equilibrium of the game pÃ, Ãq is a Nash equi-
librium of the original game and vice-versa.

The following are some additional noteworthy items:
• The optimization formulation can be generalized to multi-player finite games.

• Work in 2006 by Pablo Parrilo created a semi-definite programming formulation for two person
zero-sum games with continuous strategy spaces and some assumptions on the structure of
the payoff functions. His work shows that Nash equilibria can be computed efficiently [13].

• Other work focuses on developing polynomial time algorithms for rank-based games; e.g., the
rank of a game is defined to be rankpA`Bq. So, for zero sum games we have rankpA`Bq “
rankpA ´ Aq “ 0 and Nash equilibria in zero sum games can be found efficiently. However,
work by Garg, Jiang and Mehta in 2011 shows results for rank 1 games [8].

2.5 Correlated Equilibria in Strategic Form Games

Recall that in a Nash equilibrium, players randomize over strategies independently. A natural
extension of this is to explore correlation between players strategies. This leads to the refinement
of the Nash equilibrium concept known as correlated equilibrium:

Pure Nash Ă Mixed Nash Ă Correlated Equilibria
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Indeed, it may be the case for games with multiple Nash equilibria that we want to allow for
randomizations between Nash equilibria by some form of communication prior to the play of the
game.

Example 2.8 (Bach or Stravinsky.) Recall the game in which players are going out to a
concert and must choose between Bach and Stravinsky.

P1zP2 Bach Stravinsky
Bach p1, 4q p0, 0q

Stravinsky p0, 0q p4, 1q

Suppose the players flip a coin and go to Bach if the coin is heads and Stravinksy otherwise.
The payoff to the players in this case is p1{2p1 ` 4q, 1{2p4 ` 1qq “ p5{2, 5{2q and this is not a
Nash equilibrium. The coin flip acts as a correlation device.

Example 2.9 (Using a correlation devise to find Nash.)

P1zP2 L R
U p5, 1q p0, 0q
D p4, 4q p1, 5q

Both pU,Lq and pD,Rq are pure strategy Nash equilibria of the game.
To find the mixed Nash equilibrium we will recall that for a Nash equilibrium px, yq it has to be
the case that a1y “ a2y and xJb1 “ xJb2 where ai are rows of A and bj are columns of B. Let
P1 play U with probability p and P2 player L with probability q. Then

5q “ 4q ` p1´ qq ùñ q “
1

2

5p “ 4p` p1´ pq ùñ p “
1

2

The unique Nash is p12 ,
1
2 ,

1
2 ,

1
2q and its payoff is p5{2, 5{2q.

Note for a Nash equilibrium, people randomize independently. For games with multiple Nash
equilibria, one may want to allow for randomizations between Nash equilibria by some form of
communication prior to the play of the game.

A generalization is called correlated equilibrium [1]. In this set up, players observe a correlating
signal before making their choice (think about introducing a traffic light or stop sign in the at an
intersection).

Definition 17. Correlated Equilibrium A joint probability distribution x over S is a correlated
equilibrium of G if, for each i,

Es„σrJipsi, s´iq| sis ě Es´i„σ´irJips
1
i, s´iq| sis, @ s1i P Si

Correlated equilibria can be interpreted as follows: there is a mediator who

1. draws an outcome s from the publicly known distribution σ,

2. and privately recommends strategy si to each player i.

Correlated equilibria require the expected payoff from playing the recommended strategy is greater
than or equal to playing any other strategy.
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Figure 2.2: Refinements of the Nash equilibrium concept.

Example 2.10 (Example: traffic Light—Correlated equilibrium but not mixed Nash)
Consider the following game:

»

–

P1zP2 stop go
stop p0, 0q p0, 1q
go p1, 0q p´5,´5q

fi

fl

If the other player is stopping at an intersection, then you would rather go and get on with
it. The worst-case scenario, of course, is that both players go at the same time and get into an
accident. There are two pure Nash equilibria: (stop, go) and (go, stop). Define σ by randomizing
50/50 between these two pure Nash equilibria. This is not a product distribution, so it cannot
be a mixed Nash equilibrium. It is, however, a correlated equilibrium. Indeed, consider P1 (row
player). If the mediator (stop light) recommends go then P1 knows that P2 was recommended
stop. Assuming P2 plays the recommended strategy stop, P1’s best response is to follow its
recommended strategy go. Similarly, when P1 is told to stop, it assumes that P2 will go, and
under this assumption stopping is a best response.

The correlated equilibrium concept requires that following the recommended strategy be a best
response in the interim stage—i.e., a correlated equilibrium requires that after a profile s is drawn
and recommended, playing si is a best response for i conditioned on seeing si and given everyone
else plays s. There are a number of further refinements of the Nash equilibrium concept including
the notion of a coarse correlated equilibrium (CCE), which only requires the recommended strategy
to be a best response at the ex-ante stage—i.e., CCE requires only that following the suggested
strategy si when s „ σ is a best response in expectation before you see si.

Definition 18. (Coarse Correlated Equilibrium.) A coarse correlated equilibrium (CCE) is a
distribution σ over actions S such that for every player i, and every action s1i

Es„σrJipsqs ě EsrJips1i, s´iqs

Hannan Set/No-regret Equilibrium: The set of all distributions satisfying the above is
sometimes called the Hannan set.

Refinements of the Nash equilibrium concept generally have arisen due to the pursuit of theory
for how players arrive at an equilibrium. One theory for how players arrive at an equilibrium is
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through a process of (myopic) tâtonnement, thereby giving rise to the theory ’learning in games’ [7].
While the subject of learning in games is relegated to a later chapter, we mention it here to note
the importance of refinements of Nash. It turns out that not only are refinements easier to compute
(as Figure 2.2 suggests) but also are arguably easier to learning through tâtonnement.

2.5.1 Computation of Correlated Equilibria

I will expand this section

2.6 Stackelberg Equilibria in Strategic Form Games

I will expand this section: breif introduction to minimax and connections to Nash

2.7 Games with Continuous Actions Spaces

Now instead of having a finite strategy space (that is players choose actions from a set of finite
choices—e.g., heads or tails) players choose from infinitely many pure strategies.

In particular, we consider games where players choose from a continuum and the utility func-
tions are continuous. Mixed strategies over finite games can be thought of as pure strategies in a
continuous game over the simplex.

Example 2.11 (Cournot Game.) Consider a scenario in which there are two firms 1 and
2. They simultaneously choose any quantity q1, q2 ě 0. The price in the market is given by
ppq1, q2q “ A´ q1 ´ q2 for some constant A. The firms payoff functions are given by

π1pq1, q2q “ pA´ q1 ´ q2qq1 ´ c1q1

π2pq1, q2q “ pA´ q1 ´ q2qq2 ´ c2q2

Calculate the equilibrium:
Bπ1
Bq1

“ A´ 2q1 ´ q2 ´ c1 “ 0

Bπ2
Bq2

“ A´ q1 ´ 2q2 ´ c2 “ 0

The values of qi that satisfy this equation are best responses. The Nash equilibria are where
both q1 and q2 are best response given those values of q1 and q2. That is

q˚1 “
1

3
pA´ 2c1 ` c2q and q˚2 “

1

3
pA´ 2c2 ` c1q

Remark 12. I will show you why in general we do not want to just take the derivative and set it
to zero even for simple games. We will show that in fact for simple games you can get an entire
continuum of Nash equilibria (meaning they are not isolated).

Definition 19. A point px1, . . . , xnq is a Nash equilibrium for the continuous game if for each i P I

fipxi, x´iq ě fipy, x´iq @ y P Xi
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2.7.1 Best Response

Best response or rational response curves are again useful.

Definition 20. In an n–person nonzero sum game, let the maximum utility function of P1,
f1px1, . . . , xnq with respect to x1 P X1 be attained for each x´1 P X´1 where x´1 “ px2, . . . , xnq
Then the set R1px´1q Ă X1 defined by

R1px´1q “ tξ P X1 : f1px1, x´1q ě f1pξ, x´1q, @x1 P X1u

is called the optimal response or rational reaction set for P1. Similarly for each other player.

2.7.2 Existence of Nash Continuous games

Theorem 3 (Debreu [5], Glicksberg [9], Fan [6]). Consider a strategic form game ppXiqiPI , pfiqiPIq
such that for each i P I, the following hold:

• Xi is compact and convex

• fipxi, x´iq is continuous in x´iq

• fipxi, x´iq is continuous and concave (utility maximizers) in xi
Then, a pure strategy Nash equilibrium exists.

We note that quasi-concavity is enough for the proof. Dasgupta and Maskin showed in 1986
that pure strategy equilibria exists in discontinuous games [4, 3]—that is, the utilities do not need
to be continuous and instead, we need only quasi-concavity and upper-semicontinuity in x and
graph continuity.

Definition 21. fi : X Ñ R is upper semicontinuous if for any sequence txnu Ă X such that
xn Ñ x, we have that

lim sup
nÑ8

fipx
nq ď fipxq

Definition 22. fi : X Ñ R is graph-continuous if for all x̄ P X, D a function Fi : X´i Ñ Xi

with Fipx̄´iq “ x̄i such that fipFipx´iq, x´iq is continuous at x´i “ x̄´i.

Note this is called graph continuity because if one graphs a player’s payoff as a function of his own
strategy (holding the strategies of the other players fixed) and if this graph changes continuously as
one varies the strategies of the other players, then the player’s payoff function is graph continuous
in the sense of this definition.

History. Glicksberg showed in 1952 [9] that for compact strategy spaces and continuous
utility functions there exists mixed strategy equilibrium for the game. Dasgupta and Maskin
extended this result in 1986 as well to discontinuous games where the utilities are not even
quasi-concave [4].

Example 2.12 (Relaxing Quasi-continuity.) Consider the location game where players
choose a point on the circle and their payoffs are

f1ps1, s2q “ ´f2ps1, s2q “ }s1 ´ s2}
2
2

Then there is no pure strategy Nash, yet there is a mixed Nash in this game where both players
mix uniformly on the circle.
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2.8 Optimality Conditions to Characterize Local Nash Equilibria

We may consider using optimality conditions to find Nash equilibria. Suppose that Xi Ă Rmi for
each i and let

X “ X1 ˆ ¨ ¨ ¨ ˆXn

Here we will only concern ourselves with full information games and reduce the notation for a game
to be the tuple

G “ pf1, . . . , fn, Xq

We define the ”differential game form” as follows.

Definition 23 ([14]). For a game G “ pf1, . . . , fn, Xq, the ”differential game form” is the collection
of individual derivatives—i.e.

ωpxq “ pD1f1, . . . , Dnfnq

where Difi “ Bfi{Bxi.

These individual derivatives are the directions in which a player can make ”differential” adjust-
ments to its strategy in order to improve the cost locally.

Note this definition can be extended to a well-defined differential form in settings where the
strategy spaces of agents are manifolds (without boundary):

Definition 24 ([14]). The differential game form for a game G “ pf1, . . . , fn, Xq is given by

ω “
n
ÿ

i“1

ni
ÿ

j“1

Bfi

Bxji
dxji

where this is a mapping (a actual differential form) ω : X1 ˆ ¨ ¨ ¨ ˆXn Ñ T ˚pX1 ˆ ¨ ¨ ¨ ˆXnq.

Definition 25 ([14]). A strategy x “ px1, . . . , xnq is a differential Nash equilbrium if ωpxq “ 0
(that is Difipxq “ 0 for each i) and D2

i fipxq is (strict) positive definite (resp. negative definite if
players are utility maximizers).

The conditions of the definition are sufficient for checking if a point is a Nash equilibrium. These
look just like first and second order conditions for optimality. But they are not necessary. This
gap between the necessary and sufficient conditions is important because it can be the case that
you get a continuum of Nash equilibria (as the next example will show) even for the case where
the cost functions are concave (resp. convex)!! For this example, let us switch to thinking about
cost minimizers instead of utility maximizers.

Example 2.13 (Betty-Sue Thermodynamic Coupling.) Consider a two player game
between Betty and Sue. Let Betty’s strategy space be X1 “ R and her cost function

f1px1, x2q “
1

2
x21 ´ x1x2.

Similarly, let Sue’s strategy space be X2 “ R and her cost function

f2px1, x2q “
1

2
x22 ´ x1x2.

This game can be thought of as an abstraction of two agents in a building occupying adjoining
rooms where cross terms model the effect of heat transfer.
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The first term in each of their costs represents an energy cost and the second term is a cost from
thermodynamic coupling. The agents try to maintain the temperature at a desired set–point in
thermodynamic equilibrium.
The definition of Nash specifies that a point px˚1 , x

˚
2q is a Nash equilibrium if no player can

unilaterally deviate and decrease their cost, i.e.

f1px
˚
1 , x

˚
2q ď f1px1, x

˚
2q, @x1 P R

and
f2px

˚
1 , x

˚
2q ď f2px

˚
1 , x2q, @x2 P R.

Fix Sue’s strategy x2 “ z, and calculate

D1f1 “
Bf1
Bx1

“ x1 ´ z (2.6)

Then, Betty’s optimal response to Sue playing x2 “ z is x1 “ z. Similarly, if we fix Betty’s
strategy as x1 “ y, then Sue’s optimal response is x2 “ y. For all x1 P Rztzu,

´
1

2
pzq2 ă

1

2
x21 ´ x1z (2.7)

so that
f1pz, zq ă f1px1, zq, @x1 P Rztzu.

Again, similarly, for all x2 P Rztyu,

´
1

2
y2 ă

1

2
x22 ´ x2y (2.8)

so that
f2py, yq ă f2py, x2q, @x2 P Rztyu.

Hence, all the points on the line x1 “ x2 in X1 ˆX2 “ R2 are strict local Nash equilibria—in
fact, they are strict global Nash equilibria. �

As the example shows, continuous games can exhibit a continuum of equilibria.
The following proposition provides first– and second–order necessary conditions for local Nash

equilibria. We remark that these conditions are reminiscent of those seen in nonlinear programming
for optimality of critical points.

Proposition 1 (Necessary Optimality Conditions). Let x˚ be an unconstrained local minimum of
f : Rm Ñ R and assume that f is continuously differentiable in an open set S containing x˚. Then

Dfpx˚q “ 0

In addition, if f is sufficiently smooth (twice differentiable in this case on S) then

D2fpx˚q ě 0

Proposition 2 (Necessary Conditions [14]). If x “ px1, . . . , xnq is a Nash equilibrium, then ωpxq “
0 and Df2i fipxq is positive semi-definite for each i P t1, . . . , nu.

Note: This result extends to local Nash equilibria on Manifolds [14, 16, 15].

Theorem 4 ([14]). A differential Nash equilibrium is a strict Nash equilibrium.
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Example 2.14 (Betty–Sue: Continuum of Differential Nash.) Returning to the Betty–
Sue example, at all the points such that x1 “ x2, ωpx1, x2q “ 0 and D2

i fipx1, x2q “ 1 ą 0 for
each i P t1, 2u. Hence, there is a continuum of differential Nash equilibria. �

The following object is known as the ’game Jacobian’ in the literature though it has been
referred to also as the ’game Hessian’ since it is composed of the components of the Hessian’s of
the individual agents cost functions (i.e., the diagonal blocks) and the Jacobian of the vector field
ωpxq “ pD1f1pxq, . . . , Dnfnpxqq.

Definition 26 (Game Jacobian, Ratliff, Burden Sastry 2013). The game Jacobian is given by

Jpxq “

»

—

–

D2
1f1pXq ¨ ¨ ¨ D1nf1pxq

...
. . .

...
Dn1fnpxq ¨ ¨ ¨ D2

nfnpxq

fi

ffi

fl

Theorem 5 ([14]). If x “ px1, . . . , xnq is a differential Nash equilibrium and Jpxq is non–degenerate
(i.e., detpJpxqq ‰ 0), then x is an isolated strict local Nash equilibrium.

proof sketch. Application of the inverse function theorem to ω. Inverse function theorem says
that if a function is continuously differentiable and has nonzero derivative at a point then that
function is invertible in a neighborhood of that point (in particular, it is a diffeomorphism) and
thus, in our case ωpxq “ 0 means that only x could map to zero so that it has to be an isolated
Nash equilibrium.

Definition 27 ([14]). Differential Nash equilibria x “ px1, . . . , xnq such that Jpxq is non–degenerate
are termed non–degenerate.

Example 2.15 (Betty–Sue: Degeneracy and Breaking Symmetry.) Return again to the
Betty–Sue example in which we showed that there is a continuum of differential Nash equilibria.
At each of the points x1 “ x2, it is straightforward to check that detpJpx1, x2qq “ 0. Hence, all
of the equilibria are degenerate.
By breaking the symmetry in the game, we can make p0, 0q a non–degenerate differential Nash
equilibrium; i.e. we can remove all but one of the equilibria.
Indeed, let Betty’s cost be given by f̃1px1, x2q “

1
2x

2
1´ax1x2 and let Sue’s cost remain unchanged.

Then the derivative of the differential game form ω̃ of the game pf̃1, f2q is

J “ Dω̃px1, x2q “

„

1 ´a
´1 1



(2.9)

Thus for any value of a ‰ 1, J “ Dω̃ is invertible and hence p0, 0q is a non–degenerate differential
Nash equilibrium. This shows that small modeling errors can remove degenerate differential Nash
equilibria. �

Remark 13. (Why do we care?) In a neighborhood of a nondegenerate differential Nash equi-
librium there are no other Nash equilibria. This property is desirable particularly in applications
where a central planner is designing incentives to induce a socially optimal or otherwise desirable
equilibrium that optimizes the central planners cost; if the desired equilibrium resides on a contin-
uum of equilibria, then due to measurement noise or myopic play, agents may be induced to play a
nearby equilibrium that is suboptimal for the central planner.
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Theorem 6 ([15]). Non-degenerate differential Nash are structurally stable (robust to small per-
turbations) and generic (meaning that Nash equilibria in an open dense set of of continuous games
are non-degenerate differential Nash).

It is worth mentioning a special class of continuous games known as potential games which have
the nice property that a transformation of coordinates transforms the game to an optimization
problem.

Example 2.16 (Couple Oscillators: Potential Games with a Continuum of Nash.)
Consider n–coupled oscillators with an interaction structure specified by a undirected, complete
graph where the nodes represent the oscillators and the edges indicate coupling between os-
cillators. Such a game can be regarded as an abstraction of generators or inverters—perhaps
even microgrids—coupling to the grid where each oscillator is individually managed. Another
practical example is decentralized and autonomous synchronization of timing cycles for traffic
lights based on real-time traffic flow.
Let the phase of oscillator i be denoted by θi P S1 and let its cost be

fi “ ´
1

n

ÿ

iPNi

cospθi ´ θjq

where Ni is the index set of oscillators that are coupled to oscillator i.
The form of the cost is derived from the Laplacian potential function [12]. It is straightforward
to check that the differential game form for the oscillator game satisfies

Difi ” Diφ

(i.e., differential game form is such that ω “ dφ) where

φpθ1, . . . , θnq “ ´
1

2n

n
ÿ

i“1

˜

ÿ

jPNi

cospθi ´ θjq

¸

.

Potential games have nice properties in terms of the existence of equilibria and convergence of
learning algorithms. However, in this example we see that even such nice games potentially have
degeneracies and thus, it is important to be able to characterize when they arise.
We claim that all points in the set

 

pθ1, . . . , θnq P S1 ˆ ¨ ¨ ¨ ˆ S1
ˇ

ˇ θi “ θj ,@i, j P t1, . . . , nu
(

are global Nash equilibria of the game. Indeed, fix θj “ β for all j ‰ i. Then θi “ β is a best–
response—i.e. in the set of optimizers—by oscillator i to all other oscillators playing θj “ β. In
particular, for θ1i P S1ztβu,

φpβ1, . . . , βnq “ ´
|Ni|

n
ă ´

1

n

ÿ

jPNi

cospθ1i ´ βq, @θ
1
i P S1ztβu,

where |Ni| denotes the cardinality of the set Ni. Thus there is a continuum of Nash equilibria for
which the oscillators are synchronized. In fact there is a continuum of differential Nash equilibria;
this is easily seen by checking that D2

i fipθ, . . . , θq ą 0.
Consider now a simple game with n “ 2 oscillators managed by Jean and Paul respectively.
Let Jean’s cost be f1 “ ´

1
2 cospγθ1 ´ θ2q and Paul’s cost be f2 “ ´

1
2 cospθ2 ´ θ1q where in this
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example Jean and Paul have different preferences for their phase. Allowing γ to take values in
Nzt1u, there are at least γ ´ 1 non-degenerate differential Nash equilibria:

"

pθ1, θ2q P S1 ˆ S1| θ1 “ θ2 “
2pn´ 1qπ

γ ´ 1
, n P t1, . . . , γ ´ 1u

*

.

The above set contains only stable, non–degenerate differential Nash equilibria of the game
pf1, f2q since points in this set satisfy ωpθ1, θ2q “ 0, D2

i fipθ1, θ2q ą 0, and detpdωpθ1, θ2qq ‰ 0.
In fact, they are (non-strict) global Nash equilibria. Due to the existence of a continuum of
Nash equilibria, it is possible that the players will equilibrate on a socially undesirable outcome.
A central planner vying to coordinate the individuals would therefore benefit from considering
these second–order conditions when designing incentives.

2.8.1 Computation of Nash in Continuous Games

We can compute stable non-degenerate differential Nash!

Definition 28. A differential Nash equilibrium is stable if the eigenvalues of J lie strictly in the
open right-half plane (resp. left half plane for maximizers).

Consider the dynamics

9x “ ´ωpxq “ ´

»

—

–

D1f1pxq
...

´Dnfnpxq

fi

ffi

fl

Proposition 3 ([16]). If x is a differential Nash equilibrium and the spectrum of J is in the
right-half plane, then x is an exponentially stable stationary point of the above dynamical system.

Clearly from this proposition, there is a range of finite step-sizes for which convergence of a
forward Euler discretization converges exponentially.

Indeed, consider

xk`1 “ xk ´ γωpxkq

such that γ ă 1{L where ω is L-Lipschitz. We know this update rule will converge exponentially
to stable attractors of 9x “ ´ωpxq. However, not all stable attractors are meaningful in a game
theoretic sense. For instance, it is easy to construct examples such that x˚ is a stable attractor
for 9x “ ´ωpxq, but not a Nash equilibrium; consider for example any x˚ such that ωpx˚q “ 0 and
Rep´Jpx˚qq Ă C˝´, but any of the D2

i fipx
˚q are indefinite.

This fact has been the subject of numerous papers in AI/ML of late and has lead to a re-
examination/revival of ’learning in games’ via a dynamical systems perspective from which we can
gain numerous insights not only about the equilbirium behavior but also the learning path. New
directions of interesting research include:

1. interpreting the learning path and the behavior along the learning path (e.g., decomposing
into cooperative versus non-cooperative updates and adaptations)

2. understanding (qualitatively and quantitatively) the effects of heterogeneity on the learning
behavior and achievable outcomes

I will expand this section
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2.8.2 Continuous Stackelberg Games

I will expand this section

2.9 Differential and Dynamic Games

Up to this point, we have discussed games in which agents interact in a stationary, stochastic
environment, and they are making one shot decisions or interacting repeatedly by playing the same
game over and over. However, in practice it is often the case that there is an auxiliary stochastic
process that describes the evolution of an environmental “state” variable, itself which may be
impacted by the actions of the agents. Moreover, agents’ decision problems may be such that they
are choosing a sequence of actions of a finite (or infinite) time horizon. Such games are referred to
as dynamic games.

In short, in dynamic games, actions available to each agent depends on their current state which
evolves according to a certain dynamical system. Sets of states/actions are usually a continuum.

I am currently working on this section.
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Contract theory is concerned with the implementation of social choice rules in situations where
these cannot be made part of a contract due to the presence of incomplete information

• (i.e. either non-observability and/or non-verifiability of performance)

The goal is to examine whether the social choice rule in question can be implemented indirectly or
replicated through either

1. an alternative rule that is enforceable by courts or

2. some institutional arrangement.

If the social choice rule can be fully replicated, then we speak of an efficient or first-best solution.
In general, not possible due to constraints imposed by the information structure. So this is when
we look for an enforcable alternative or institutional arrangement. Such rules or institutions are
called constrained efficient or second-best optimal.

3.1 Social Choice Rules

Consider the following model. There are n agents indexed by rns “ t1, . . . , nu and there is a finite
set A of feasible outcomes. Each agent has a characteristic or type θi P Θi.

Definition 29. State. A state is a profile of types θ “ pθ1, . . . , θnq P Θ which defines a profile of
preference orderings ľ pθq “ pľ1 pθq, . . . ,ľn pθqq on the set of feasible outcomes A.

We use the notation ľi pθq to denote agent i’s preference ordering on A in state θ and we denote
by R “

Ś

iPrnsRi the set of all possible preference orders for all agents. Each agent (but no outside
party) observes the entire vector θ “ pθ1, . . . , θnq—i.e. agents have complete information.

Informally, a social choice rule is a selection rule that determines a set of socially desirable
outcomes for each state θ P Θ.

Definition 30. Social Choice Rule. A social choice rule is a correspondence f : Θ � A (surjection)
which specifies a non-empty choice set fpθq Ď A for every state θ.

Agent i’s preference in state θ depends only on their type θi—i.e. ľi pθq “ľi pθiq. The following
are examples of social choice rules:

1. Paretian social choice rule: comprises only Pareto optimal allocations

2. Dictatorial social choice rule: for all θ, the social choice set fpθq is a subset of the most
preferred outcomes of a particular agent.

Example 3.1 (Provision of Public Good.) The city council (the social planner) considers
the construction of a road for the n inhabitants of the city. In this example, θi represents agent
i’s valuation or willingness to pay for the road. An outcome is a profile y “ px, t1, . . . , tnq, where
x can be either ‘1’ (“the road is built”) or ‘0’ (“the road is not built”), and where ti denotes a
transfer to agent i—note that transfers can be negative, like taxes. Preferences are assumed to
be quasilinear of the form θix` ti. The city council faces the restriction that it cannot provide
additional funds—i.e. the cost c ě 0 must be covered entirely by the inhabitants. This defines
the set of feasible outcomes as

A “ tpx, t1, . . . , tnq| x “ t0, 1u and
ÿ

i

ti ď ´cxu.
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A particularly desirable social choice rule is one where the road is built if and only if the sum of
the agent’s valuations exceeds the construction cost and where the budget constraint is satisfied
with equality—i.e.

ÿ

i

ti “ ´cx and xpθq “

"

1, if
ř

i θi ě cx
0, o.w.

The set of outcomes defined by the above equations coincides with the set of Pareto optimal
allocations (with respect to both the public good and money). Unfortunately, it turns out that
this social choice rule is not implementable in dominant strategies.

3.2 Mechanism Design

A mechanism design problem is one in which an uninformed agent (the planner) faces a group
of informed agents. The agents’ private information concerns the state θ, which determines their
preferences over A, the set of feasible outcomes. Clearly, the planner cannot directly implement
the social choice rule since she does not know the true state. Moreover, when the agents are asked
to reveal their preferences honestly, each individual agent has an incentive to misrepresent his
information. This unobservability results in a problem of adverse selection and the incentive to
misrepresent information is a problem of moral hazard. The planner can fix (or at least improve the
outcome) by designing a mechanism that uses publicly observable (and thus verifiable) information.

Formally, a mechanism Γ consists of a collection of strategy sets Σ “ tS1, . . . , Snu and an
outcome function g : S Ñ A, where S “ S1 ˆ ¨ ¨ ¨ ˆ Sn, which assigns an outcome y P A to each
strategy profile s “ ps1, . . . , snq P S. Since the state θ is not verifiable, the outcomes themselves
cannot be made contingent on the state. However, the agents’ payoffs (utilities) from a particular
outcome typically vary with θ since preferences ľi pθiq are state-dependent Thus, the mechanism Γ
combined with the state-space θ defines a game of complete information with a (possibly) different
payoff structure in every state θ. The implementation problem is then to construct Γ such that in
each state, the equilibrium outcomes of the resulting game coincide (in a way yet to be defined)
with the elements in fpθq.

Remark 14. The idea which underlies mechanism design is information revelation through strategy
choice.

Since the strategy sets Σ “ tS1, . . . , Snu and the outcome function g : S Ñ A are public
information, outsiders such as courts (or the planner) can compute the agents’ equilibrium strategy
rules s˚pθq “ ps˚1pθq, . . . , s

˚
npθqq. Denote by Egpθq the set of equilibrium profiles s˚pθq of Γ in state

θ, and define the set of equilibrium outcomes of Γ in θ as

gpEgpθqq ” tgps
˚pθqq| s˚pθq P Egpθqu.

Definition 31. Implementation. The mechanism Γ implements the social choice rule fpθq if Egpθq
is non-empty, and if for every θ P Θ, gpEgpθqq Ă fpθq.

Definition 32. Full Implementation. The mechanism Γ fully implements the social choice rule
fpθq if for every θ P Θ, gpEgpθqq “ fpθq.

3.2.1 The Revelation Principle and Truthful Implementation

The identification of all social choice rules that are implementable for a specific equilibrium concept
requires knowledge of the entire set of possible mechanisms. Fortunately, a very useful result known
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as the revelation principle allows us to restrict attention to a particularly simple class of mechanisms
called direct mechanisms.

Definition 33. Direct Mechanism. A direct mechanism Γd is a mechanism in which Si “ θi.

Definition 34. Truthful Implementation. The direct mechanism Γd truthfully implements the
social choice rule fpθq if for every θ P Θ, θ P Egpθq and gpθq P fpθq.

Remark 15. Truthful implementation is a weaker concept than implementation or full implemen-
tation. Indeed, truthful implementation only requires that the profile θ “ pθ1, . . . , θnq of truthful
announcements is an equilibrium in each state θ and that the equilibrium outcome gpθq is an ele-
ment in fpθq. However, truthful implementation does not rule out the existence of further equilibria
with outcomes gpθ̂q P fpθq in which some agents lie (i.e. θ̂ ‰ θ).

Both implementation and full implementation rule out such “unwanted” equilibria as they
require either that the set of equilibrium outcomes constitutes a subset of fpθq (implementation)
or that it coincides with fpθq (full implementation).

The great virtue of dominant strategy equilibrium is that agents need not forecast how other
agents choose their strategies. In other words, agents do not have to know each others preferences.
This is the basis for an extremely convenient result known as the revelation principle Change to
citations: (Gibbard (1973), Green and Laffont (1977), Dasgupta, Hammond, and Maskin (1979)),
which says that we can restrict attention to direct mechanisms in which agents report only their
own types. Thus, the assumption of complete information made at the beginning of this chapter
is irrelevant and any result derived in this section continues to hold if this assumption is dropped.
Due to this robustness property, social choice rules that are truthfully implementable in dominant
strategies are of particular interest.

Definition 35. Truthfully Implementable in Dominant Strategies. The social choice rule fpθq is
truthfully implementable in dominant strategies or strategy-proof if there exists a direct mechanism
Γd such that truthtelling is a dominant strategy equilibrium—i.e. if for all i P I and θi P Θi,

gpθi, θ̂´i ľi pθiqgpθ̂i, θ̂´iq @ θ̂i P Θi, θ̂´i P Θ´i

and gpθq P fpθq for all θ P Θ.

Theorem 1. Revelation Principle. If an social choice rule is implementable in dominant strategies,
then it is truthfully implementable in dominant strategies.

That is, for every mechanism Γ that implements fpθq in dominant strategies, we can find a
direct mechanism Γd that truthfully implements fpθq in dominant strategies.

Definition 36. Dictatorial Social Choice Rule. The social choice rule fpθq is dictatorial on the
set A1 Ď A if there exists an agent i P I such that for all θ P Θ, the choice set fpθq is a subset of
agent i’s most preferred outcomes A1, i.e., fpθq Ď ty P A1| y ľi pθiqz @z P A

1u

Theorem 2. Gibbard-Satterthwaite Theorem. Let the social choice rule fpθq be single-valued and
let A1 Ď A denote the range of fpθq. Suppose that A is finite, that A1 contains at least three
elements, and that for each agent i P I, the set of possible preference orderings Ri is the set of
strict preference orderings on A. Then fpθq is truthfully implementable in dominant strategies if
and only if it is dictatorial on A1.

Definition 37. Budget-Balanced Social Choice Rule. An social choice rule is budget-balanced if
ř

i tipθq “ 0 for all θ P Θ.

That is, the sum of the transfers must net to zero. Since the planners preferences do not enter
into our welfare considerations, any net surplus |

ř

i tipθq| ą 0 collected from the agents is wasteful.
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3.3 Incentive Design

Building on the concepts introduced in the previous section, in this section we focus our attention
to the design of incentive mechanisms. A more comprehensive presentation can be found in text
books such as [10] and [2]; for a control theoretic perspective, see [17];

3.3.1 The Principal-Agent Problem

Incentive design and contract theory problems are often cast as so-called principal-agent problems
in which there are notably two types of participants—principal and agent. The principal’s goal is
to design a mechanism to shape the decision of the agent who acts in their own interest.

The principal has utility Jp : U ˆ Y Ñ R and the agent has utility Ja : U ˆ Y Ñ R where U
and V are the action spaces of the agent and principal, respectively. The agent’s and principal’s
utilities are coupled and, thus there is a game between the principal and agent. However, there is a
specific order of play. In this game, the principal announces a mapping of the agent’s action space
into the principal’s action space, after which an agent selects its optimal action. Let

Γ “ tγ : U Ñ Y u (3.1)

be the admissible set of such mappings from which the principal can choose. The mappings in
Γ may have a particular structure such as continuity or monotonicity—e.g., Γ may be the space
of continuous linear maps. Moreover, the structure of maps belonging to Γ may be practically
motivated—e.g., tariff structures imposed by a regulatory body.

Given γ, the agent aims to selection an action that maximizes their utility—i.e.

u˚pγq P arg max
uPU

Japu, γpuqq (3.2)

where we denote the dependence of u˚ on γ.

The principal aims to design γ P Γ such that the agent selects an action u˚pγq that leads to the
maximization of the principal’s utility—that is, the principal wants to incentivize the agent to play
according to what is ‘best’ for the principal. In this way, γ realigns the preferences of the agent
with those of the principal.

Definition 38. Principal-Agent Problem. Given a principal with utility Jp : U ˆ Y Ñ R and an
agent with utility Ja : U ˆ Y Ñ R, the principal aims to select a mapping γ PM Ă Γ where

M “
 

γ P Γ
ˇ

ˇ ud “ u˚pγq P arg maxJapx, γpxqq, γpx
dq “ yd, pxd, ydq P arg maxx,y Jppx, yq

(

.
(3.3)

There may be more than one agent in which case there needs to be a characterization for their
interaction under the mapping γ.

Consider a scenario in which there is one principal and n agents, each with utilities Ji : UˆY Ñ
R for i P rns “ t1, . . . , nu and where U “ U1 ˆ ¨ ¨ ¨ ˆ Un. We use the notation u “ pu1, . . . , unq P U
to denote the vector of their choices such that ui P Ui for each i P rns. For a mapping γ P Γ, agent
i’s induced utility under γ is

Jγi puq “ Jipu, γpuqq. (3.4)

As before, the principal’s goal is to choose γ “ pγ1, . . . , γnq P Γ, where γi : U1 ˆ ¨ ¨ ¨ ˆ Un Ñ V ,
such that the agents are induced to play a vector of choices ud that maximize the principal’s utility
where ud is characterized by a Nash equilibrium.
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Definition 39. Nash Equilibrium of the γ–Induced Game. For the game pJγ1 , . . . , J
γ
nq induced by

the mapping γ “ pγ1, . . . , γnq P Γ, a point u˚ “ pu˚1 , . . . , u
˚
nq P U is said to be an Nash equilibrium

if, for each i P rns,

Jipu
˚
i , u

˚
´i, γpu

˚qq ě Jipui, u
˚
´i, γpui, u

˚
´iqq, @ ui P Ui. (3.5)

Let NEpJγ1 , . . . , J
γ
nq denote the set of Nash equilibria for pJγ1 , . . . , J

γ
nq. Then, in the multi-agent

case, the principal chooses γ PM where

u˚pγq P NEpJγ1 , . . . , J
γ
nq. (3.6)

While there is a misalignment of objectives between the principal and the agent, if a feasible
solution exists forM, then both the principal and agent(s) are doing what is in their best interest:
the agent is ‘compensated’ via γ to play xd and γpxdq “ yd ensuring the principal’s utility is
maximized.

3.3.2 Information Asymmetries

Issues of incentives truly arise when there are information asymmetries between the principal and
the agent. That is, in reality the principal and the agent make their decisions based on some
information set that is available to them.

Let Ii be the information set of agent i and IP be the information set of the principal. In
the full information case, as in the basic problem described above, Ip “ tpJiqiPrns, uu and Ii “
tJp, pJiqiPrns{tiu, u´iu where u´i “ pujqjPrns{tiu. It is the contents of these information set that
determine the particular challenges that arise and, in turn, often shape the approach to the problem.

LJR: I am still working on this section.

Definition 40. Adverse Selection. Consider a principal-agent problem with a single agent pos-
sessing utility Ja which belongs to a class of functions Fpθq parameterized by θ P Θ Ă Rd—
i.e. Ja P Fpθq.

Example 3.2 (Market for Lemons.)

Definition 41. Moral Hazard. On the other hand, if the utility Ja is known to the principal, but
the action u is not—i.e. Ip “ tJau—then this leads to a problem known as moral hazard.

Example 3.3 (Insurance.)
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