
This is page i
Printer: Opaque this

Hybrid Systems:

Foundations, advanced topics and applications

John Lygeros, Shankar Sastry, and Claire Tomlin(order tbd)

February 1, 2012

This material is under copyright to be published by Springer Verlag. It
is for use to supplement instructional materials at Berkeley and Zurich. It
is not authorized to be copied or reproduced without the permission of the
authors.

This is page ii
Printer: Opaque this

Preface

The aim of this book is to introduce some fundamental concepts from
the area of hybrid systems, that is dynamical systems that involve the
interaction of continuous (real valued) states and discrete (finite valued)
states.
Various chapters are peppered with simple exercises, meant to enhance

the learning experience and highlight subtle points. They should be easy
(if not trivial) to solve for students who follow the material. Normally stu-
dents are not asked to turn in solutions for these exercises. The exercises
are meant to help them understand the material not to test their under-
standing. Students are however encourage them to discuss the solutions
with the instructor if they have problems. Lengthier exercises that can
form the basis of homework and exam questions are given at the end of
most chapters.

This is page iii
Printer: Opaque this

Contents

1 Motivation and Examples of Hybrid Systems 2
1.1 Multi-Agent Systems and Hybrid Systems 3
1.2 Motivating Applications 5

1.2.1 Automated Highway Systems (John) 5
1.2.2 Air Traffic Management (Claire) 7
1.2.3 Biochemical Networks (Claire) 9

1.3 Bibliography and Further Reading 9

2 Introduction to Dynamical Systems 11
2.1 Dynamical System Classification 11
2.2 Standard Dynamical Systems Examples 13

2.2.1 Pendulum: Nonlinear, Continuous Time System . 13
2.2.2 Logistic Map: Nonlinear Discrete Time System . 16
2.2.3 Manufacturing Machine: A Discrete State System 17

2.3 Examples of Hybrid State Systems 19
2.3.1 The Bouncing Ball 20
2.3.2 Thermostat: A Hybrid State System 21
2.3.3 Gear Shift Control 22
2.3.4 Collision avoidance between airplanes (Claire) . . 24
2.3.5 Collision avoidance between cars 24
2.3.6 Computer-Controlled System 27

3 Hybrid Automata and Executions 29
3.1 Discrete, Continuous, and Hybrid Models 29

iv Contents

3.1.1 Finite State Automata 29
3.1.2 Continuous-Time Dynamics 30
3.1.3 Hybrid Automata 30
3.1.4 Hybrid Time Sets & Executions 33

3.2 Existence and uniqueness 38
3.2.1 Two Fundamental Concepts 40
3.2.2 Computation of Reach and Trans 42
3.2.3 Local Existence and Uniqueness 44
3.2.4 Zeno Executions 49

3.3 Continuous dependence on initial state 51
3.4 Bibliography and Further Reading 57
3.5 Problems . 58

4 Analysis and Synthesis Problems 64
4.1 Specifications . 65
4.2 Deductive Methods . 67
4.3 Model checking . 69

4.3.1 Transition Systems 69
4.3.2 Bisimulation . 73
4.3.3 Timed Automata 79

4.4 Bibliography and Further Reading 84
4.5 Problems . 86

5 Controller Synthesis for Discrete and Continuous Sys-
tems 90
5.1 Controller synthesis for discrete systems 91

5.1.1 Controlled Finite State Automaton 91
5.1.2 Controller Synthesis 92
5.1.3 Discrete Hamilton-Jacobi Equation 95

5.2 Controller Synthesis for Continuous State Systems using
Optimal Control and Games 97
5.2.1 The Theory of Games 99

5.3 Reachability for nonlinear, continuous time systems . . . 102
5.3.1 Reachability through the Optimal Control Perspec-

tive . 103
5.3.2 Example . 111
5.3.3 Solution to the SupMin Problem 112
5.3.4 Solution of the InfMin Problem 122

5.4 Viability Perspective (John) 123
5.5 Pursuit evasion differential games (Claire) 125
5.6 Bibliography and Further Reading 125
5.7 Problems . 126

6 Controller Synthesis for Hybrid Systems 129
6.1 The Controller Structure 130

Contents v

6.1.1 Controller Properties 131
6.2 Game Theoretic Approach to Controller Synthesis 134

6.2.1 Example: The Steam Boiler 136
6.2.2 Game Theoretic Controller Synthesis for Finite

State Machines 140
6.3 Controller Synthesis for Hybrid Systems 142
6.4 Definitions of Operators 143
6.5 Basic Algorithm . 145

7 Computational Methods (Claire) 148
7.1 Flight Level Control: A Numerical Case Study 148

7.1.1 Aircraft Model 149
7.1.2 Cost Function and Optimal Controls 150
7.1.3 Numerical Results 151

7.2 Bibliography and Further Reading 153

8 Stochastic Hybrid Systems (John) 154

9 Stability of Hybrid Systems 155
9.1 Review of Stability for Continuous Systems 155
9.2 Stability of Hybrid Systems 158
9.3 Lyapunov Stability for Piecewise Linear Systems 163

9.3.1 Globally Quadratic Lyapunov Function 165
9.3.2 Piecewise Quadratic Lyapunov Function 168
9.3.3 Linear Matrix Inequalities 170

10 Automated Highway Systems (John) 173

11 Air Traffic Management and avionics (Claire/John) 174

12 Biochemical networks (Claire/John) 175

13 Research Directions and New Vistas 176

A Preliminaries on Continuous and Discrete Systems 177
A.1 Notation . 177
A.2 Review of Continuous Systems 179

A.2.1 Existence and Uniqueness of Solutions 181
A.2.2 Continuity and Simulation 183
A.2.3 Control systems 184

A.3 Review of discrete systems (Claire) 185
A.4 Bibliography and Further Reading 185

B Review of Optimal Control and Games 186
B.1 Optimal Control and the Calculus of Variations 186

B.1.1 Fixed Endpoint problems 189

vi Contents

B.1.2 Time Invariant Systems 189
B.1.3 Connections with Classical Mechanics 190

B.2 Optimal Control and Dynamic Programming 191
B.2.1 Constrained Input Problems 193
B.2.2 Free end time problems 193
B.2.3 Minimum time problems 193

B.3 Two person Zero Sum Dynamical games 194
B.4 N person Dynamical Games 196

B.4.1 Non-cooperative Nash solutions 196
B.4.2 Noncooperative Stackelberg Solutions 197

C Hybrid System Viability (John) 199
C.1 Reachability with Inputs 199
C.2 Impulse Differential Inclusions 200
C.3 Viability and Invariance Definitions 202
C.4 Viability Conditions . 204
C.5 Invariance Conditions . 207
C.6 Viability Kernels . 210
C.7 Invariance Kernels . 216
C.8 The Bouncing Ball Example 220
C.9 Bibliography and Further Reading 221
C.10 problems . 221

References 223

This is page vii
Printer: Opaque this

List of Figures

1.1 The AHS control hierarchy. 6

2.1 The pendulum . 14
2.2 Trajectory of the pendulum. 14
2.3 The pendulum vector field. 15
2.4 Phase plane plot of the trajectory of Figure 2.2. 16
2.5 The logistic map. 17
2.6 The directed graph of the manufacturing machine automa-

ton. 18
2.7 Bouncing ball . 21
2.8 A trajectory of the thermostat system. 22
2.9 Directed graph notation for the thermostat system. 23
2.10 A hybrid system modeling a car with four gears. 23
2.11 The efficiency functions of the different gears. 23
2.12 AHS model with five platoons and distances as marked. . 24
2.13 Hybrid automaton modeling intra-platoon collisions in pla-

toons A and B. The discrete states are q0 for no collisions, q1
for collision inside platoon B, q2 for collision inside platoon
A, and q3 for simultaneous intra-platoon collisions in A and
B. The continuous dynamics within each discrete mode are
given by (2.4). 26

2.14 Computer-controlled system. 27

3.1 The water tank system. 32

viii List of Figures

3.2 Graphical representation of the water tank hybrid automa-
ton. 33

3.3 A hybrid time set τ = {[τi, τ ′i]}3i=0. 34
3.4 τ ⊏ τ̂ and τ ⊏ τ̃ . 35
3.5 Example of an execution of the water tank hybrid automa-

ton. 37
3.6 τA finite, τC and τD infinite, τE and τF Zeno. 38
3.7 Examples of blocking and non-determinism. 45
3.8 Zeno of Elea . 49
3.9 Chattering system. 50
3.10 System with a smooth, non-analytic domain. 51
3.11 Illustration of the proof of Theorem 3.17 (N = 1, Case 1). 56
3.12 Rocking block system. 59
3.13 Directed graph representation of rocking block automaton. 60
3.14 Water tank hybrid automaton. 60
3.15 Temporal regularization of the bouncing ball automaton. . 61
3.16 Dynamic regularization of the bouncing ball. 62
3.17 Temporal regularization of the water tank automaton. . . 63
3.18 Spatial regularization of the water tank automaton. . . . 63

4.1 Finite state transition system. 70
4.2 Example of a timed automaton. 81
4.3 Region graph for the timed automaton of Figure 4.2. . . . 81
4.4 A timed automaton. 87
4.5 Region graph for the automaton of Figure 4.2 88
4.6 Bouncing ball . 88

5.1 Example of discrete controller synthesis 93
5.2 The value function V1(x, t) for T = 10. The dark region in

the right plot is the level set {(x, t) ∈ R× [0, T] | V1(x, t) >
0}. 112

5.3 The value function V2(x, t) for T = 10. The dark region in
the right plot is the level set {(x, t) ∈ R× [0, T] | V2(x, t) ≥
0}. 112

6.1 The Steam Boiler . 137
6.2 The pump hybrid automaton 137
6.3 Lower limit on w to avoid draining 140
6.4 One step of the algorithm. 146

7.1 Coordinate frames and forces for the aircraft model. . . . 149
7.2 Two level sets of the value function V1(x, 0), for T = 1s (left)

and T = 2s (right). 152
7.3 Projection of the T = 2s level set along the x3 axis (left)

and along the x1 axis (right). 152

List of Figures ix

9.1 Level sets V (x) = 1, V (x) = 2, and V (x) = 3 for a Lyapunov
function V ; thus if a state trajectory enters one of these sets,
it has to stay inside it since V̇ (x) ≤ 0. 157

9.2 Figure for Proof of Lyapunov Stability Theorem (for
continuous systems); WLOG xe = 0. 157

9.3 (a) Phase portrait of ẋ = A1x; (b) Phase portrait of
ẋ = A2x. Figure generated using phase plane software from
http://math.rice.edu/̃polking/odesoft/, freely down-
loadable. 160

9.4 (a) Phase portrait of H; (b) Phase portrait of H, switching
conditions flipped. 161

9.5 Showing V (q1, x) and V (q2, x). Solid segments on qi mean
that the system is in qi at that time, dotted segments mean
the system is in qj , j 6= i. 162

9.6 Figure for Proof of Lyapunov Stability Theorem (for hybrid
systems). 162

9.7 Example 1 . 166
9.8 Example 1 . 167
9.9 Continuous evolution for a hybrid automaton that does not

have a globally quadratic Lyapunov function. Still, the ori-
gin is an asymptotically stable equilibrium point, which can
be proved by using a Lyapunov function quadratic in each
discrete state. 168

9.10 Example 3 . 170
9.11 Example 3 . 171

C.1 K viable under H = (X,F,R, J) 207
C.2 K invariant under (X,F,R, J) 209
C.3 Three possible evolutions for x0 6∈ ViabF (K ∩ I,R−1(K)) ∪

(K ∩R−1(K)). 212

This is page 1
Printer: Opaque this

List of Tables

4.1 Backward reachability algorithm 72
4.2 Bisimulation algorithm . 77

C.1 Viability kernel approximation algorithm 213
C.2 Invariance kernel approximation algorithm 219

This is page 2
Printer: Opaque this

Chapter 1
Motivation and Examples of Hybrid
Systems

While rapid progress in embedded hardware and software makes plausi-
ble ever more ambitious multi-layer, multi-objective, adaptive, nonlinear
control systems, adequate design methodologies and design support lag
far behind. Consequently, today most of the cost in control system de-
velopment is spent on ad-hoc, prohibitively expensive systems integration,
and validation techniques that rely almost exclusively on exhaustively test-
ing more or less complete versions of complex nonlinear control systems.
The newest research direction in control addresses this bottleneck by fo-
cusing on predictive and systematic hierarchical design methodologies for
building an analytical foundation based on hybrid systems and a practical
set of software design tools which support the construction, integration,
safety and performance analysis, on-line adaptation and off-line functional
evolution of multi-agent hierarchical control systems. Hybrid systems refer
to the distinguishing fundamental characteristics of software-based con-
trol systems, namely, the tight coupling and interaction of discrete with
continuous phenomena. Hybridness is characteristic of all embedded con-
trol systems because it arises from several sources. First, the high-level,
abstract protocol layers of hierarchical control designs are discrete as to
make it easier to manage system complexity and to accommodate linguis-
tic and qualitative information; the low-level, concrete control laws are
naturally continuous. Second, while individual feedback control scenarios
are naturally modeled as interconnections of modules characterized by their
continuous input/output behavior,multi-modal control naturally suggests a
state-based view, with states representing discrete control modes; software-
based control systems typically encompass an integrated mixture of both

1.1. Multi-Agent Systems and Hybrid Systems 3

types. Third, every digital hardware/software implementation of a control
design is ultimately a discrete approximation that interacts through sensors
and actuators with a continuous physical environment. The mathematical
treatment of hybrid systems is interesting in that it builds on the preced-
ing framework of nonlinear control, but its mathematics is qualitatively
distinct from the mathematics of purely discrete or purely continuous phe-
nomena. Over the past several years, we have begun to build basic formal
models (hybrid automata) for hybrid systems and to develop methods for
hybrid control law design, simulation, and verification. Hybrid automata,
in particular, integrate diverse models such as differential equations and
state machines in a single formalism with a uniform mathematical seman-
tics and novel algorithms for multi-modal control synthesis and for safety
and real-time performance analysis.

1.1 Multi-Agent Systems and Hybrid Systems

To a large extent control theory has thus far investigated the paradigm of
“Centralized Control”. In this paradigm, sensory information is collected
from sensors observing a material process that may be distributed over
space. This information is transmitted over a communication network to
one center, where the commands that guide the process are calculated
and transmitted back to the process actuators that implement those com-
mands. In engineering practice, of course, as soon as the process becomes
even moderately large, the central control paradigm breaks down. What
we find instead is distributed control: A set of control stations, each of
whom receives some data and calculates some of the actions. Important
examples of distributed control are the Air Traffic Management System,
the control system of an interconnected power grid, the telephone network,
a chemical process control system, and automated highway transportation
systems. Although a centralized control paradigm no longer applies here,
control engineers have with great success used its theories and its design
and analysis tools to build and operate these distributed control systems.
There are two reasons why the paradigm succeeded in practice, even when
it failed in principle. First, in each case the complexity and scale of the
material process grew incrementally and relatively slowly. Each new incre-
ment to the process was controlled using the paradigm, and adjustments
were slowly made after extensive (but by no means exhaustive) testing to
ensure that the new controller worked in relative harmony with the existing
controllers. Second, the processes were operated with a considerable degree
of “slack.” That is, the process was operated well within its performance
limits to permit errors in the extrapolation of test results to untested situ-
ations and to tolerate a small degree of disharmony among the controllers.
However, in each system mentioned above, there were occasions when the

4 Chapter 1. Motivation and Examples of Hybrid Systems

material process was stressed to its limits and the disharmony became in-
tolerable, leading to a spectacular loss of efficiency. For example, most air
travelers have experienced delays as congestion in one part of the country
is transmitted by the control system to other parts. The distributed control
system of the interconnected power grid has sometimes failed to respond
correctly and caused a small fault in one part of a grid to escalate into a
system-wide blackout.
We are now attempting to build control systems for processes that are

vastly more complex or that are to be operated much closer to their per-
formance limits in order to achieve much greater efficiency of resource use.
The attempt to use the central control paradigm cannot meet this chal-
lenge: the material process is already given and it is not practicable to
approach its complexity in an incremental fashion as before. Moreover,
the communication and computation costs in the central control paradigm
would be prohibitive, especially if we insist that the control algorithms
be fault-tolerant. What is needed to meet the challenge of control design
for a complex, high performance material process, is a new paradigm for
distributed control. It must distribute the control functions in a way that
avoids the high communication and computation costs of central control,
at the same time that it limits complexity. The distributed control must,
nevertheless, permit centralized authority over those aspects of the ma-
terial process that are necessary to achieve the high performance goals.
Such a challenge can be met by organizing the distributed control func-
tions in a hierarchical architecture that makes those functions relatively
autonomous (which permits using all the tools of central control), while
introducing enough coordination and supervision to ensure the harmony
of the distributed controllers necessary for high performance. Consistent
with this hierarchical organization are sensing hierarchies with fan-in of
information from lower to higher levels of the hierarchy and a fan-out of
control commands from the higher to the lower levels. Commands and in-
formation at the higher levels are usually represented symbolically, calling
for discrete event control, while at the lower levels both information and
commands are continuous, calling for continuous control laws. Interactions
between these levels involves hybrid control. In addition protocols for coor-
dination between individual agents are frequently symbolic, again making
for hybrid control laws. The hybrid control systems approach has been
successful in the control of some extremely important multi-agent systems
such as automated highway systems [1, 2, ?], air traffic control [3], groups
of unmanned aerial vehicles, underwater autonomous vehicles [?], mobile
offshore platforms, to give a few examples.

1.2. Motivating Applications 5

1.2 Motivating Applications

1.2.1 Automated Highway Systems (John)

Highway congestion is an increasing problem, especially in and around ur-
ban areas. One of the promising solutions considered for this problem is
traffic automation, either partial or full. The use of an automated system
that performs some or all of the tasks of the driver may reduce or elimi-
nate human errors and hence improve safety. Moreover, as the automatic
controller can react to disturbances faster than a human driver, automa-
tion may also decrease the average inter-vehicle spacing and hence increase
throughput and reduce congestion and delays.
The design of an Automated Highway System (AHS) is an extremely

challenging control problem, and a number of alternatives have been pro-
posed for addressing it. One of the most forward-looking AHS designs
involves a fully automated highway system that supports platooning of
vehicles. The platooning concept [1] assumes that traffic on the highway is
organised in groups of tightly spaced vehicles (platoons). The first vehicle
of a platoon is called the leader, while the remaining vehicles are called
followers. The platooning structure achieves a balance between safety and
throughput: it is assumed that the system is safe even if in emergency sit-
uations (for example, as a result of a failure) collisions do occur, as long as
the relative velocity at impact is low. Of course no collisions should take
place during normal operation. This gives rise to two safe spacing policies.
The obvious one is that of the leaders, who are assumed to maintain a large
inter-platoon spacing (of the order of 30 to 60 meters). The idea is that
the leader has enough time to stop without colliding with the last vehicle
of the platoon ahead. The more unintuitive spacing policy is that of the
followers, who are assumed to maintain tight intra-platoon spacing (of the
order of 1 to 5 meters). In case of emergency, collisions among the followers
of a platoon may take place, but, because of the tight spacing, they are
expected to be at low relative velocities. Recent theoretical, computational
and experimental studies have shown that an AHS that supports platoon-
ing is not only technologically feasible but, if designed properly, may lead
to an improvement of both the safety and the throughput of the highway
system, under normal operation.
Implementation of the platooning concept requires automatic vehicle

control, since human drivers are not fast and reliable enough to produce
the necessary inputs. To manage the complexity of the design process a
hierarchical controller is used. The controller is organised in four layers
(Figure 1.1). The top two layers, called network and link, reside on the
roadside and are primarily concerned with throughput maximisation, while
the bottom two, called coordination and regulation, reside on the vehicles
and are primarily concerned with safety. The physical layer is not part of

6 Chapter 1. Motivation and Examples of Hybrid Systems

Link Layer

(Flow)

Network Layer

(Routing)

Coordination Layer

(Communication)

Regulation Layer

(Control)

Physical Layer

(Vehicles)

On−Board

Roadside

Continuous

Discrete

Figure 1.1. The AHS control hierarchy.

the controller. It contains the “plant”, i.e. the vehicles and highway, with
their sensors, actuators and communication equipment.
The network layer is responsible for the flow of traffic on the entire

highway system, for example, several highways around an urban area. Its
task is to prevent congestion and maximise throughput by dynamically
routing traffic. The link layer coordinates the operation of sections (links)
of the highway (for example the highway segment between two exits). Its
primary concern is to maximise the throughput of the link. With these
criteria in mind, it calculates an optimum platoon size and an optimum
velocity and decides which lanes the vehicles should follow. It also monitors
incidents and diverts traffic away from them, in an attempt to minimise
their impact on traffic flow.
The coordination layer coordinates the operation of neighbouring pla-

toons by choosing manoeuvres that the platoons need to carry out. For
normal operation, these manoeuvres are join to join two platoons into one,
split to break up one platoon into two, lane change, entry and exit. The
coordination layer is primarily a discrete controller. It uses communication
protocols, in the form of finite state machines, to coordinate the execution
of these manoeuvres between neighbouring vehicles.
The regulation layer receives the coordination layer commands and read-

ings from the vehicle sensors and generates throttle, steering and braking
commands for the vehicle actuators. For this purpose it utilises a number
of continuous time feedback control laws that use the readings provided

1.2. Motivating Applications 7

by the sensors to calculate the actuator inputs required for a particular
manoeuvre. In addition to the control laws needed for the manoeuvres, the
regulation layer makes use of two default controllers, one for leader and one
for follower operation.
The interaction between the coordination layer (which is primarily dis-

crete) and the regulation layer (which is primarily continuous) gives rise to
interesting hybrid dynamics. To ensure the safety of the AHS, one needs to
verify that the closed loop hybrid system does not enter a bad region of its
state space (e.g. does not allow any two vehicles to collide at high relative
velocity). This issue can be addressed by posing the problem as a game be-
tween the control applied by one vehicle and the disturbance generated by
neighbouring vehicles. It can be shown that information available through
discrete coordination can be used together with appropriate continuous
controllers to ensure the safety of the closed loop hybrid system.

1.2.2 Air Traffic Management (Claire)

The introduction of advanced automation into manually operated systems
has been extremely successful in increasing the performance and flexibil-
ity of such systems, as well as significantly reducing the workload of the
human operator. Examples include the automation of mechanical assem-
bly plants, of the telephone system, of the interconnected power grid, as
well as transportation system automation such as controllers in high speed
trains, automatic braking systems in automobiles, and avionics on board a
commercial jet, the results could be disastrous.
Many of today’s safety critical systems are growing at such a rate that

will make manual operation of them extremely difficult if not impossible
in the near future. The Air Traffic Control (ATC) system is an example
of such a safety critical system. Air traffic in the United States alone is
expected to grow by 5% annually for the next 15 years [?], and rates across
the Pacific Rim are expected to increase by more than 15% a year. Even
with today’s traffic, ground holds and airborne delays in flights due to con-
gestion in the skies have become so common that airlines automatically
pad their flight times with built-in delay times. Aging air traffic control
equipment certainly contributes to these delays:the plan view displays used
by controllers to look at radar tracks and flight information are the very
same that were installed in the early 1970’s, and they fail regularly. The
computer systems which calculate radar tracks and store flight plans were
designed in the 1980’s, using software code that was written in 1972. The
introduction of new computers, display units, and communication tech-
nologies for air traffic controllers will help alleviate the problems caused
by failing equipment, yet the Federal Aviation Administration (FAA) ad-
mits that any significant improvement will require that many of the basic
practices of ATC be automated [?]. For example, today’s airspace has a
rigid route structure based on altitude and on ground-based navigational

8 Chapter 1. Motivation and Examples of Hybrid Systems

“fixes”: current practice of air traffic controllers is to route aircraft along
predefined paths connecting fixes, to manage the complexity of route plan-
ning for several aircraft at once. The rigid structure puts strict constraints
on aircraft trajectories, which could otherwise follow wind-optimal or user
preferred routes. Also, while a data link between aircraft and ground is
being investigated as a replacement for the current voice communication
over radio channels between pilot and controller, there is a limit to the
amount of information processing that a controller can perform with this
data. Studies in [?] indicate that, if there is no change to the structure of
ATC, then by the year 2015 there could be a major accident every 7 to 10
days.
The result is a perceived need in the air traffic, airline, and avionics com-

munities for a new architecture, which integrates new technologies for data
storage, processing, communications, and display, into a safe and efficient
air traffic management system. The airlines are proponents of a decentral-
ized architecture featuring free flight, meaning that each aircraft plans and
tracks its own dynamic trajectory with minimal interference from ATC [?].
Many people (air traffic controllers in particular) view this as a radical solu-
tion, but a recent study funded by NASA [?] suggests that distributing some
of the control authority to each aircraft would help improve the efficiency
of the system as a whole. In [?] we proposed an architecture for a new air
traffic management system along these lines, in which the aircraft’s flight
management system uses local sensory information from Global Position-
ing Systems, Inertial Navigation Systems, and broadcast communication
with other aircraft to resolve local conflicts without requesting clearances
from ATC. While the degree of decentralization and level of automation
in a new air traffic management system are still under debate (since it is
very difficult to estimate the increase in efficiency from distributing the
control authority), the integrity of any automated functionality in a new
air traffic management system depends on a provably-safe design, and a
high confidence that the control actions won’t fail.
In the past, high confidence has been achieved by operating the system

well within its performance limits. Extensive testing has been used to val-
idate operations, and any errors occurring from untested situations would
be compensated for by this degree of “slack” in the system performance. We
would like to maintain high confidence but operate the system much closer
to its performance limits. In order to do this, we require accurate models
of the system, procedures for verifying that the design is safe to within the
accuracy of these models, and procedures for synthesizing control actions
for the system, so that safety is maintained.
For about the past six years, researchers in the traditionally distinct fields

of control theory and computer science verification have proposed models,
and verification and controller synthesis techniques for complex, safety crit-
ical systems. The area of hybrid systems is loosely defined as the study of
systems which involve the interaction of discrete event and continuous time

1.3. Bibliography and Further Reading 9

dynamics, with the purpose of proving properties such as reachability and
stability. The discrete event models naturally accommodate linguistic and
qualitative information, and are used to model modes of operation of the
system, such as the mode of flight of an aircraft, or the interaction and
coordination between several aircraft.

1.2.3 Biochemical Networks (Claire)

1.3 Bibliography and Further Reading

Continuous state systems and their properties have been studied exten-
sively in mathematics engineering, economics, biology, etc. The literature
is vast and there are a number of excellent textbooks available (see for ex-
ample [4, 5, 6, 7]). Discrete state systems have also been studied for many
years, especially in computer science. Good textbooks include [8, 9, 10].
By comparison, the study of hybrid systems is relatively recent. One

class of approaches to modeling and analysis of hybrid systems has been to
extend techniques for finite state automata to include systems with simple
continuous dynamics. These approaches generally use one of two analysis
techniques: model checking, which verifies a system specification symbol-
ically on all system trajectories, and deductive theorem proving, which
proves a specification by induction on all system trajectories. Emphasis is
placed on computability and decidability, or proving that the problem: Does
the system satisfy the specification? can be solved in a finite number of steps.
Models and decidability results have been obtained for timed automata
[11], linear hybrid automata [12], and hybrid input/output automata [13].
Linear hybrid automata model or abstract the continuous dynamics by dif-
ferential inclusions of the form Aẋ ≤ b and verify properties of the resulting
abstracted system [?, ?]. While reachability and eventuality properties for
timed automata have been shown to be decidable, the decidability results
for linear hybrid automata are fairly narrow. For all but the simplest contin-
uous linear dynamics (two-dimensional rectangular differential inclusions),
reachability properties are semi-decidable at best, and in most cases un-
decidable. Methods for designing discrete controllers for timed and hybrid
systems have been developed using this framework [14, 15], and compu-
tational tools have been developed for both model checking [16, ?], and
theorem proving [?]. A second class of models and analysis techniques for
hybrid systems has developed out of research in continuous state space
and continuous time dynamical systems and control. The emphasis here
has been on extending the standard modeling, reachability and stability
analyses, and controller design techniques to capture the interaction be-
tween the continuous and discrete dynamics [17, ?, ?, ?, ?, 18]. Analysis
and design techniques extend existing control techniques, such as stability
theory [?], optimal control [?, ?, 18], and control of discrete event systems

10 Chapter 1. Motivation and Examples of Hybrid Systems

[19, 20], to hybrid systems. One area in which results have been hard to
come by is the efficient computation of reachable sets for hybrid systems
whose dynamics are nonlinear or are of order greater than one. Only re-
cently, some attempts to directly approach this problem have been reported
in the literature [21, 22].
The few books that have appeared on the subject to date [23, 24] have

a research monograph “flavour” and address specific topics and classes of
systems; [24] however also contains a substantial textbook style overview.
Another good source of material are the special issues devoted by a number
of journals on the topic of hybrid systems [25, 26, 27, 28, 29]. Finally,
the series of edited volumes based on the proceedings of hybrid systems
workshops form another excellent source of material [?, ?, ?, ?, ?, ?, ?, ?].
Hybrid systems arise naturally in a number of engineering applications,

in addition to the ones listed in this chapter. For example, the hybrid
paradigm has also been used successfully to address problems in air traffic
control [3], automotive control [30], bioengineering [?], chemical process
control [31, 32], highway systems [1, 33] and manufacturing [34].
Our approach to hybrid systems modeling incorporates accurate, non-

linear models of the continuous dynamics with models for discrete event
dynamics. We include continuous and discrete input variables to model
both parameters that the designer may control as well as disturbance
parameters that the designer must control against. Using analysis based
on traditional discrete and continuous optimal control techniques, and on
two-person zero-sum game theory for automata and continuous dynami-
cal systems, we derive the Hamilton-Jacobi partial differential equations
whose solutions describe exactly the boundaries of reachable sets. Only
then do we approximate: we use a clever numerical technique to solve this
equation. These equations are the heart of our general controller synthe-
sis technique for hybrid systems, in which we calculate feedback control
laws for the continuous and discrete variables which guarantee that the hy-
brid system remains in the “safe subset” of the reachable set. While about
10 years ago such a method would have been prohibitively computation-
ally expensive, advances in computational power and new fast methods for
integrating PDEs have made such solutions feasible, even for real-time ap-
plications. The result is an analytic and numerical method for computing
reachable sets and control laws for hybrid systems, which doesn’t require
a preprocessing step to approximate the dynamics. We have been success-
ful in computing solutions to finite-time examples, but in our method thus
far, we have not addressed considerations of decidability and computational
complexity.

This is page 11
Printer: Opaque this

Chapter 2
Introduction to Dynamical Systems

In this chapter we begin with a review of dynamical systems, continuous
time, discrete time, continuous state and discrete state. By hybrid systems,
we mean systems that are hierarchies and interconnections of continuous
and discrete state systems in continuous time and discrete time. However,
before we launch into the formal definition and study of hybrid systems
we start with an overview of the main themes of this book (modeling,
reachability, control of hybrid systems) as they manifest themselves in the
more classical discrete and continuous systems literature. We will highlight
the different classes of dynamics of interest that will be of interest in our
study of hybrid systems.

2.1 Dynamical System Classification

A dynamical system describes the evolution of state variables, typically
real valued over time. However, we will need to specify precisely what we
mean by the terms “evolution”, “state” and “time”. Some dynamical sys-
tems can also be influenced by exogenous inputs, which represent either
uncontrollable disturbances or controlled input signals. For example the
control system of a modern aircraft may be controlled by inputs such as
the amount of thrust, the settings of the wing ailerons and tail flaps, but
are influenced by disturbances like wind conditions. Other dynamical sys-
tems have outputs, which represent either quantities that can be measured,

12 Chapter 2. Introduction to Dynamical Systems

or quantities that need to be controlled or regulated. Dynamical systems
with both inputs and outputs are sometimes referred to as control systems.

Based on the type of their state variables, dynamical systems may be
classified into the following categories:

1. Continuous State: If the state takes values in Euclidean space R
n

for some n ≥ 1. We will use x ∈ R
n to denote the state of a continuous

dynamical system.

2. Discrete State: If the state takes values in a finite or countable set
{q1, q2, . . .}. We will use q to denote the state of a discrete system. For
example, a light switch is a system whose state takes on two values,
q ∈ {ON,OFF}. A computer is also a dynamical system whose state
takes on a finite (albeit very large) number of values.

3. Hybrid State Variables: If a part of the state takes values in R
n,

and an other part takes values in a finite set. For example, the closed
loop system that is obtained when we use computer control software
to control an inverted pendulum is hybrid: part of the state (namely
the position, velocity, etc. of the pendulum) is continuous, while an-
other part (namely the state of the variables in the control software)
is discrete.

Based on the time set over which the state evolves, dynamical systems
can be classified as:

1. Continuous time: If the set of times is a subset of the real line R.
We will use t ∈ R to denote continuous time. For a number of sys-
tems of interest to us with continuous state evolving in continuous
time, the evolution of the state is described by an ordinary differ-
ential equation (ODE). An especially simple example is the linear,
continuous time system in state space form

ẋ = Ax.

2. Discrete time: If the set of time variables is a subset of the integers.
We will use k ∈ Z to denote discrete time. Typically, the evolution
of the state of continuous state, discrete time system is described by
a difference equation. Think of the linear discrete time system in
state space form

xk+1 = Axk.

3. Hybrid time: This covers the instance when the evolution is over
continuous time but there are also discrete “instants” where some-
thing “special” happens. Consider for example a continuous system
with switches: the dynamics of the systems changes at the switching
times.

2.2. Standard Dynamical Systems Examples 13

Continuous state systems can be further classified according to the
equations used to describe the evolution of their state

1. Linear, if the evolution is governed by a linear differential equation
(continuous time) or difference equation (discrete time).

2. Nonlinear, if the evolution is governed by a nonlinear differential
equation (continuous time) or difference equation (discrete time).

Exercise 2.1 The linear vs nonlinear classification generally does not
apply to discrete state or hybrid systems. Why?

2.2 Standard Dynamical Systems Examples

We begin with some examples of the following classes of systems:

1. Nonlinear (continuous state), continuous time systems.

2. Nonlinear, discrete time systems.

3. Discrete state, discrete time systems.

Of course, one could also have examples of discrete state, continuous
time systems.

2.2.1 Pendulum: Nonlinear, Continuous Time System

Consider a pendulum hanging from a weightless solid rod and moving under
gravity (Figure 2.1). Let θ denote the angle that the pendulum makes with
the downward vertical, l the length of the pendulum, m its mass, and d the
dissipation constant. The evolution of θ is governed by

mlθ̈ + dlθ̇ +mg sin(θ) = 0

This is a nonlinear, second order, ordinary differential equation (ODE).

Exercise 2.2 Derive this equation from Newton’s laws. What is it that
makes this ODE nonlinear?

To determine how the pendulum is going to move, i.e. determine θ as a
function of time, we would like to find a solution to this ODE . Assuming
that at time t = 0 the pendulum starts as some initial position θ0 and
with some initial velocity θ̇0, “solving the ODE” means finding a function
of time

θ(·) : R → R

14 Chapter 2. Introduction to Dynamical Systems

l
θ

mg

Figure 2.1. The pendulum

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

x2

x1

t

Figure 2.2. Trajectory of the pendulum.

such that

θ(0) = θ0

θ̇(0) = θ̇0

mlθ̈(t) + dlθ̇(t) +mg sin(θ(t)) = 0, ∀t ∈ R

Such a function is known as a trajectory (or solution) of the system. At
this stage it is unclear if one, none or multiple trajectories exist for this
initial condition. Existence and uniqueness of trajectories are both desirable
properties for ODE that are used to model physical systems.
For nonlinear systems, even if a unique trajectory exists for the given

initial condition, it is usually difficult to construct explicitly. Frequently
solutions of ODE can only be approximated by simulation. Figure 2.2 shows
a simulated trajectory of the pendulum for l = 1, m = 1, d = 1, g = 9.8,
θ(0) = 0.75 and θ̇(0) = 0.

2.2. Standard Dynamical Systems Examples 15

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

θ

θ̇

Figure 2.3. The pendulum vector field.

To simplify the notation we typically write dynamical system ODE in
state space form

ẋ = f(x)

where x is now a vector in R
n for some appropriate n ≥ 1. The easiest way

to do this for the pendulum is to set

x =

[
x1
x2

]
=

[
θ

θ̇

]

which gives rise to the state space equations

ẋ =

[
ẋ1
ẋ2

]
=

[
x2

− g
l sin(x1)− d

mx2

]
= f(x)

The vector

x ∈ R
2

is called the state of the system. The size of the state vector (in this case
n = 2) is called the dimension of the system. Notice that the dimension is
the same as the order of the original ODE. The function

f(·) : R2 → R
2

which describes the dynamics is called a vector field, because is assigns a
“velocity” vector to each state vector. Figure 2.3 shows the vector field of
the pendulum.

Exercise 2.3 Other choices are possible for the state vector. For example,
for the pendulum one can use x1 = θ3 + θ̇ and x2 = θ̇. What would the
vector field be for this choice of state?

Solving the ODE for θ is equivalent to finding a function

x(·) : R → R
2

16 Chapter 2. Introduction to Dynamical Systems

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−2

−1.5

−1

−0.5

0

0.5

1

1.5

θ

θ̇

Figure 2.4. Phase plane plot of the trajectory of Figure 2.2.

such that

x(0) =

[
x1(0)
x2(0)

]
=

[
θ0
θ̇0

]

ẋ(t) = f(x(t)), ∀t ∈ R.

For two dimensional systems like the pendulum it is very convenient to
visualise the solutions by phase plane plots. These are plots of x1(t) vs
x2(t) parameterised by time (Figure 2.4).

2.2.2 Logistic Map: Nonlinear Discrete Time System

The logistic map

xk+1 = axk(1− xk) = f(xk) (2.1)

is a nonlinear, discrete time dynamical system that has been proposed as
a model for the fluctuations in the population of fruit flies in a closed con-
tainer with constant food supply [35]. We assume that the population is
measured at discrete times (e.g. generations) and that it is large enough
to be assumed to be a continuous variable. In the terminology of the pre-
vious section, this is a one dimensional system with state xk ∈ R, whose
evolution is governed by the difference equation (2.1) given above. a ∈ R

is a parameter that reflects the living space and food supply.
The shape of the function f (Figure 2.5) reflects the fact that when the

population is small it tends to increase due to abundance of food and living
space, whereas when the population is large it tends to decrease, due to
competition for food and the increased likelihood of epidemics. Assume
that 0 ≤ a ≤ 4 and that the initial population is such that 0 ≤ x0 ≤ 1.

Exercise 2.4 Show that under these assumptions 0 ≤ xk ≤ 1 for all k ∈ Z

with k ≥ 0.

The behaviour of xk as a function of k depends on the value of a.

2.2. Standard Dynamical Systems Examples 17

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
(x

)

x

Figure 2.5. The logistic map.

1. If 0 ≤ a < 1, xk decays to 0 for all initial conditions x0 ∈ [0, 1]. This
corresponds to a situation where there is inadequate food supply to
support the population.

2. If 1 ≤ a ≤ 3, xk tends to a steady state value. In this case the
population eventually stabilises.

3. If 3 < a ≤ 1 +
√
6 = 3.449, xk tends to a 2-periodic state. This

corresponds to the population alternating between two values from
one generation to the next.

As a increases further more and more complicated patterns are obtained:
4-periodic points, 3-periodic points, and even chaotic situations, where the
trajectory of xk is a-periodic (i.e. never meets itself).

2.2.3 Manufacturing Machine: A Discrete State System

Consider a machine in a manufacturing plant that processes parts of type p
one at a time. The machine can be in one of three states: Idle (I), Working
(W) or Down (D). The machine can transition between the states depend-
ing on certain events. For example, if the machine is idle and a part p
arrives it will start working. While the machine is working it may break
down. While the machine is down it may be repaired, etc.
Abstractly, such a machine can be modelled as a dynamical system with

a discrete state, q, taking three values

q ∈ Q = {I,W,D}

The state “jumps” from one value to another whenever one of the events,
σ occurs, where

σ ∈ Σ = {p, c, f, r}

18 Chapter 2. Introduction to Dynamical Systems

f

c

r
p

W D

I

Figure 2.6. The directed graph of the manufacturing machine automaton.

(p for “part arrives”, c for “complete processing”, f for “failure” and r for
“repair”). The state after the event occurs is given by a transition relation

δ : Q× Σ → Q

Since both Q and Σ are finite sets, one can specify δ by enumeration.

δ(I, p) =W

δ(W, c) = I

δ(W, f) = D

δ(D, r) = I

δ is undefined for the rest of the combinations of q and σ. This reflects the
fact that certain events may be impossible in certain states. For example,
it is impossible for the machine to start processing a part while it is down,
hence δ(D, p) is undefined.

Exercise 2.5 If the discrete state can take n values and there are m pos-
sible events, what is the maximum number of lines one may have to write
down to specify δ?

Such a dynamical system is called an automaton, or a finite state ma-
chine. Automata are special cases of discrete event systems. Discrete event
systems are dynamical systems whose state also jumps depending on events
but can take on an infinite number of values. The dynamics of a finite state
machine can be represented compactly by a directed graph (Figure 2.6). This
is a graph whose nodes represent the possible values of the state (in this
case I,W,D). The arcs of the graph represent possible transitions between
the state values and are labelled by the events.

Exercise 2.6 What is the relation between the number of arcs of the graph
and the number of lines one needs to write down in order to specify δ?

Assume that the machine starts in the idle state q0 = I. What are the
sequences of events the machine can experience? Clearly some sequences are
possible while others are not. For example, the sequence pcp is possible: the
machine successfully processes one part and subsequently starts processing
a second one. The sequence ppc, on the other hand is not possible: the

2.3. Examples of Hybrid State Systems 19

machine can not start processing a second part before the previous one
is complete. More generally, any sequence that consists of an arbitrary
number of pc’s (possibly followed by a single p) is an acceptable sequence.
In the discrete event literature this set of sequences is compactly denoted
as

(pc)∗(1 + p)

where ∗ denotes an arbitrary number (possibly zero) of pc’s, 1 denotes the
empty sequence (no event takes place), and + denotes “or”.
Likewise, pfr is a possible sequence of events (the machine starts pro-

cessing a part, breaks down and then gets repaired) while pfp is not (the
machine can not start processing a part while it is down). More gener-
ally, any sequence that consists of an arbitrary number of pfr’s (possibly
followed by a p or a pf) is an acceptable sequence.

Exercise 2.7 Write this set of sequences in the discrete event notation
given above.

The set of all sequences that the automaton can experience is called
the language of the automaton. The above discussion suggests that the
language of the machine automaton is

(pc+ pfr)∗(1 + p+ pf)

It is important to understand the properties of these languages, for example
to determine how to schedule the work in a manufacturing plant.

2.3 Examples of Hybrid State Systems

Roughly speaking, hybrid systems are dynamical systems that involve the
interaction of different types of dynamics. Here we are interested in hybrid
dynamics that arise out of the interaction of continuous state dynamics and
discrete state dynamics. A state variable is called discrete if it takes on a
finite (or countable) number of values and continuous if it takes values in
Euclidean space R

n for some n ≥ 1. By their nature, discrete states can
change value only through a discrete “jump” (c.f. the machining example in
the previous section. Continuous states can change values either through a
jump (c.f. the logistic map example in the previous section, or by “flowing”
in continuous time according to a differential equation as seen in the previ-
ous section. Hybrid systems involve both these types of dynamics: discrete
jumps and continuous flows. The analysis and design of hybrid systems is,
in general, more difficult than that of purely discrete or purely continuous
systems, because the discrete dynamics may affect the continuous evolution
and vice versa.
Hybrid dynamics provide a convenient framework for modeling systems

in a wide range of engineering applications:

20 Chapter 2. Introduction to Dynamical Systems

• In mechanical systems continuous motion may be interrupted by
collisions.

• In electrical circuits continuous phenomena such as the charging
of capacitors, etc. are interrupted by switches opening and closing, or
diodes going on or off.

• In chemical process control the continuous evolution of chemical
reactions is controlled by valves and pumps.

• In embedded computation systems a digital computer interacts
with a mostly analog environment.

In all these systems it is convenient (and usually fairly accurate) to model
the “discrete” components (switches, valves, computers, etc.) as introduc-
ing instantaneous changes in the “continuous” components (charging of
capacitors, chemical reactions, etc.). To motivate the analysis that follows,
we start with some examples. In the examples that follow we no longer
make a distinction between continuous time and discrete time: rather the
evolution always follows the hybrid time trajectory.

2.3.1 The Bouncing Ball

A model for a bouncing ball can be represented as a simple hybrid system
(Figure 2.7) with single discrete state and a continuous state of dimension
two

x =

[
x1
x2

]
,

where x1 denotes the vertical position of the ball and x2 its vertical velocity.
The continuous motion of the ball is governed by Newton’s laws of mo-

tion. This is indicated by the differential equation that appears in the
vertex (box), where g denotes the gravitational acceleration. This differen-
tial equation is only valid as long as x1 ≥ 0, i.e., as long as the ball is above
the ground. This is indicated by the logical expression x1 ≥ 0 that appears
in the vertex below the differential equation.
The ball bounces when x1 = 0 and x2 ≤ 0, i.e. when it hits the ground

on the way down. This is indicated by the logical expression that appears
near the beginning of the edge (arrow). At each bounce, the ball loses a
fraction of its energy. This is indicated by the equation x2 := −cx2 (with
c ∈ [0, 1]) that appears near the end of the edge. This is an assignment
statement, which means that after the bounce the speed of the ball will
be c times the speed of the ball before the bounce, and in the opposite
direction (going up).

Exercise 2.8 Show that energy is preserved during continuous evolution.
What fraction of the energy of the ball is lost at each bounce? What is the

2.3. Examples of Hybrid State Systems 21

(x1 ≤ 0) ∧ (x2 ≤ 0) x2 := −cx2

ẋ1 = x2

ẋ2 = −g

x1 ≥ 0

x1 ≥ 0

Fly

Figure 2.7. Bouncing ball

time interval that elapses between two bounces as a function of the energy
of the ball?

Starting at an initial state with x1 ≥ 0 (as indicated by the logical
condition next to the arrow pointing to the vertex), the continuous state
flows according to the differential equation as long as the condition x1 ≥ 0
is fulfilled. When x1 = 0 and x2 ≤ 0, a discrete transition takes place
and the continuous state is reset to x2 := −cx2 (x1 remains constant).
Subsequently, the state resumes flowing according to the vector field, and
so on. Such a trajectory is called an execution (and sometimes a run or a
solution) of the hybrid system.

2.3.2 Thermostat: A Hybrid State System

Consider a room being heated by a radiator controlled by a thermostat.
Assume that when the radiator is off the temperature, x ∈ R, of the
room decreases exponentially towards 0 degrees according to the differential
equation

ẋ = −ax (2.2)

for some a > 0.

Exercise 2.9 Verify that the trajectories of (2.2) decrease to 0 exponen-
tially.

When the thermostat turns the heater on the temperature increases
exponentially towards 30 degrees, according to the differential equation

ẋ = −a(x− 30). (2.3)

Exercise 2.10 Verify that the trajectories of (2.3) increase towards 30
exponentially.

22 Chapter 2. Introduction to Dynamical Systems

x

22

21

20

19

18

t

Figure 2.8. A trajectory of the thermostat system.

Assume that the thermostat is trying to keep the temperature at around
20 degrees. To avoid “chattering” (i.e. switching the radiator on an off all
the time) the thermostat does not attempt to turn the heater on until
the temperature falls below 19 degrees. Due to some uncertainty in the
radiator dynamics, the temperature may fall further, to 18 degrees, before
the room starts getting heated. Likewise, the thermostat does not attempt
to turn the heater on until the temperature rises above 21 degrees. Due
to some uncertainty in the radiator dynamics the temperature may rise
further, to 22 degrees, before the room starts to cool down. A trajectory
of the thermostat system is shown in Figure 2.8. Notice that in this case
multiple trajectories may be obtained for the same initial conditions, as for
certain values of the temperature there is a choice between switching the
radiator on/off or not. Systems for which such a choice exists are known as
non-deterministic.
Notice that this system has both a continuous and a discrete state. The

continuous state is the temperature in the room x ∈ R. The discrete state,
q ∈ {ON,OFF} reflects whether the radiator is on or off. The evolution of
x is governed by a differential equation (as was the case with the pendu-
lum), while the evolution of q is through jumps (as was the case with the
manufacturing machine). The evolution of the two types of state is coupled.
When q = ON, x rises according to differential equation (2.3), while when
q = OFF, x decays according to differential equation (2.2). Likewise, q can
not jump from ON to OFF unless x ≥ 21. q must jump from ON to OFF if
x ≥ 22. Etc.
It is very convenient to compactly describe such hybrid systems by mixing

the differential equation with the directed graph notation (Figure 2.9).

2.3.3 Gear Shift Control

The gear shift example describes a control design problem where both the
continuous and the discrete controls need to be determined. Figure 2.10
shows a model of a car with a gear box having four gears.

2.3. Examples of Hybrid State Systems 23

OFF ON

ẋ = −ax ẋ = −a(x− 30)

x ≥ 18 x ≤ 22

x ≤ 19

x ≥ 21

Figure 2.9. Directed graph notation for the thermostat system.

gear = 1 gear = 2

gear = 2

gear = 3

gear = 3 gear = 4

ẋ1 = x2

ẋ2 = α1(x2)u

gear = 1

ẋ1 = x2

ẋ2 = α2(x2)u

gear = 2

ẋ1 = x2

ẋ2 = α3(x2)u

gear = 3

ẋ1 = x2

ẋ2 = α4(x2)u

gear = 4

Figure 2.10. A hybrid system modeling a car with four gears.

The longitudinal position of the car along the road is denoted by x1
and its velocity by x2 (lateral dynamics are ignored). The model has two
control signals: the gear denoted gear ∈ {1, . . . , 4} and the throttle position
denoted u ∈ [umin, umax]. Gear shifting is necessary because little power
can be generated by the engine at very low or very high engine speed.
The function αi represents the efficiency of gear i. Typical shapes of the
functions αi are shown in Figure 2.11.

a1(x2) a2(x2) a3(x2)
a4(x2)

x2

Figure 2.11. The efficiency functions of the different gears.

24 Chapter 2. Introduction to Dynamical Systems

Exercise 2.11 How many real valued continuous states does this model
have? How many discrete states?

Several interesting control problems can be posed for this simple car model.
For example, what is the optimal control strategy to drive from (a, 0) to
(b, 0) in minimum time? The problem is not trivial if we include the rea-
sonable assumption that each gear shift takes a certain amount of time.
The optimal controller, which will also be a hybrid system, may in general
be derived using the theory of optimal control of hybrid systems.

2.3.4 Collision avoidance between airplanes (Claire)

2.3.5 Collision avoidance between cars

The need to ensure the safety of the vehicles on an automated highway
system (AHS) dictates that formal methods have to be used to design and
analyze the hybrid interactions.

E F

C A B

xA D LB

xB

AB

Figure 2.12. AHS model with five platoons and distances as marked.

Consider two vehicles, labeled A and B, moving on an AHS (Figure ??)
with A following B. Let Li denote the length of platoon i = A,B, and
xi its position from a fixed road-side reference frame. Since neither the
dynamics nor the safety requirements depend on the absolute position of
the vehicles, we introduce a variable DAB = xB −xA−LB to keep track of
the spacing between A and B. We assume that (after feedback linearization)
the controller of vehicle A can directly affect the acceleration of A, u = ẍA
through brake and throttle actuators. We also assume that vehicle A is
equipped with sensors to measure its own velocity and the spacing and
relative velocity with respect to vehicle B. The acceleration of vehicle B,
ẍB , is assumed to be unknown to vehicle A and is treated as a disturbance.

2.3. Examples of Hybrid State Systems 25

The continuous dynamics can be described by a state vector x =
(x1, x2, x3) = (ẋA, DAB , ḊAB) ∈ R

3 with:

ẋ =




0 0 0
0 0 1
0 0 0


x+




1
0
−1


u+




0
0
1


 ẍB (2.4)

Physical considerations impose constraints on u and ẍB : vehicles are not
allowed to move in reverse, and are required to keep their speed below a
certain speed limit, vmax. To enforce these requirements we assume that u
and ẍB satisfy

u ∈





[0, amax
A] if x1 ≤ 0

[amin
A , amax

A] if 0 < x1 < vmax

[amin
A , 0] if x1 ≥ vmax

ẍB ∈





[0, amax
B] if x1 + x3 ≤ 0

[amin
B , amax

B] if 0 < x1 + x3 < vmax

[amin
B , 0] if x1 + x3 ≥ vmax

To ensure that the dynamics of the system are physically meaningful, we
assume that the set of initial states is such that ẋA(0) = x1(0) ∈ [0, vmax],
ẋB(0) = x1(0) + x3(0) ∈ [0, vmax], and that the constants satisfy amin

A <
0 < amax

A and amin
B < 0 < amax

B . In this case ẋA(t), ẋB(t) ∈ [0, vmax] for all
t ≥ 0.
Even though the model of this two vehicle system seems continuous at

first, there are a number of sources of discrete behavior. The first is the
mode switching necessary to enforce the constraints on the velocities. Three
discrete states are needed for each vehicle to account for this, one for ẋi = 0,
one for ẋi ∈ (0, vmax) and one for ẋi = vmax, i = A,B. This gives rise to a
total of nine discrete states.
If A and B represent entire platoons, additional discrete phenomena are

introduced by the intra-platoon collisions that A and B may experience
in case of emergency. From the point of view of platoon A these collisions
can be treated as a source of disturbance, and can be modeled as discrete
events that instantaneously reset the velocities of certain vehicles. For sim-
plicity, we assume that the first vehicle of platoon A (leader of A platoon)
can experience at most one collision with the vehicle immediately behind
it (first follower in platoon A), and parameterize the disturbance by the
time at which the collision occurs (TA) and the resulting increase in the
velocity of the leader (δvA). Likewise, we assume that the last vehicle of
platoon B can experience at most one collision, and use the time at which
the collision occurs (TB) and the decrease of the velocity of the last vehicle
(δvB) to parameterize the disturbance. Since the vehicles are not allowed
to move in reverse, we assume that collisions within a platoon will not re-
sult in negative velocities, or, in other words, that δvB ≤ x1(TB)+x3(TB).
Likewise, since vehicles are not allowed to move faster than the speed limit,
it is natural to assume that collisions within a platoon will not result in

26 Chapter 2. Introduction to Dynamical Systems

velocities greater than vmax, or, in other words, δvA ≤ vmax − x1(TA). Fi-
nally, if the intra-platoon controllers are designed properly, we can assume
that all intra-platoon collisions will be at low relative velocities, below
a certain “safe” value, vS ≈ 3m/s. Under these assumptions, which are
reasonable if the vehicles have roughly equal masses and coefficients of
restitution, the discrete disturbance caused by intra-platoon collisions can
be parameterized by

TA ≥0, δvA ∈ [0,min{vS , vmax − x1(TA)}],
TB ≥0, δvB ∈ [0,min{vS , x1(TB) + x3(TB)}]

The hybrid automaton used to capture the intra-platoon collisions in pla-
toons A and B is shown in Figure 2.13. The discrete state is q0 if no
collisions have taken place in either platoon, q1 is a collision takes place
only in platoon B, q2 is a collision takes place only in platoon A and q3
if collisions take place in both platoons. Two discrete disturbance inputs
(CollA and CollB) are introduced to trigger the collisions, and four con-
tinuous disturbance inputs (TA, TB , δvA, δvB) are introduced to capture
their effect. The discrete states introduced to model the velocity constraints
have been suppressed to simplify the figure; with these states, the total
number of discrete states is thirty-six. To simplify the notation we use
d = (ẍB , TA, TB , δvA, δvB) to denote the continuous disturbance inputs.

q
0

q1

q2 q
3

CollB = 0

CollA = 0
CollB = 1

CollA = 1

CollA = 0

Coll = 0B

x := x - vB3 3 δ

x := x - vB3 3 δ

δ1 1x := x + vA
3 3 δ Ax := x - v

δ1 1x := x + vA
3 3 δ Ax := x - v

δ1 1x := x + vA
3 3 δ Bδx := x - v - vA

CollA = 1

CollB = 1

CollB = 1

CollA = 1

Figure 2.13. Hybrid automaton modeling intra-platoon collisions in platoons A

and B. The discrete states are q0 for no collisions, q1 for collision inside platoon B,
q2 for collision inside platoon A, and q3 for simultaneous intra-platoon collisions
in A and B. The continuous dynamics within each discrete mode are given by
(2.4).

2.3. Examples of Hybrid State Systems 27

Even though intra-platoon collisions within platoons A and B may be
acceptable in case of emergency, inter-platoon collisions should be avoided
at all costs. Thus, for safety, we would like to prevent collisions between
platoons A and B. In other words, we would like to ensure that x2 ≥ 0 at all
times. Notice that the limiting case x2(t) = 0 is considered acceptable, since
the vehicles just touch with zero relative velocity. This safety requirement
can be posed as a controller synthesis problem of selecting the continuous
control variable u such that for all actions of the disturbance d the two
platoons are guaranteed not to collide.

2.3.6 Computer-Controlled System

Hybrid systems are natural models for computer-controlled systems (Fig-
ure 2.14), since they involve a physical process (which often can be modeled
as continuous-time system) and a computer (which is fundamentally a fi-
nite state machine). The classical approach to computer-controlled systems
has been using sampled-data theory, where it is assumed that measure-
ments and control actions are taken at a fixed sampling rate. Such a
scheme is easily encoded using a hybrid model. The hybrid model also cap-
tures a more general formulation where measurements may also be taken
asynchronously, based for example on computer interrupts. This is some-
times closer to real-time implementations, for example, in embedded control
systems.

Plant

Computer

A/D D/A

Figure 2.14. Computer-controlled system.

To model all the diverse phenomena in the above examples, one needs a
modeling framework that is

• descriptive, to allow one to capture different types of continuous and
discrete dynamics, be capable of modeling different ways in which dis-

28 Chapter 2. Introduction to Dynamical Systems

crete evolution affects and is affected by continuous evolution, allow
non-deterministic models (e.g. the thermostat example of Chapter 2)
to capture uncertainty, etc.

• composable, to allow one to build large models by composing models
of simple components (e.g. for the automated highways or air traffic
applications).

• abstractable, to allow one to refine design problems for composite
models down to design problems for individual components and,
conversely, compose results about the performance of individual
components to study the performance for the overall system.

Modeling frameworks that possess at least some subset of these properties
have been developed in the hybrid systems literature. Different frameworks
place more emphasis on different aspects, depending on the applications
and problems they are designed to address. Here we will concentrate on
one such framework, called hybrid automata. The hybrid automata we will
study are fairly rich (in terms of descriptive power), but are autonomous,
i.e. have no inputs and outputs. They are therefore suitable for modeling
autonomous systems and analyzing their properties (stability, reachability,
etc.), but are unsuitable for modeling systems compositionally and carry-
ing out abstraction operations and solving control problems (stabilization,
optimal control, safe controller synthesis, etc.).

This is page 29
Printer: Opaque this

Chapter 3
Hybrid Automata and Executions

Our goal is to develop a mathematical representation of such systems as
described in the previous chapters. The representation should be compact,
yet rich enough to describe both the evolution of continuous dynamics as
well as the modal logic.
In this section we present a model for a hybrid automaton. The model

is called hybrid because it combines nonlinear continuous dynamics with
the dynamics of discrete event systems. In this chapter, we focus on au-
tonomous hybrid systems, and in subsequent chapters we treat the case of
hybrid automata with control and disturbance input variables, both con-
tinuous and discrete. Our model is based on the hybrid system model of
[?], developed further in [36] and [?].
As background, we first present a model for a discrete event system, and

then one for a purely continuous nonlinear system. We describe the state
and input spaces, the control and environment variables, system trajecto-
ries and safety properties. We then present a model for a nonlinear hybrid
automaton.

3.1 Discrete, Continuous, and Hybrid Models

3.1.1 Finite State Automata

A finite state automaton is represented as

(Q, Init, δ) (3.1)

30 Chapter 3. Hybrid Automata and Executions

where Q = {q1, q2, . . . , qm} is a finite set of discrete states; δ : Q → 2Q

is a partial transition relation, and Init ⊆ Q is a set of initial states.
Note that the behavior of the finite state automaton is non-deterministic:
the transition function δ(q) represents a set of possible new states, rather
than a single unique state. Transitions may be prevented, or blocked, from
occurring at state q by setting δ(q) = ∅.

A system trajectory q[·] ∈ Qω is a finite or infinite sequence of states and
actions which satisfies, for i ∈ Z,

q[0] ∈ Init and q[i+ 1] ∈ δ(q[i]) (3.2)

3.1.2 Continuous-Time Dynamics

Here, we consider continuous dynamics described by the nonlinear ordinary
differential equation (ODE)

ẋ(t) = f(x(t)), x(0) ∈ Init (3.3)

where x ∈ X is the finite-dimensional state in an n-manifold (frequently
X = R

n), f is a smooth vector field over Rn, and Init ⊆ X is a set of initial
conditions.
A system trajectory over an interval [τ, τ ′] ⊆ R is a map:

x(·) : [τ, τ ′] → X (3.4)

such that x(·) is continuous, and for all t ∈ [τ, τ ′], ẋ(t) = f(x(t)). We
assume that the function f is globally Lipschitz in x. Then, by the existence
and uniqueness theorem of solutions for ordinary differential equations,
given an interval [τ, τ ′], the value of x(t) for some t ∈ [τ, τ ′] there exists a
unique solution x(·) to (3.3).

3.1.3 Hybrid Automata

A hybrid automaton is a dynamical system that describes the evolution in
time of the values of a set of discrete and continuous state variables.

Definition 3.1 (Hybrid Automaton) A hybrid automaton H is a col-
lection H = (Q, X, f , Init, Dom, E, G, R), where

• Q = {q1, q2, . . .} is a set of discrete states;

• X = R
n is a set of continuous states;

• f(·, ·) : Q×X → R
n is a vector field;

• Init ⊆ Q×X is a set of initial states;

• Dom(·) : Q→ 2X is a domain;

• E ⊆ Q×Q is a set of edges;

3.1. Discrete, Continuous, and Hybrid Models 31

• G(·) : E → 2X is a guard condition;

• R(·, ·) : E ×X → 2X is a reset map.

Recall that 2X denotes the power set (set of all subsets) of X. The notation
of Definition 3.1 suggests, for example, that the function Dom assigns a set
of continuous states Dom(q) ⊆ R

n to to each discrete state q ∈ Q. We refer
to (q, x) ∈ Q ×X as the state of H. To eliminate technical difficulties we
impose the following assumption.

Assumption 3.2 For all q ∈ Q, f(q, ·) is Lipschitz continuous. For all
e ∈ E, G(e) 6= ∅, and for all x ∈ G(e), R(e, x) 6= ∅.
Lipschitz continuity is needed to ensure the existence and uniqueness of
solutions for the continuous dynamics. The second part of the assumption
eliminates some pathological cases and can in fact be imposed without loss
of generality (see Problem 3.6).
Hybrid automata define possible evolutions for their state. Roughly

speaking, starting from an initial value (q0, x0) ∈ Init, the continuous state
x flows according to the differential equation

ẋ = f(q0, x),

x(0) = x0,

while the discrete state q remains constant

q(t) = q0.

Continuous evolution can go on as long as x remains in Dom(q0). If at some
point the continuous state x reaches the guard G(q0, q1) ⊆ R

n of some edge
(q0, q1) ∈ E, the discrete state may change value to q1. At the same time
the continuous state gets reset to some value in R(q0, q1, x) ⊆ R

n. After this
discrete transition, continuous evolution resumes and the whole process is
repeated.
As we saw in Chapter 2 and in the examples of Section 2.3, it is often

convenient to visualize hybrid automata as directed graphs (Q,E) with
vertices Q and edges E. With each vertex q ∈ Q, we associate a set of
initial states {x ∈ X | (q, x) ∈ Init}, a vector field f(q, ·) : X → R

n and
a domain Dom(q) ⊆ X. An edge (q, q′) ∈ E starts at q ∈ Q and ends at
q′ ∈ Q. With each edge (q, q′) ∈ E, we associate a guard G(q, q′) ⊆ X and
a reset function R(q, q′, ·) : X → 2X .

Example (Water Tank System) The two tank system, shown in Fig-
ure 3.1, consists of two tanks containing water. Both tanks are leaking at
a constant rate. Water is added to the system at a constant rate through a
hose, which at any point in time is dedicated to either one tank or the other.
It is assumed that the hose can switch between the tanks instantaneously.

For i = 1, 2, let xi denote the volume of water in Tank i and vi > 0
denote the constant flow of water out of Tank i. Let w denote the constant

32 Chapter 3. Hybrid Automata and Executions

w

x1

x2

r1
r2

v1 v2

Figure 3.1. The water tank system.

flow of water into the system. The objective is to keep the water volumes
above r1 and r2, respectively, assuming that the water volumes are above
r1 and r2 initially. This is to be achieved by a controller that switches the
inflow to Tank 1 whenever x1 ≤ r1 and to Tank 2 whenever x2 ≤ r2.
It is straight forward to define a hybrid automaton, to describe this

process. The automaton will have:

• Q = {q1, q2}, two discrete states, corresponding to inflow going left
and inflow going right.

• X = R
2, two continuous states, the levels of water in the two tanks.

• A vector field

f(q1, x) =

[
w − v1
−v2

]
, and f(q2, x) =

[
−v1
w − v2

]
;

such that when the inflow is going to the tank on the right, the water
level in the left tank goes down while the water level in right tank
goes up, and vice versa.

• Initial states, Init = {q1, q2}×{x ∈ R
2 | x1 ≥ r1 ∧x2 ≥ r2}, i.e. start

with both water levels above the low level marks r1 and r2.

• Domains Dom(q1) = {x ∈ R
2 | x2 ≥ r2} and Dom(q2) = {x ∈

R
2 | x1 ≥ r1} reflecting the fact that we put water in the current

tank as long as the level in the other tank is above the low level
mark.

• Edges E = {(q1, q2), (q2, q1)}, reflecting the fact that it is possible to
switch inflow from left to right and vice versa.

• Guards G(q1, q2) = {x ∈ R
2 | x2 ≤ r2} and G(q2, q1) = {x ∈

R
2 | x1 ≤ r1} to allow us to switch the inflow to the other tank

as soon as the water there reaches the low level mark.

3.1. Discrete, Continuous, and Hybrid Models 33

q1 q2
x2 ≤ r2

x1 ≤ r1

x1 ≥ r1 ∧ x2 ≥ r2 x1 ≥ r1 ∧ x2 ≥ r2
x := x

x := x

ẋ1 = w − v1
ẋ2 = −v2

x2 ≥ r2

ẋ1 = −v1
ẋ2 = w − v2

x1 ≥ r1

Figure 3.2. Graphical representation of the water tank hybrid automaton.

• Reset relation equal to the identity map for x, R(q1, q2, x) =
R(q2, q1, x) = {x}, since the continuous state does not change as
a result of switching the inflow.

The directed graph corresponding to this hybrid automaton is shown in
Figure 3.2.

Notice that the directed graphs contain exactly the same information
as Definition 3.1. They can therefore be treated as informal definitions of
hybrid automata. It is common to remove the assignment x := x from an
edge of the graph when the continuous state does not change as a result of
the discrete transition corresponding to that edge.

3.1.4 Hybrid Time Sets & Executions

To define the “solutions” of a hybrid automaton we draw an analogy to the
definition for the solutions of an ordinary differential equation. Recall that
the solution of the differential equation ẋ = f(x) with initial condition x0
is “a function x(·) : [0, T] → R

n such that

x(0) = x0

ẋ(t) = f(x(t)), ∀t ∈ [0, T].′′

To develop an analogous definition for hybrid automata we clearly need
to generalize the space in which our function takes its values: Since our
system now has both continuous and discrete state, the solution has to be
a “function” from “time” to the state space Q×X.
This is not enough however. Hybrid automata involve both continuous

flow (determined by differential equations) and discrete jumps (determined
by a directed graph). The trajectories of the differential equations evolve in
continuous (real valued) time, whereas the trajectories of automata evolve
effectively in discrete (integer valued) time. To characterize the evolution
of the state of a hybrid automaton one therefore has to think of a more
general set of times that involves both continuous intervals over which
continuous evolution takes place and distinguished discrete points when
discrete transitions happen. Such a set of times is called a hybrid time set.

34 Chapter 3. Hybrid Automata and Executions

τ0 τ ′0

τ1 τ ′1

τ2 = τ ′2

τ3 τ ′3

t1 t2

t3 t4

t5

t6

t

i

0

1

2

3

Figure 3.3. A hybrid time set τ = {[τi, τ
′
i]}

3
i=0.

Definition 3.3 (Hybrid Time Set) A hybrid time set is a sequence of
intervals τ = {I0, I1, . . . , IN} = {Ii}Ni=0, finite or infinite (i.e. N < ∞ or
N = ∞) such that

• Ii = [τi, τ
′
i] for all i < N ;

• if N < ∞ then either IN = [τN , τ
′
N] or IN = [τN , τ

′
N), possibly with

τ ′N = ∞; and

• τi ≤ τ ′i = τi+1 for all i.

Since all the primitives in Definition 3.1 do not depend explicitly on time,
we can assume without loss of generality that τ0 = 0. An example of a
hybrid time set is given in Figure 3.3. Notice that the right endpoint, τ ′i ,
of the interval Ii coincides with the left endpoint, τi+1 of the interval Ii+1

(c.f. the time instants labeled t2 and t3 in Figure 3.3). The interpretation is
that these are the times at which discrete transitions of the hybrid system
take place. τ ′i corresponds to the time instant just before a discrete tran-
sition, whereas τi+1 corresponds to the time instant just after the discrete
transition. Discrete transitions are assumed to be instantaneous, therefore
τ ′i = τi+1. The advantage of this convention is that it allows one to model
situations where multiple discrete transitions take place one after the other
at the same time instant, in which case τ ′i−1 = τi = τ ′i = τi+1 (c.f. the
interval I2 = [τ2, τ

′
2] in Figure 3.3).

Despite its somewhat complicated nature, a hybrid time set, τ , is a rather
well behaved mathematical object. For example, there is a natural way in
which the elements of the hybrid time set can be ordered. For t1 ∈ [τi, τ

′
i] ∈

τ and t2 ∈ [τj , τ
′
j] ∈ τ we say that t1 precedes t2 (denoted by t1 ≺ t2)

3.1. Discrete, Continuous, and Hybrid Models 35

τ τ̂τ̃

iii

000

111

111

222

Figure 3.4. τ ⊏ τ̂ and τ ⊏ τ̃ .

if t1 < t2 (i.e. if the real number t1 is less that the real number t2) or if
i < j (i.e. if t1 belongs to an earlier interval than t2). In Figure 3.3, we
have t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ t6. In general, given any two distinct time
instants, t1 and t2, belonging to some τ we have that either t1 ≺ t2 or
t2 ≺ t1 (c.f. given any two distinct real numbers x and y, either x < y or
y < x). Using mathematical terminology, one would say that each hybrid
time set τ is linearly ordered by the relation ≺.
Given two hybrid time sets τ and τ̂ there is also a natural way to define

if one is “shorter” than the other (τ is called a prefix of τ̂ if it is “shorter”).
More formally, we say that τ = {Ii}Ni=0 is a prefix of τ̂ = {Îi}Mi=0 (and write
τ ⊑ τ̂) if either they are identical, or τ is a finite sequence, N ≤M (notice
that M can be infinite), Ii = Îi for all i = 0, . . . , N − 1, and IN ⊆ ÎN . We
say that τ is a strict prefix of τ̂ (and write τ ⊏ τ̂) if τ ⊑ τ̂ and τ 6= τ̂ . In
Figure 3.4, τ is a strict prefix of both τ̂ and τ̃ , but τ̂ is not a prefix of τ̃
and τ̃ is not a prefix of τ̂ . Notice that given τ and τ̂ we may have neither
τ̂ ⊑ τ nor τ ⊑ τ̂ (c.f. given two sets of real numbers A ⊆ R and B ⊆ R

it is possible to have neither A ⊆ B nor B ⊆ A). Using mathematical
terminology, one would say that the set of all hybrid time sets is partially
ordered by the relation ⊑.
Having generalized our notion of time from continuous/discrete time to

the hybrid time sets implies that we also need to generalize the notion of
a “function” from the time set to the state space.

Definition 3.4 (Hybrid Trajectory) A hybrid trajectory over a set A
is a pair (τ, a) consisting of a hybrid time set τ = {Ii}N0 and a sequence of
functions a = {ai(·)}N0 with ai(·) : Ii → A.

The notions of prefix and strict prefix naturally extend to hybrid trajec-
tories. Given two hybrid trajectories (τ, a) and (τ̂ , â) we say that (τ, a) is
a prefix of (τ̂ , â) (and write (τ, a) ⊑ (τ̂ , â)) if τ ⊑ τ̂ and ai(t) = âi(t) for
all t ∈ Ii ∈ τ . We say that (τ, a) is a strict prefix of (τ̂ , â) (and write
(τ, a) ⊑ (τ̂ , â)) if (τ, a) ⊑ (τ̂ , â) and τ ⊏ τ̂ . The relation ⊑ also defines a
partial order on the space of hybrid trajectories.
Comparing with the definition of a solution of a differential equation

ẋ = f(x) with initial condition x0 we see that all this work was needed
just to generalize the sentence “a function x(·) : [0, T] → R

n” to the hybrid
domain. A “solution” (known as an execution) of an autonomous hybrid

36 Chapter 3. Hybrid Automata and Executions

automaton will be a hybrid trajectory, (τ, q, x) over its state space Q×X.
To complete the definition we now need to provide a generalization for the
sentence: “such that

x(0) = x0

ẋ(t) = f(x(t)), ∀t ∈ [0, T].′′

The elements listed in Definition 3.1 impose restrictions on the types of
hybrid trajectories that the hybrid automaton finds “acceptable”, just like
the initial condition x0 and the vector field f(·) determine which functions
x(·) : [0, T] → R

n are solutions of the differential equation and which are
not.

Definition 3.5 (Execution) An execution of a hybrid automaton H is a
hybrid trajectory, (τ, q, x), which satisfies the following conditions:

• Initial condition: (q0(τ0), x0(τ0)) ∈ Init.

• Discrete evolution: for all i, (qi(τ
′
i), qi+1(τi+1)) ∈ E, xi(τ

′
i) ∈

G(qi(τ
′
i), qi+1(τi+1)), and xi+1(τi+1) ∈ R(qi(τ

′
i), qi+1(τi+1), xi(τ

′
i)).

• Continuous evolution: for all i with τi < τ ′i ,

1. qi(t) = qi(τi) for all t ∈ Ii;
2. xi(·) : Ii → X is the solution to the differential equation

dxi
dt

(t) = f(qi(t), xi(t))

over Ii starting at xi(τi); and,
3. for all t ∈ [τi, τ

′
i), xi(t) ∈ Dom(qi(t)).

Definition 3.5 specifies which of the hybrid trajectories are executions
of H and which are not by imposing a number of restrictions. The first
restriction dictates that the executions should start at an acceptable initial
state in Init. For simplicity, we will use (q0, x0) = (q0(τ0), x0(τ0)) ∈ Init
to denote the initial state of an execution (τ, q, x). The second restriction
determines when discrete transitions can take place and what the state af-
ter discrete transitions can be. The requirements relate the state before the
discrete transition (qi(τ

′
i), xi(τ

′
i)) to the state after the discrete transition

(qi+1(τi+1), xi+1(τi+1)): they should be such that (qi(τ
′
i), qi+1(τi+1)) is an

edge of the graph, xi(τ
′
i) belongs to the guard of this edge and xi+1(τi+1)

belongs the the reset map of this edge. In this context, it is convenient
to think of the guard G(e) as enabling a discrete transition e ∈ E: the
execution may take a discrete transition e ∈ E from a state x as long as
x ∈ G(e). The third restriction determines what happens along continuous
evolution, and when continuous evolution must give way to a discrete tran-
sition. The first part dictates that along continuous evolution the discrete
state remains constant. The second part requires that along continuous
evolution the continuous state flows according to the differential equation

3.1. Discrete, Continuous, and Hybrid Models 37

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5
0.5

1.5

2.5

q1

q2

x1

x2

Figure 3.5. Example of an execution of the water tank hybrid automaton.

ẋ = f(q, x). Notice that the differential equation depends on the discrete
state we are currently in (which is constant along continuous evolution).
The third part requires that along continuous evolution the state must
remain in the domain, Dom(q), of the discrete state. In this context, it is
convenient to think of Dom(q) as forcing discrete transitions: the execution
must take a transition if the state is about to leave the domain.

Example (Water Tank (cont.)) Figure 3.5 shows an execution of the
water tank automaton. The hybrid time set τ of the execution consists
of three intervals, τ = {[0, 2], [2, 3], [3, 3.5]}. The evolution of the discrete
state is shown in the upper plot, and the evolution of the continuous state is
shown in the lower plot. The values chosen for the constants are r1 = r2 = 0,
v1 = v2 = 1/2 and w = 3/4. The initial state is q = q1, x1 = 0, x2 = 1.

A convenient interpretation is that the hybrid automaton accepts (as op-
posed to generates) executions. This perspective allows one to consider, for
example, hybrid automata that accept multiple executions for some ini-
tial states, a property that can prove very useful when modeling uncertain
system (as illustrated by the thermostat example of Chapter 2).

Definition 3.6 (Classification of executions) An execution (τ, q, x) is
called:

• Finite, if τ is a finite sequence and the last interval in τ is closed.

38 Chapter 3. Hybrid Automata and Executions

τA τB τC

τD τE τF

iii

iii

0 0

000

0

111

111

22 2

Figure 3.6. τA finite, τC and τD infinite, τE and τF Zeno.

• Finite-open, if τ is a finite sequence ending with an interval [τN , τ
′
N)

with τ ′N <∞.

• Infinite, if τ is an infinite sequence, or if the if it extends over an
infinite time horizon,

N∑

i=0

(τ ′i − τi) = ∞.

• Zeno, if it is infinite but
∑∞

i=0(τ
′
i − τi) <∞.

• Maximal if it is not a strict prefix of any other execution of H.

Notice that by definition an infinite execution is also maximal. Figure 3.6
shows examples of hybrid time sets of finite, infinite and Zeno executions.

Exercise 3.1 Show that an execution is Zeno if and only if it takes an
infinite number of discrete transitions in a finite amount of time. Does an
execution defined over the hybrid time set τB of Figure 3.6 belong to any
of the classes of Definition 3.6?

3.2 Existence and uniqueness

Powerful modeling frameworks, such as hybrid automata, allow one to
model a very wide variety of physical phenomena, but also make it possible
to produce models that are unreasonable, either physically or mathemati-
cally. A common danger in hybrid modeling is lack of existence of solutions.
In most of the hybrid modeling frameworks one can easily construct models
that admit no solutions for certain initial states. Such systems are known
as blocking hybrid systems. This is an undesirable property when modeling

3.2. Existence and uniqueness 39

physical systems, since it suggests that the mathematical model provides
an incomplete picture of the physical reality: the evolution of the physi-
cal system is likely to continue despite the fact that the evolution of the
mathematical model is undefined.
Even if a hybrid system accepts executions for all initial states, it does not

necessarily accept executions with infinite execution times. For example,
the executions of hybrid models can take an infinite number of discrete tran-
sitions in finite time. Such executions are known as Zeno executions. One
can argue that physical systems do not exhibit Zeno behavior. However,
modeling abstraction can often lead to Zeno models of physical systems.
Since abstraction is crucial for handling complex systems, understanding
when it can lead to Zeno hybrid systems is important.
Another issue that arises in hybrid modeling is lack of uniqueness of so-

lutions. Hybrid systems that accept multiple executions for a single initial
state are known as non-deterministic. It is often desirable to retain some
level of non-determinism in a hybrid model, since it can be used to model
uncertainty (recall the thermostat example of Chapter 2). This, however,
requires additional care when designing controllers for such systems, or
when developing arguments about their performance. A common practice
in continuous dynamical systems is to base proofs on arguments about the
solution of the system. This is motivated by the fact that, under a Lip-
schitz continuity assumption, continuous dynamical systems have unique
solutions. This proof technique is inadequate for non-deterministic systems.
Instead one needs to develop arguments that hold for all solutions of the
system.
Finally, hybrid systems are especially challenging from the point of

view of simulation. The problems faced by the developers of simulation
algorithms are intimately related to the modeling problems discussed so
far.

• Existence: simulation algorithms may run into trouble if the simu-
lated model has no solutions. Incorporating tests for existence in the
simulation packages can alleviate this problem. More challenging is
the case of Zeno executions. In this case, unless special care is taken,
the simulation may grind to a halt, or produce spurious results.

• Uniqueness: Non-determinism introduces further complications from
the point of view of simulation. Here the simulation algorithm may be
called upon to decide between different alternatives. When a choice
between continuous evolution and discrete transition is possible, a
common approach is to take transitions the moment they are enabled
(as-soon-as semantics). Probabilistic methods have also been pro-
posed for dealing with non-determinism in the context of simulation,
see Problem 3.9.

40 Chapter 3. Hybrid Automata and Executions

• Discontinuity: Lack of continuity of the solution with respect to ini-
tial conditions, an inherent characteristic of hybrid systems, can also
lead to problems, both theoretical and practical. The most common
problem is event detection (guard crossing).

• Composability: When simulating large scale systems (e.g. the Auto-
mated Highway System discussed in Chapter 2), one would like to
be able to build up the simulation by composing different compo-
nents (e.g. models for the motion of each vehicle). It may also be
desirable to add components to the simulation on-line (e.g. to model
vehicles joining the highway), eliminate components (e.g. to model
vehicles leaving the highway), or redefine the interactions between
components (e.g. to model vehicles changing lanes). Object oriented
modeling languages have been developed to address these needs.

3.2.1 Two Fundamental Concepts

Reachability is a fundamental concept in the study of hybrid systems (and
dynamical systems in general). Roughly speaking, a state, (q̂, x̂) ∈ Q×X of
a hybrid automaton H is called reachable if the hybrid automaton can find
its way to (q̂, x̂) while moving along one of its executions. The importance
of the concept of reachability is difficult to overstate. In the next section we
will show how reachability plays a central role in the derivation of existence
and uniqueness conditions for executions. Reachability will also turn out
to be a key concept in the study of safety properties for hybrid systems.
More formally,

Definition 3.7 (Reachable State) A state (q̂, x̂) ∈ Q × X of a hybrid
automaton H is called reachable if there exists a finite execution (τ, q, x)
ending in (q̂, x̂), i.e. τ = {[τi, τ ′i]}N0 , N < ∞, and (qN (τ ′N), xN (τ ′N)) =
(q̂, x̂).

We will use Reach ⊆ Q×X to denote the set of all states reachable by H.
Clearly, Init ⊆ Reach.

Exercise 3.2 Why are all initial states reachable?

Another important concept in the study of existence of executions for
hybrid automata is the set of states from which continuous evolution is
impossible. We will call these states transition states. For (q̂, x̂) ∈ Q × X
and some ǫ > 0, consider the solution, x(·) : [0, ǫ) → R

n of the differential
equation

dx

dt
= f(q̂, x) with x(0) = x̂. (3.5)

Notice that, under the assumption that f is Lipschitz continuous in x, the
solution to equation (3.5) exists and is unique (Theorem A.2). The states,

3.2. Existence and uniqueness 41

Trans ⊆ Q×X, from which continuous evolution is impossible are

Trans = {(q̂, x̂) ∈ Q×X | ∀ǫ > 0 ∃t ∈ [0, ǫ) such that x(t) 6∈ Dom(q̂)} .
In words, Trans is the set of states for which continuous evolution along the
differential equation forces the system to exit the domain instantaneously.

Example (Water Tank (continued)) Consider again the water tank
automaton, and assume that

0 < v1, v2 < w.

We will show how to compute the sets Reach and Trans for this system.
First of all Reach must contain all initial states. Therefore

Reach ⊇ {q1, q2} × {x ∈ R
2 | (x1 ≥ r1) ∧ (x2 ≥ r2)} (3.6)

Can it contain any other states? It turns out that it can not. To see why,
we will show using induction that the state remains in the set Init.

Consider an arbitrary initial state (q̂, x̂) ∈ Init and an arbitrary execution
(τ, q, x) starting at (q̂, x̂). The fact that (q̂, x̂) ∈ Init provides the base case
for the induction argument. Assume that for some i, (qi(τi), xi(τi)) ∈ Init,
and consider the case where qi(τi) = q1 (the case qi(τi) = q2 is similar). If
τ ′i > τi, then continuous evolution takes place from (qi(τi), xi(τi)). Along
this evolution, the first component of the continuous state increases (be-
cause qi(τi) = q1, therefore ẋ1 = w−v1 and v1 < w). The second component
of the continuous state, on the other hand, decreases, but remains above
r2. This is because, by the definition of an execution,

xi(t) ∈ Dom(q1) = {x ∈ R
2 | x2 ≥ r2}

for all t ∈ [τi, τ
′
i]. Therefore, (qi(t), xi(t)) remains in Init along continuous

evolution.
If τ ′i = ∞, or if [τi, τ

′
i] is the last interval in τ we are done! Otherwise, a

discrete transition takes place from (qi(τ
′
i), xi(τ

′
i)). But the reset relation,

R, leaves x unaffected, therefore,

(qi+1(τi+1), xi+1(τi+1)) ∈ Init

The last statement is true even if τi = τ ′i .
Summarizing, if (qi(τi), xi(τi)) ∈ Init, then (qi(t), xi(t)) ∈ Init for all t ∈

[τi, τ
′
i]. Moreover, (qi+1(τi+1), xi+1(τi+1)) ∈ Init. Therefore, by induction

on i, (qi(t), xi(t)) ∈ Init for all i and all t and

Reach ⊆ {q1, q2} × {x ∈ R
2 | (x1 ≥ r1) ∧ (x2 ≥ r2)} (3.7)

Equations (3.6) and (3.7) together imply that

Reach = {q1, q2} × {x ∈ R
2 | (x1 ≥ r1) ∧ (x2 ≥ r2)}

To establish the set Trans for the water tank system, notice that con-
tinuous evolution is impossible if q = q1 and x2 < r2 (the inflow will get

42 Chapter 3. Hybrid Automata and Executions

immediately switched to tank 2) or if q = q2 and x1 < r1. Therefore,

Trans ⊇
(
{q1} × {x ∈ R

2 | x2 < r2}
)
∪
(
{q2} × {x ∈ R

2 | x1 < r1}
)

On the other hand, continuous evolution is possible if q = q1 and x2 > r2,
or if q = q2 and x1 > r1. Therefore

Trans ⊆
(
{q1} × {x ∈ R

2 | x2 ≤ r2}
)
∪
(
{q2} × {x ∈ R

2 | x1 ≤ r1}
)

How about if q = q1 and x2 = r2? If continuous evolution was to take place
from this state, x2 would immediately go below r2. This is because q = q1
implies that ẋ2 = −v2 < 0 (recall that v2 > 0). This, however, would imply
that the state would leave the domain Dom(q1), which is impossible along
continuous evolution. Therefore, continuous evolution is also impossible
from states where q = q1 and x2 = r2 (and, by a symmetric argument,
states where q = q2 and x1 = r1). Overall,

Trans =
(
{q1} × {x ∈ R

2 | x2 ≤ r2}
)
∪
(
{q2} × {x ∈ R

2 | x1 ≤ r1}
)
.

3.2.2 Computation of Reach and Trans

The computation of the set Reach is a problem that has attracted consid-
erable attention. In some cases the computation can be done analytically,
using induction arguments. This deductive approach, taken above for the
water tank example, will be reviewed more generally in Chapter 4. In other
cases it may be possible to compute the set of reachable states automati-
cally using appropriate computational model checking programs. This is the
case, for example, for a special class of hybrid automata known as timed
automata, also discussed in Chapter 4. For more general systems, one may
have to resort optimal control tools, mixed integer linear programming,
viability theory, etc. An approach to reachability computations for hybrid
systems based on optimal control and viability theory will be presented in
Chapter ??.

Important Note: The necessary and sufficient conditions for existence
and uniqueness presented in this chapter involve the set of reachable states,
Reach. This is needed, however, only to make the conditions necessary. If
all we are interested in is establishing that a hybrid automaton accepts
an infinite executions for all initial states, or that infinite executions are
unique, it suffices to show that the conditions of the lemmas hold for all
states (as opposed to all reachable states)or indeed any other set of states
that contains the reachable states. This can make our life considerably eas-
ier.

The exact characterization of the set Trans may also be quite involved
in general. Since the computation of Trans only involves arguments about

3.2. Existence and uniqueness 43

the continuous evolution of the system, it can be performed separately for
each value of the discrete state. For each q ∈ Q we set

Trans(q) = {x ∈ X | (q, x) ∈ Trans}.
Clearly, continuous evolution is impossible for all states outside the do-

main (refer to Definition 3.5). Therefore, states in the complement of the
domain of q (i.e. the set of all x 6∈ Dom(q), denoted by Dom(q)c) must
belong to Trans(q):

Dom(q)c ⊆ Trans(q).

Likewise, if x̂ is in the interior of Dom(q̂) (the largest open set contained
in Dom(q̂), denoted by Dom(q̂)◦), then there exists a small ǫ > 0 such that
the solution to (3.5) remains in Dom(q̂). Therefore

Dom(q)c ⊆ Trans(q) ⊆ [Dom(q)◦]
c
.

If Dom(q) is an open set, then Dom(q)◦ = Dom(q) and Trans(q) =
Dom(q)c.

Proposition 3.8 If Dom(q) is an open set and f(q, ·) is Lipschitz
continuous, then Trans(q) = Dom(q)c.

If Dom(q) is a closed set (i.e. it contains its boundary), then Trans(q)
may also contain pieces of the boundary of the domain. In general, comput-
ing these pieces exactly requires tools from non-smooth analysis and may
not be easy (see Appendix C). For all the examples considered in this chap-
ter, however, the domain Dom(q) and the dynamics f(q, ·) are smooth. In
this case the computation of Trans(q) can be done using nonlinear control
tools.
Assume that Dom(q) can be written as the zero level set of a function

σ : X → R, i.e..

Dom(q) = {x ∈ X | σ(x) ≥ 0}
Notice that if σ is continuous, then Dom(q) is a closed set.

Assuming f and σ are sufficiently differentiable in x, we inductively define
the Lie derivatives of σ along f , Lm

f σ : X → R, form ∈ N by L0
fσ(x) = σ(x)

and, for m > 0,

Lm
f σ(x) =

(
∂

∂x
Lm−1
f σ(x)

)
f(q, x).

The point-wise relative degree of σ with respect to f is defined as the
function n(σ,f) : X → N given by

n(σ,f)(x) = inf
{
m ∈ N | Lm

f σ(x) 6= 0
}
,

where we assume that inf of the empty set is equal to ∞.

Exercise 3.3 Show that n(σ,f)(x) = 0 if and only if σ(x) 6= 0. Assuming
that σ is a continuous function, what does this imply about x?

44 Chapter 3. Hybrid Automata and Executions

Proposition 3.9 Assume that Dom(q) = {x ∈ X | σ(x) ≥ 0} and f(q, ·)
and σ(·) are both analytic. Then Trans(q) = {x ∈ X | Ln(σ,f)(x)

f σ(x) < 0}.
Proof: Consider an arbitrary x̂ ∈ X. Since f is analytic in x, the solution
x(t) of (3.5) is analytic as a function of t. Since σ is analytic in x, σ(x(t))
is also analytic as a function of t. Consider the Taylor expansion of σ(x(t))
about t = 0. By analyticity, the series

σ(x(t)) = σ(x̂) + Lfσ(x̂)t+ L2
fσ(x̂)

t2

2!
+ . . .

converges locally.

If n(σ,f)(x̂) <∞, the first non-zero term in the expansion, L
n(σ,f)(x̂)

f σ(x̂),

dominates the sum for t small enough. Therefore, if L
n(σ,f)(x̂)

f σ(x̂) < 0,
for all ǫ > 0 there exists t ∈ [0, ǫ) such that σ(x(t)) < 0. Hence, {x ∈
X | Ln(σ,f)(x)

f σ(x) < 0} ⊆ Trans(q).

If n(σ,f)(x̂) <∞, but L
n(σ,f)(x̂)

f σ(x̂) > 0, then there exists ǫ > 0 such that
for all t ∈ [0, ǫ), σ(x(t)) > 0. Hence, x̂ 6∈ Trans. Finally, if n(σ,f)(x̂) = ∞,
the Taylor expansion is identically equal to zero and, locally, σ(x(t)) = 0.

Therefore, Trans ⊆ {x ∈ X | Ln(σ,f)(x)

f σ(x) < 0}.

Exercise 3.4 For the water tank automaton all domains and vector fields
are analytic. Compute the set Trans using Proposition 3.9.

The analyticity requirement can be relaxed somewhat, since the only
part where it is crucial is when n(σ,f)(x̂) = ∞. The condition n(σ,f)(x̂) <∞
indicates that the vector field f is in a sense transverse to the boundary of
the domain at x̂.

Proposition 3.10 Assume that Dom(q) = {x ∈ X | σ(x) ≥ 0}. If for
some m > 1, σ(·) is m times differentiable, f(q, ·) is m − 1 times dif-
ferentiable and n(σ,f)(x) < m for all x ∈ X, then Trans(q) = {x ∈
X | Ln(σ,f)(x)

f σ(x) < 0}.
Exercise 3.5 Prove Proposition 3.10. The proof is along the lines of that
of Proposition 3.9, but some more care is needed with the Taylor series
expansion.

3.2.3 Local Existence and Uniqueness

Next, we turn our attention to questions of existence of executions. We give
some conditions under which infinite executions exist for all initial states,
and conditions under which these executions are unique.

Definition 3.11 (Non-Blocking and Deterministic) A hybrid automa-
ton H is called non-blocking if for all initial states (q̂, x̂) ∈ Init there exists

3.2. Existence and uniqueness 45

q q′
x ≤ −2

x ≤ −3

x :∈ (−∞, 0]

x :∈ (−∞, 0]

ẋ = 1

x ≤ 0

ẋ = −1

x ≤ 0

Figure 3.7. Examples of blocking and non-determinism.

an infinite execution starting at (q̂, x̂). It is called deterministic if for all ini-
tial states (q̂, x̂) ∈ Init there exists at most one maximal execution starting
at (q̂, x̂).

Roughly speaking, the non-blocking property implies that infinite execu-
tions exist for all initial states, while the deterministic property implies
that the infinite executions (if they exist) are unique. Continuous dynami-
cal systems described by differential equations have both these properties
if the vector field f is assumed to be Lipschitz continuous (Theorem A.2).
In hybrid systems, however, more things can go wrong.
Consider, for example, the hybrid automaton of Figure 3.7. Let (q̂, x̂)

denote the initial state, and notice that q̂ = q. If x̂ = −3, executions
starting at (q̂, x̂) can either flow along the vector field ẋ = 1, or jump back
to q reseting x anywhere in (−∞, 0], or jump to q′ leaving x unchanged. If
x̂ = −2 executions starting at (q̂, x̂) can either flow along the vector field,
or jump to q′. If x̂ = −1 executions stating at (q̂, x̂) can only flow along
the vector field. Finally, if x̂ = 0 there are no executions starting at (q̂, x̂),
other than the trivial execution defined over [τ0, τ

′
0] with τ0 = τ ′0. Therefore,

the hybrid automaton of Figure 3.7 accepts no infinite executions for some
initial states and multiple infinite executions for others.
Intuitively, a hybrid automaton is non-blocking if for all reachable states

for which continuous evolution is impossible a discrete transition is possible.
This fact is stated more formally in the following lemma.

Lemma 3.12 Consider a hybrid automaton satisfying Assumption 3.2.
The hybrid automaton is non-blocking if for all (q̂, x̂) ∈ Reach ∩ Trans,
there exists q̂′ ∈ Q such that (q̂, q̂′) ∈ E and x̂ ∈ G(q̂, q̂′). If the hybrid au-
tomaton is deterministic, then it is non-blocking if and only if this condition
holds.

Proof: Consider an initial state (q0, x0) ∈ Init and assume, for the sake
of contradiction, that there does not exist an infinite execution starting at
(q0, x0). Let χ = (τ, q, x) denote a maximal execution starting at (q0, x0),
and note that τ is a finite sequence.

46 Chapter 3. Hybrid Automata and Executions

Assume first that (τ, q, x) is finite open. Let τ = {[τi, τ ′i]}N−1
i=0 [τN , τ

′
N)

and

(qN , xN) = lim
t→τ ′

N

(qN (t), xN (t)).

Note that, by the definition of execution and a standard existence argument
for continuous dynamical systems, the limit exists and χ can be extended
to a finite execution χ̂ = (τ̂ , q̂, x̂) with τ̂ = {[τi, τ ′i]}Ni=0, q̂N (τ ′N) = qN , and
x̂N (τ ′N) = xN . This contradicts the assumption that χ is maximal.

Assume now (τ, q, x) is finite and let τ = {[τi, τ ′i]}Ni=0 and (qN , xN) =
(qN (τ ′N), xN (τ ′N)). Clearly, (qN , xN) ∈ Reach. If (qN , xN) 6∈ Trans, then
there exists ǫ > 0 such that χ can be extended to χ̂ = (τ̂ , q̂, x̂) with
τ̂ = {[τi, τ ′i]}N−1

i=0 [τN , τ
′
N + ǫ), by continuous evolution. If, on the other

hand (qN , xN) ∈ Trans, then by assumption there exists (q′, x′) ∈ Q ×X
such that (qN , q

′) ∈ E, xN ∈ G(qN , q
′) and x′ ∈ R(qN , q

′, xN). Therefore, χ
can be extended to χ̂ = (τ̂ , q̂, x̂) with τ̂ = {[τi, τ ′i]}N+1

i=0 , τN+1 = τ ′N+1 = τ ′N ,
qN+1(τN+1) = q′, xN+1(τN+1) = x′ by a discrete transition. In both cases
the assumption that χ is maximal is contradicted.
This argument also establishes the “if” of the second part. For the “only

if”, consider a deterministic hybrid automaton that violates the conditions,
i.e., there exists (q′, x′) ∈ Reach such that (q′, x′) ∈ Trans, but there is
no q̂′ ∈ Q with (q′, q̂′) ∈ E and x′ ∈ G(q′, q̂′). Since (q′, x′) ∈ Reach, there
exists (q0, x0) ∈ Init and a finite execution, χ = (τ, q, x) starting at (q0, x0)
such that τ = {[τi, τ ′i]}Ni=0 and (q′, x′) = (qN (τ ′N), xN (τ ′N)).
We first show that χ is maximal. Assume first that there exists χ̂ =

(τ̂ , q̂, x̂) with τ̂ = {[τi, τ ′i]}N−1
i=0 [τN , τ

′
N + ǫ) for some ǫ > 0. This would

violate the assumption that (q′, x′) ∈ Trans. Next assume that there exists
χ̂ = (τ̂ , q̂, x̂) with τ̂ = τ [τN+1, τ

′
N+1] with τN+1 = τ ′N . This requires that

the execution can be extended beyond (q′, x′) by a discrete transition, i.e.,
there exists (q̂′, x̂′) ∈ Q × X such that (q′, q̂′) ∈ E, x′ ∈ G(q′, q̂′) and
x̂′ ∈ R(q′, q̂′, x′). This would contradict our original assumptions. Overall,
χ is maximal.
Now assume, for the sake of contradiction that H is non-blocking. Then,

there exists an infinite (and therefore maximal) χ′ starting at (q0, x0). But
χ 6= χ′ (as the former is finite and the latter infinite). This contradicts the
assumption that H is deterministic.

Intuitively, a hybrid automaton may be non-deterministic if either there
is a choice between continuous evolution and discrete transition, or if a
discrete transition can lead to multiple destinations (recall that continuous
evolution is unique by Theorem A.2). More specifically, the following lemma
states that a hybrid automaton is deterministic if and only if (1) whenever
a discrete transition is possible continuous evolution is impossible, and (2)
discrete transitions have unique destinations.

3.2. Existence and uniqueness 47

Lemma 3.13 Consider a hybrid automaton satisfying Assumption 3.2.
The hybrid automaton is deterministic if and only if for all (q̂, x̂) ∈ Reach:

1. If x̂ ∈ G(q̂, q̂′) for some (q̂, q̂′) ∈ E, then (q̂, x̂) ∈ Trans.

2. If (q̂, q̂′) ∈ E and (q̂, q̂′′) ∈ E with q̂′ 6= q̂′′ then x̂ 6∈ G(q̂, q̂′)∩G(q̂, q̂′′).
3. If (q̂, q̂′) ∈ E and x ∈ G(q̂, q̂′) then R(q̂, q̂′, x̂) = {x̂′}, i.e. the set

contains a single element, x̂′.

Proof: For the “if” part, assume, for the sake of contradiction, that there
exists an initial state (q0, x0) ∈ Init and two maximal executions χ =
(τ, q, x) and χ̂ = (τ̂ , q̂, x̂) starting at (q0, x0) with χ 6= χ̂. Let χ̄ = (τ̄ , q̄, x̄)
denote the maximal common prefix of χ and χ̂. Such a prefix exists as the
executions start at the same initial state. Moreover, χ̄ is not infinite, as
χ 6= χ̂. As in the proof of Lemma 3.12, χ̄ can be assumed to be finite. Let
τ̄ = {[τ̄i, τ̄ ′i]}Ni=0 and (qN , xN) = (qN (τ̄ ′N), xN (τ̄ ′N)) = (q̂N (τ̄ ′N), x̂N (τ̄ ′N)).
Clearly, (qN , xN) ∈ Reach. We distinguish the following four cases:
Case 1: τ̄ ′N 6∈ {τ ′i} and τ̄ ′N 6∈ {τ̂ ′i}, i.e., τ̄ ′N is not a time when a discrete
transition takes place in either χ or χ̂. Then, by the definition of execution
and a standard existence and uniqueness argument for continuous dynami-
cal systems, there exists ǫ > 0 such that the prefixes of χ and χ̂ are defined
over {[τ̄i, τ̄ ′i]}N−1

i=0 [τ̄N , τ̄
′
N + ǫ) and are identical. This contradicts the fact

that χ̄ is maximal.
Case 2: τ̄ ′N ∈ {τ ′i} and τ̄ ′N 6∈ {τ̂ ′i}, i.e., τ̄ ′N is a time when a discrete tran-
sition takes place in χ but not in χ̂. The fact that a discrete transition
takes place from (qN , xN) in χ indicates that there exists q′ ∈ Q such that
(qN , q

′) ∈ E and xN ∈ G(qN , q
′). The fact that no discrete transition takes

place from (qN , xN) in χ̂ indicates that there exists ǫ > 0 such that χ̂ is
defined over {[τ̄i, τ̄ ′i]}N−1

i=0 [τ̄N , τ̄
′
N + ǫ). A necessary condition for this is that

(qN , xN) 6∈ Trans. This contradicts condition 1 of the lemma.
Case 3: τ̄ ′N 6∈ {τ ′i} and τ̄ ′N ∈ {τ̂ ′i}, symmetric to Case 2.

Case 4: τ̄ ′N ∈ {τ ′i} and τ̄ ′N ∈ {τ̂ ′i}, i.e., τ̄ ′N is a time when a discrete tran-
sition takes place in both χ and χ̂. The fact that a discrete transition
takes place from (qN , xN) in both χ and χ̂ indicates that there exist
(q′, x′) and (q̂′, x̂′) such that (qN , q

′) ∈ E, (qN , q̂
′) ∈ E, xN ∈ G(qN , q

′),
xN ∈ G(qN , q̂

′), x′ ∈ R(qN , q
′, xN), and x̂′ ∈ R(qN , q̂

′, xN). Note that by
condition 2 of the lemma, q′ = q̂′, hence, by condition 3, x′ = x̂′. There-
fore, the prefixes of χ and χ̂ are defined over {[τ̄i, τ̄ ′i]}Ni=0[τ̄N+1, τ̄

′
N+1], with

τ̄N+1 = τ̄ ′N+1 = τ̄ ′N , and are identical. This contradicts the fact that χ̄ is
maximal and concludes the proof of the “if” part.
For the “only if” part, assume that there exists (q′, x′) ∈ Reach

such that at least one of the conditions of the lemma is violated. Since
(q′, x′) ∈ Reach, there exists (q0, x0) ∈ Init and a finite execution,
χ = (τ, q, x) starting at (q0, x0) such that τ = {[τi, τ ′i]}Ni=0 and (q′, x′) =
(qN (τ ′N), xN (τ ′N)). If condition 1 is violated, then there exist χ̂ and χ̃ with
τ̂ = {[τi, τ ′i]}N−1

i=0 [τN , τ
′
N + ǫ), ǫ > 0, and τ̃ = τ [τN+1, τ

′
N+1], τN+1 = τ ′N ,

48 Chapter 3. Hybrid Automata and Executions

such that χ ⊏ χ̂ and χ ⊏ χ̃. If condition 2 is violated, there exist χ̂ and
χ̃ with τ̂ = τ̃ = τ [τN+1, τ

′
N+1], τN+1 = τ ′N+1 = τ ′N , and q̂N+1(τN+1) 6=

q̃N (τN+1), such that χ ⊏ χ̂, χ ⊏ χ̃. Finally, if condition 3 is violated, then
there exist χ̂ and χ̃ with τ̂ = τ̃ = τ [τN+1, τ

′
N+1], τN+1 = τ ′N+1 = τ ′N , and

x̂N+1(τN+1) 6= x̃N+1(τN+1), such that χ ⊏ χ̂, χ ⊏ χ̃. In all three cases, let
χ̂ and χ̃ denote maximal executions of which χ̂ and χ̃ are prefixes, respec-
tively. Since χ̂ 6= χ̃, it follows that χ̂ 6= χ̃. Therefore, there are at least two
maximal executions starting at (q0, x0) and thus H is non-deterministic.

The following theorem is a direct consequence of Lemmas 3.12 and 3.13.

Theorem 3.14 (Existence and Uniqueness) Consider a hybrid au-
tomaton, such that f(q, ·) is Lipschitz continuous for all q ∈ Q. The
hybrid automaton accepts a unique infinite execution for all initial state
if it satisfies all the conditions of Lemmas 3.12 and 3.13.

Example (Water Tank (continued)) Consider again the water tank
automaton with 0 < v1, v2 < w. Recall that

Reach = {(q, x) ∈ Q× R
2 | x1 ≥ r1 ∧ x2 ≥ r2},

Trans = {q1} × {x ∈ R
2 | x2 ≤ r2} ∪ {q2} × {x ∈ R

2 | x1 ≤ r1}.
Therefore,

Reach ∩ Trans ={q1} × {x ∈ R
2 | x1 ≥ r1 ∧ x2 = r2}∪

{q2} × {x ∈ R
2 | x2 ≥ r2 ∧ x1 = r1}.

Consider an arbitrary state (q̂, x̂) ∈ Reach ∩ Trans (in fact the argument
holds for any state (q̂, x̂) ∈ Trans, see “important note” above). Notice
that, if q̂ = q1, then

x̂ ∈ {x ∈ R
2 | (x1 ≥ r1) ∧ (x2 = r2)} ⊆ G(q1, q2).

Likewise, if q = q2, then x ∈ G(q1, q2). Therefore, the condition of
Lemma 3.12 is satisfied, and the water tank system is non-blocking.

Next, consider an arbitrary reachable state (q̂, x̂) ∈ Reach (in fact the
argument holds for any state (q̂, x̂) ∈ Q×X). Assume that q̂ = q1 (a similar
argument holds if q̂ = q2).

1. If x̂ ∈ G(q1, q2) = {x ∈ R
2 | x2 ≤ r2}, then x2 ≤ r2. Therefore

(q̂, x̂) ∈ Trans.

2. Only one discrete transition is possible from q1 (namely (q1, q2) ∈ E).

3. R(q1, q2, x̂) = {x̂} contains one element.

Therefore, the conditions of Lemma 3.13 are also satisfied. By Theo-
rem 3.14, the water tank automaton accepts a unique infinite execution
for each initial state.

3.2. Existence and uniqueness 49

3.2.4 Zeno Executions

The conditions of Theorem 3.14 ensure that a hybrid automaton accepts
infinite executions for all initial states. They do not, however, ensure that
the automaton accepts executions defined over arbitrarily long time hori-
zons. The Lipschitz assumption on f eliminates the possibility of escape to
infinity in finite time along continuous evolution (c.f. finite escape example
in Appendix A). However, the infinite executions may be such that the state
takes an infinite number of discrete transitions in finite time. Executions
with this property are known as Zeno executions.

Figure 3.8. Zeno of Elea

The name “Zeno” comes from the philosopher, Zeno of Elea. Born around
490BC, Zeno (Figure 3.8) was one of the founders of the Eleatic school. He
was a student of Parmenides, whose teachings rejected the ideas of plurality
and transition as illusions generated by our senses. The best known contri-
bution of Zeno to this line of thinking was a series of paradoxes designed
to show that accepting plurality and motion leads to logical contradictions.
One of the better known ones is the race of Achilles and the turtle.

Achilles, a renowned runner, was challenged by the turtle to a
race. Being a fair sportsman, Achilles decided to give the turtle
a 100 meter head-start. To overtake the turtle, Achilles will have
to first cover half the distance separating them, i.e. 50 meters.
To cover the remaining 50 meters, he will first have to cover half
that distance, i.e. 25 meters, and so on. There are an infinite
number of such segments and to cover each one of them Achilles
needs a non zero amount of time. Therefore, Achilles will never
overtake the turtle.

This paradox may seem simple minded, but it was not until the beginning
of the 20th century that it was resolved satisfactorily by mathematicians

50 Chapter 3. Hybrid Automata and Executions

q1 q2
x ≥ 0

x ≤ 0

x :∈ (−∞, 0] x :∈ [0,∞)

ẋ = 1

x ≤ 0

ẋ = −1

x ≥ 0

x

t

Figure 3.9. Chattering system.

and philosophers. And it was not until the end of the 20th century that it
turned out to be a practical problem, in the area of hybrid systems.
The Zeno phenomenon is notoriously difficult to characterize and elim-

inate in hybrid systems. Here we will not examine the properties of Zeno
executions in detail. We will only give some examples of hybrid automata
that admit Zeno behavior.

Example (Chattering System) Consider the hybrid automaton of
Figure 3.9.

Exercise 3.6 Write the system of Figure 3.9 in the notation of Defini-
tion 3.1. Show that it accepts a unique infinite execution for all initial
conditions.

It is easy to see that all infinite executions of this system are Zeno. An
execution starting in x0 at time τ0 reaches x = 0 in finite time τ ′0 = τ0+|x0|
and takes an infinite number of transitions from then on, without time
progressing further.
This is a phenomenon known in continuous dynamical system as chat-

tering. A bit of thought in fact reveals that this system is the same as the
example used to demonstrate absence of solutions in Appendix A. In the
control literature the “Zenoness” of such chattering systems is sometimes
eliminated by allowing weaker solution concepts, such as sliding solutions
(also known as Filippov solutions).

Example (Non-analytic Domain) Consider the hybrid automaton of
Figure 3.10. Assume that the function ρ : R → R that determines the
boundary of the domain is of the form

ρ(x) =

{
sin

(
1
x2

)
exp

(
− 1

x2

)
if x 6= 0

0 if x = 0

Exercise 3.7 Write the system of Figure 3.10 in the notation of Defi-
nition 3.1. Show that it accepts a unique infinite execution for all initial
states.

For any ǫ > 0, ρ has an infinite number of zero crossings in the interval
(−ǫ, 0]. Therefore, the execution of the hybrid automaton with initial state

3.3. Continuous dependence on initial state 51

q1 q2
ρ(x) ≥ 0

ρ(x) ≤ 0

x :∈ (−∞, 0)

ẋ = 1

ρ(x) ≤ 0

ẋ = 1

ρ(x) ≥ 0

ρ(x)

x

Figure 3.10. System with a smooth, non-analytic domain.

(q1, x0) will take an infinite number of discrete transitions before time τ0+
|x0| (notice that x0 < 0).

Example (Water Tank (continued)) We have already shown that the
water tank hybrid automaton accepts a unique infinite execution for each
initial state if 0 < v1, v2 < w. If in addition the inflow is less than the
sum of the outflows (w < v1 + v2), then all infinite executions are Zeno.
It is easy to show that the execution starting at time τ0 takes an infinite
number of transitions by time

τ0 +
x1(τ0) + x2(τ0)− r1 − r2

v1 + v2 − w

3.3 Continuous dependence on initial state

In general, the executions of hybrid automata may change dramatically
even for small changes in initial conditions. This fact is unavoidable in a
modeling framework that is powerful enough to capture realistic systems.
However, discontinuous dependence on initial conditions may cause prob-
lems, both theoretical and practical, when one tries to develop simulation
algorithms for hybrid automata. Motivated by this we briefly investigate
the dependence of the executions of a hybrid automaton on the initial state.
To talk about continuity we need to introduce a notion of distance be-

tween the hybrid states. The easiest way to do this is to use the standard
Euclidean distance for the continuous states, together with the discrete
metric for the discrete states. More precisely, for q1, q2 ∈ Q consider the
discrete metric dQ : Q×Q→ R defined by

dQ(q1, q2) =

{
1 if q1 = q2
0 if q1 6= q2.

We define a metric on the hybrid state space, d : (Q×X)× (Q×X) → R

as

d((q1, x1), (q2, x2)) = dQ(q1, q2) + |x1 − x2|.

52 Chapter 3. Hybrid Automata and Executions

Exercise 3.8 Show that d((q1, x1), (q2, x2)) ≥ 0, d((q1, x1), (q2, x2)) = 0 if
and only if (q1, x1) = (q2, x2), d((q1, x1), (q2, x2)) = d((q2, x2), (q1, x1)) =
0. Show also that d satisfies the triangle inequality

d((q1, x1), (q2, x2)) ≤ d((q1, x1), (q3, x3)) + d((q3, x3), (q2, x2)).

Roughly speaking, a hybrid automaton is continuous if two executions
starting close to one another remain close to one another.

Definition 3.15 (Continuous Hybrid Automaton) A hybrid automa-
ton is called continuous if for all (q0, x0) ∈ Init, for all finite execu-
tions

(
{[τi, τ ′i]}Ni=0, q, x

)
starting at (q0, x0) and all ǫ > 0, there exists

δ > 0 such that all maximal executions starting at some (q̂0, x̂0) with
d((q̂0, x̂0), (q0, x0)) < δ have a finite prefix

(
{[τi, τ ′i]}Ni=0, q̂, x̂

)
such that

|τ̂ ′N − τ ′N | < ǫ and

d((q̂N (τ̂ ′N), x̂N (τ̂ ′N)), (qN (τ ′N), xN (τ ′N))) < ǫ.

Notice that as a consequence of the definition and the properties of the
discrete metric, if a hybrid automaton is continuous then for any integer
N one can choose δ small enough such that all executions starting within δ
of one another go through the same sequence discrete states for their first
N discrete transitions.

Exercise 3.9 Show that this is the case.

We give a characterization of continuous hybrid automata under an
additional assumption, that helps to simplify the statements of the results.

Assumption 3.16 Init = Reach =
⋃

q∈Q{q} ×Dom(q).

This assumption is not critical for most of the discussion and relaxing it is
tedious rather than conceptually difficult. As usual, for the set Dom(q) we
define

• Its interior, Dom(q)◦, as the largest open set contained in Dom(q).

• Its closure, Dom(q), as the smallest closed set containing Dom(q).

• Its boundary, ∂Dom(q), as the set difference Dom(q) \Dom(q)◦.

The following theorem provides conditions under which a hybrid automaton
is continuous.

Theorem 3.17 (Continuity with Initial Conditions) A hybrid automa-
ton satisfying Assumptions 3.2 and 3.16 is continuous if:

1. It is deterministic.

2. For all e ∈ E, R(e, ·) is a continuous function.

3. For all q, q′ ∈ Q, with (q, q′) ∈ E, Dom(q)∩G(q, q′) is an open subset
of the boundary of Dom(q).

3.3. Continuous dependence on initial state 53

4. There exists a function σ : Q×X → R differentiable in x, such that
for all q ∈ Q

Dom(q) = {x ∈ X|σ(q, x) ≥ 0}.
5. For all (q, x) ∈ Q×X with σ(q, x) = 0, Lfσ(q, x) 6= 0.

For condition 2, notice that by condition 1 and Lemma 3.13, R(e, ·) is a
function and is not set valued. Roughly speaking, conditions 3–5 ensure
that if from some initial state we can flow to a state from which a dis-
crete transition is possible, then from all neighboring states we can do the
same. Conditions 1 and 2 are then used to piece together such intervals of
continuous evolution.
The proof of the theorem builds on a series of lemmas. Notice that Con-

dition 4 implies that Dom(q) is a closed set. Conditions 4 and 5 together
imply that executions cannot meet the boundary of the domain tangen-
tially along continuous evolution. In other words, continuous evolution is
“transverse” to the boundary of the domain: it “pushes” states on the
boundary of the domain either toward the interior of the domain or toward
the complement of the domain, never along the boundary of the domain.
This observation is summarized in the following lemma.

Lemma 3.18 Consider a hybrid automaton that satisfies Assumptions 3.2
and conditions 4 and 5 of Theorem 3.17. Consider (q̂, x̂) ∈ Init and assume
there exists a finite execution, ([τ0, τ

′
0], q, x) starting at (q̂, x̂) with τ ′0 > τ0.

Then x0(t) ∈ Dom(q0(t))
◦ for all t ∈ (τ0, τ

′
0).

Proof of Lemma 3.18: Since there is only one time interval in τ we
drop the subscript 0 from x and q to simplify the notation. Since τ ′0 > τ0,
([τ0, τ

′
0], q, x) involves continuous evolution, therefore x(t) ∈ Dom(q̂) for all

t ∈ [τ0, τ
′
0). In particular, x̂ ∈ Dom(q̂).

Assume, for the sake of contradiction, that there exists t∗ ∈ (τ0, τ
′
0) such

that x(t∗) ∈ ∂Dom(q̂). Then, by condition 4, σ(q̂, x(t∗)) = 0. Consider the
Taylor series expansion of σ(q̂, x(t)) about t = t∗

σ(q̂, x(t)) = σ(q̂, x(t∗)) + Lfσ(q̂, x(t
∗))(t− t∗) + o(t− t∗)2

Since σ(q̂, x(t∗)) = 0, by condition 5, Lfσ(q̂, x(t
∗)) 6= 0. Therefore, there

exists a neighborhood, Ω ⊆ (τ0, τ
′
0), of t

∗ and a t ∈ Ω such that1 σ(q̂, x(t)) <
0. Therefore, x(t) 6∈ Dom(q̂) for some t ∈ (τ0, τ

′
0), which contradicts the

assumption that ([τ0, τ
′
0], q, x) is an execution.

Conditions 4 and 5 also eliminate certain pathological cases.

Lemma 3.19 Consider a hybrid automaton that satisfies conditions 4
and 5 of Theorem 3.17. Then for all x ∈ Dom(q) and all neighborhoods
W of x, W ∩Dom(q) \ {x} 6= ∅.

1Careful examination reveals that in fact t > t∗.

54 Chapter 3. Hybrid Automata and Executions

Proof of Lemma 3.19: Assume Dom(q) contains an isolated point, say,
x̂. Then there is a neighborhood W of x̂ such that W ∩Dom(q) = {x̂}. By
condition 4 of Theorem 3.17, σ(q, x̂) = 0 and σ(q, x) < 0 for all x ∈W \{x̂}.
Therefore, σ attains a local maximum at (q, x̂) and, since σ is differentiable
in x, ∂σ

∂x (q, x̂) = 0. This implies that Lfσ(q, x̂) = 0, which contradicts
condition 5 of Theorem 3.17.

Lemma 3.20 Consider a hybrid automaton satisfying Assumptions 3.2
and 3.16, and conditions 4 and 5 of Theorem 3.17. Consider (q̂, x̂) ∈ Init
and assume there exists a finite execution, ([τ0, τ

′
0], q, x) starting at (q̂, x̂)

with τ ′0 > τ0 and x0(τ
′
0) ∈ ∂Dom(q̂). Then there exists a neighborhood

W of x̂ and a continuous function T : W ∩ Dom(q̂) → R
+ such that for

all x̂′ ∈ W ∩ Dom(q̂) there exists a finite execution ([τ0, τ0 + T (x̂′)], q′, x′)
starting at (q̂, x̂′) such that

1. x′0(τ0 + T (x̂′)) ∈ ∂Dom(q̂).

2. x′0(t) ∈ Dom(q̂)◦ for all t ∈ (τ0, τ0 + T (x̂′)).

3. The function Ψ :W∩Dom(q̂) → ∂Dom(q̂), defined by Ψ(x̂′) = x′0(τ0+
T (x̂′)), is continuous.

Proof of of Lemma 3.20: Since there is only one time interval in τ we
drop the subscript 0 from x and q to simplify the notation. We also assume
that τ0 = 0 without loss of generality. Let φ(t, x̂) ∈ X denote the unique
solution to the differential equation

ẋ = f(q̂, x)

at time t > 0 starting at φ(0, x̂) = x̂.
To show part 1, notice that, by the definition of an execution, x(t) ∈

Dom(q̂) for all t ∈ [τi, τ
′
i). Since x(τ

′
0) ∈ ∂Dom(q̂), σ(q̂, x(τ ′0)) = 0. The

function σ(q̂, φ(t, y)) is differentiable in t in a neighborhood of (τ ′0, x̂).
This is because, by condition 4, σ(q, x) is differentiable in x and the flow
φ(t, y) is differentiable in t. Moreover, σ(q̂, φ(t, y)) is continuous in y in
a neighborhood of (τ ′0, x̂). This is because σ and φ are both continuous.
Finally,

∂

∂t
σ(q̂, φ(t, y))

∣∣∣∣
(t,y)=(τ ′

0,x̂)

= Lfσ(q̂, x(τ
′
0)) 6= 0,

(by condition 5). By the implicit function theorem (in particular, the
non-smooth version, see for example [37], Theorem 3.3.6), there exists a
neighborhood Ω of τ ′0 and a neighborhood Ŵ of x̂, such that for each x̂′ ∈ Ŵ
the equation σ(q̂, φ(t, x̂′)) = 0 has a unique solution T (x̂′) ∈ Ω, where
T : Ŵ → Ω is a continuous function such that φ(T (x̂′), x̂′) ∈ ∂Dom(q̂).
To show part 2, we show that there exists a neighborhood W ⊆ Ŵ

of x̂ such that φ(t, x̂′) ∈ Dom(q̂)◦ for all x̂′ ∈ W ∩ Dom(q̂) and all

3.3. Continuous dependence on initial state 55

t ∈ (0, T (x̂′)). By Lemma 3.18, φ(t, x) ∈ Dom(q̂)◦ for all t ∈ (0, τ ′0). There-
fore, by continuity of the solutions of differential equations with respect
to initial conditions, there exists a neighborhood W ⊆ Ŵ of x̂ such that
φ(t, x̂′) ∈ Dom(q̂)◦ for all x̂′ ∈ W ∩ Dom(q̂) and all t ∈ (0, τ ′0) \ Ω. More-
over, σ(q̂, φ(t, x̂′)) 6= 0 for all t ∈ Ω with t 6= T (x̂′), since T (x̂′) is locally
a unique solution to σ(q̂, φ(t, x̂′)) = 0. Therefore φ(t, x̂′) ∈ Dom(q̂)◦ for all
t ∈ (0, T (x̂′)).
Finally, to show part 3, notice that, since φ(t, y) is continuous in both

t and y, for all ǫ > 0 there exists δ1 > 0, such that for all t with |t −
τ ′0| < δ1 and all x̂′ ∈ W with |x̂′ − x̂| < δ1, |φ(t, x̂) − φ(T (x̂), x̂)| < ǫ and
|φ(T (x̂′), x̂) − φ(T (x̂′), x̂′)| < ǫ. Since T is continuous, there exists some
δ2 > 0 such that for all x̂′ ∈ W with |x̂ − x̂′| < δ2, |T (x̂) − T (x̂′)| < δ1.
Setting δ = min{δ1, δ2}, it follows that for all x̂′ ∈W with |x̂− x̂′| < δ,

|Ψ(x̂)−Ψ(x̂′)| =|φ(T (x̂), x̂)− φ(T (x̂′), x̂′)|
≤|φ(T (x̂), x̂)− φ(T (x̂′), x̂)|+ |φ(T (x̂′), x̂)− φ(T (x̂′), x̂′)|
<2ǫ,

which proves the continuity of Ψ.

Proof of Theorem 3.17: Consider an arbitrary finite execution (τ, q, x)
with τ = {[τi, τ ′i]}Ni=0 and an ǫ > 0. We show how to select δ > 0 such that
all executions starting at (q̂, x̂) with d((q̂, x̂), (q0(τ0), x0(τ0))) < δ have a
finite prefix that ends up ǫ close to (qN (τN), xN (τN)). Without loss of
generality we take δ < 1 so that the executions are forced to start in the
same discrete state q̂ = q0(τ0). The construction will be such that the
executions are then forced to also follow the same sequence of discrete
states.
We construct a sequence of sets {Wi, Vi}Ni=0, whereWi is a neighborhood

of xi(τi) in Dom(qi(τi)) and Vi is a neighborhood of xi(τ
′
i) in Dom(qi(τi)),

such that the continuous evolution provides a continuous map from Wi to
Vi and the reset provides continuous map from Vi to Wi+1. The notation
is illustrated in Figure 3.11.
The construction is recursive, starting with i = N . Define VN = {x̄ ∈

Dom(qN (τN)) | |x̄ − xN (τ ′N)| < ǫ}. VN contains no isolated points by
Lemma 3.19. We distinguish the following three cases:
Case 1: τ ′N > τN and xN (τ ′N) ∈ ∂Dom(qN (τN)). By Lemma 3.20, there ex-

ists a neighborhood, W , of xN (τN) and a continuous function, TN :
W → R, such that for all x̂ ∈ W , φ(TN (x̂), x̂) ∈ ∂Dom(qN (τN)) and
φ(t, x̂) ∈ Domo(qN (τN)) for all t ∈ (0, TN (x̂)). As in Lemma 3.20, define
ΨN : W → ∂Dom(qN (τN)) by ΨN (x̂) = φ(TN (x̂), x̂). By the continuity
of ΨN , there exists a neighborhood, WN ⊂ W ∩Dom(qN (τN)), of xN (τN)
such that ΨN (WN) ⊆ VN .
Case 2: τ ′N > τN and xN (τ ′N) ∈ Domo(qN (τN)). LetW be a neighborhood

of xN (τN) such that for all x̂ ∈ W and all t ∈ (0, τ ′N − τN), φ(t, x̂) ∈
Domo(qN (τN)). Such a neighborhood exists, by Lemma 3.18 and the conti-

56 Chapter 3. Hybrid Automata and Executions

x0(τ0)

x0(τ
′
0)

W0

V0

Dom(q0(τ0))

x1(τ1)

x1(τ
′
1)

W1

V1

Dom(q1(τ1))

Figure 3.11. Illustration of the proof of Theorem 3.17 (N = 1, Case 1).

nuity of solutions to differential equations (cf. proof of Lemma 3.20). Define
a constant function TN : W → R by TN (x̂) = τ ′N − τN , and a function
ΨN : W → Dom(qN (τN)) by ΨN (x̂) = φ(TN (x̂), x̂). By continuous depen-
dence of the solutions of the differential equation on the initial condition,
there exists a neighborhood WN ⊂W ∩Dom(qN (τN)) of xN (τN) such that
ΨN (WN) ⊆ VN .
Case 3: τ ′N = τN . Define WN = VN , TN : WN → R by TN (x̂) ≡ 0, and

ΨN : WN → Dom(qN (τN)) to be the identity map. Clearly, ΨN (WN) =
VN .
Next let us define VN−1. Recall that eN = (qN−1(τN−1), qN (τN−1)) ∈ E,

xN−1(τ
′
N−1) ∈ G(eN) and xN (τN) ∈ R(eN , xN−1(τ

′
N−1)). Since the guard

G(eN) is an open subset of ∂Dom(qN−1(τN−1)) and R is a continuous
function, there exists a neighborhood VN of xN−1(τ

′
N−1) such that for all

x̂ ∈ VN−1 ∩ ∂Dom(qN−1(τN−1)), x̂ ∈ G(eN) and R(eN , x̂) ⊂WN .
Next, define TN−1 and ΨN−1 using Lemma 3.20, as for Case 1

above. There exists a neighborhood WN−1 of xN−1(τN−1) such that
ΨN−1(WN−1) ⊂ VN−1 ∩ ∂Dom(qN−1(τN−1)). Notice that if (τ, q, x) takes
an instantaneous transition at τN−1 (i.e. τ ′N−1 = τN−1) some neighboring
executions may take an instantaneous transition while others may have to
flow for a while before they follow the transition of (τ, q, x).
By induction, we can construct a sequence of sets {Wi, Vi}Ni=0 and con-

tinuous functions Ti : Wi → R and Ψi : Wi → Vi for i = 0, . . . , N . For
k = 0, . . . , N , define the function Φk :W0 →Wk recursively as

Φ0(x̂) = x̂

Φk(x̂) = R(Ψk−1(Φk−1(x̂)))

3.4. Bibliography and Further Reading 57

For k = 0, . . . , N , define the function γk :W0 → R as

γk(x̂) =

k∑

ℓ=0

Tℓ(Φℓ(x̂)).

Then, Φk(x̂) = x̂k(τ̂k) and γk(x̂) = τ̂ ′k − τ̂0 for the execution starting
at q̂ = q0(τ0) and x̂ ∈ W 0. The functions Φk and γk are continuous by
construction. By the continuity of γN , there exists δ1 > 0 such that for all
x̂ with |x̂−x0(τ0)| < δ1, we have |γN (x̂)−γN (x0(τ0))| < ǫ. By the continuity
of ΨN there exists δ2 > 0 such that for all x̂′ ∈WN with |x̂′−xN (τN)| < δ2,
|ΨN (x̂/)− xN (τ ′N)| < ǫ. By the continuity of ΦN , there exists δ3 > 0 such
that for all x̂ ∈ W0 with |x̂ − x0(τ0)| < δ3, |ΦN (x̂) − xN (τN)| < δ2. Since
ΨN (ΦN (x̂)) = x̂N (τ̂ ′N), we have |x̂N (τ̂ ′N) − xN (τ ′N)| < ǫ. The proof is
completed by setting δ = min{δ1, δ3}.

3.4 Bibliography and Further Reading

The formal definition of hybrid automata is based on a fairly standard class
of autonomous hybrid systems. The notation used here comes from [38,
39]. This class of systems has been studied extensively in the literature
in a number of variations, for a number of purposes, and by a number
of authors. Special cases of the class of systems considered here include
switched systems [40], complementarity systems [41], mixed logic dynamic
systems [42], and piecewise linear systems [43] (the autonomous versions
of these, to be more precise). The hybrid automata considered here are
a special case of the hybrid automata of [44] and the impulse differential
inclusions of [45] (discussed in Appendix C of these notes), both of which
allow differential inclusions to model the continuous dynamics. They are
a special case of the General Hybrid Dynamical Systems of [46], which
allow the continuous state to take values in manifolds (different ones for
each discrete state). They are also a special case of hybrid input/output
automata of [13], which, among other things, allow infinite-dimensional
continuous state.
The simulation of hybrid systems presents special challenges, that need

particular attention. General purpose simulation packages such as Matlab
and Simulink can deal adequately with most complications. Specialized
packages have also been developed that allow accurate simulation of hybrid
systems (at least to the extent that this is possible in theory). For references
see [47, 48, 49, 50, ?]. See also [51] for a compositional language for hybrid
system simulation.
The fundamental properties of existence and uniqueness of solutions,

continuity with respect to initial conditions, etc. naturally attracted the
attention of researchers in hybrid systems from fairly early on. The ma-
jority of the work in this area concentrated on developing conditions for

58 Chapter 3. Hybrid Automata and Executions

well-posedness (existence and uniqueness of solutions) for special classes
of hybrid systems: piecewise linear systems [52, 53], complementarity sys-
tems [41, 54], mixed logic dynamical systems [42], etc. The discussion here
is based on [38, 55, 39].
Continuity of the solutions with respect to initial conditions and pa-

rameters has also been studied, but somewhat less extensively. Motivated
by questions of simulation, [56] established a class of hybrid systems that
have the property of continuous dependence of solutions for almost every
initial condition. More recently, an approach to the study of continuous
dependence on initial conditions based on the Skorohod topology was pro-
posed [57, ?, ?]. The Skorohod topology, used in stochastic processes for
the space of cadlag functions [58], is mathematically appealing, but tends
to be cumbersome to work with in practice. [38] was the basis for the dis-
cussion in this chapter; it presents a practical (but still limited) approach
to the question of continuity.
Zeno executions are treated in [59, 60, 61] from a computer science per-

spective and [39, 62, 63, 64, 65] from a control theory perspective. [39, 66]
attempt to define extensions of Zeno execution beyond the Zeno time, mo-
tivated by the classical definition of “sliding” flows and Filippov solutions
for discontinuous vector fields [67, 68]. See also Problems 3.10–3.12.

3.5 Problems

Problem 3.1 Consider a hybrid automaton satisfying Assumption 3.2.
Show that for all finite-open executions (τ, q, x) there exists a finite
execution (τ̂ , q̂, x̂) such that (τ, q, x) ⊏ (τ̂ , q̂, x̂).

Problem 3.2 Consider a set of variables A. A set, A, of hybrid trajecto-
ries over A is called prefix closed if

[(τ, a) ∈ A] ∧ [(τ̂ , â) ⊑ (τ, a)] ⇒ [(τ̂ , â) ∈ A]

i.e. for all (τ, a) in A all prefixes of (τ, a) are also in A Show that:

1. The class of prefix closed sets of hybrid trajectories is closed under
arbitrary unions and intersections.

2. The complement of a prefix closed set of hybrid trajectories is not
necessarily prefix closed.

3. Consider a hybrid automaton and an initial state (q̂, x̂) ∈ Init. Show
that the set of executions starting at (q̂, x̂) is prefix closed. Deduce that
the set of executions of the hybrid automaton is also prefix closed.

Problem 3.3 Consider the bouncing ball system (Figure 2.7).

1. Derive a hybrid automaton model BB = (Q,X, f, Init,D,E,G,R).

3.5. Problems 59

O2O1

α

αx1

Figure 3.12. Rocking block system.

2. Compute the set of states for which continuous evolution is impossible
(special care is needed to determine what happens when x1 = 0).

3. Is BB non-blocking? Is it deterministic?

4. By computing the time interval between two successive bounces, show
that the bouncing ball automaton is Zeno.

Problem 3.4 Consider the thermostat system, shown in Figure 2.9.

1. Derive a hybrid automaton model, Th = (Q,X, f, Init,D,E,G,R).

2. Compute the set of states from which continuous evolution is
impossible.

3. Is Th non-blocking?

4. Is Th deterministic? If not, which of the conditions of Lemma 3.13
are violated?

5. Is the thermostat automaton Zeno? Why?

Problem 3.5 Show that the water tank automaton (Figure 3.2) and the
chattering automaton (Figure 3.9) satisfy the conditions of Theorem 3.17,
and therefore are continuous.

Problem 3.6 Ursula asked David to develop a hybrid model of a physi-
cal system. David produced a hybrid automaton model using the graphical
representation. Ursula studied the model and decided that David’s model
was useless, because it violated Assumption 3.2: it contained edges (e ∈ E)
with empty guards (G(e) = ∅) or empty resets (x ∈ G(e), but R(e, x) = ∅).
Show David how he can save face by constructing a hybrid automaton that
accepts exactly the same set of executions as the first model he developed,
but is such that for all e ∈ E, G(e) 6= ∅ and for all x ∈ G(e), R(e, x) 6= ∅.

60 Chapter 3. Hybrid Automata and Executions

Problem 3.7 The rocking block dynamical system has been proposed as a
model for the rocking motion of rigid bodies (Figure 3.12) during earth-
quakes [69]. Figure 3.13 shows the autonomous version of the rocking block
system without the external excitation of the earthquake. Write the rock-

Left Right
x1 ≥ 0

x1 ≤ 0

(cos(α(1 + x1)) +
α2

2
x2
2 ≤ 1)

∧(−1 ≤ x1 ≤ 0)
(cos(α(1− x1)) +

(αx2)
2

2
≤ 1)

∧(0 ≤ x1 ≤ 1)

ẋ1 = x2

ẋ2 = 1
α
sin (α(1 + x1))

x1 ≤ 0

ẋ1 = x2

ẋ2 = − 1
α
sin (α(1− x1))

x1 ≥ 0

x2 := rx2

x2 := rx2

Figure 3.13. Directed graph representation of rocking block automaton.

ing block system in the hybrid automaton notation. Assume that r ∈ [0, 1].
Show that the system is non-blocking and deterministic. Compute the en-
ergy that the block loses during each impact with the ground. Simulate the
system for α = π/4 and r = 0.8 and show that it is Zeno.

Problem 3.8 Consider the version of the water tank system shown in
Figure 3.14.

Left Right
x2 ≤ 0

x1 ≤ 0

x1 = 0 ∧ x2 = 2 ∅
x := x

x := x

ẋ1 = 2
ẋ2 = −3

x2 ≥ 0

ẋ1 = −2
ẋ2 = 1

x1 ≥ 0

Figure 3.14. Water tank hybrid automaton.

1. Implement this system in simulation.

2. The execution of the system for the given initial condition is Zeno.
Compute the Zeno time, i.e. the finite limit of the infinite sequence
of transition times.

3. Investigate the behavior of your simulation around the Zeno time. Do
the precision parameters of the simulation and the simulation algo-

3.5. Problems 61

rithm have any effect on the results?

Problem 3.9 Consider now the thermostat system of Figure 2.9. Imple-
ment the system in simulation. Use two different methods for resolving
the non-deterministic choice between discrete transition and continuous
evolution.

1. “As soon as” semantics (a transition takes place as soon as it is
enabled).

2. An exponential probability distribution for the transition times. For
example, if along an execution (τ, q, x) at some point t ∈ [τi, τ

′
i] ∈ τ

we have qi(t) = ON and xi(t) = 21 then the next transition time is
given by a probability distribution of the form

P [τ ′i > T] =

{
e−λ(T−t) if xi(T) ≤ 22
0 otherwise

for some constant λ > 0 (similarly for qi(t) = OFF and xi(t) = 19).
Investigate the effect of λ on the distribution of transition times.

Notice that in case 2 we are dealing with a stochastic hybrid system, since
the transition times are probabilistic. In fact, this is an example from a
general class of stochastic hybrid systems known as Piecewise Deterministic
Markov Processes, discussed in Chapter 8.

Problem 3.10 The hybrid automaton of Figure 3.15 is a variant of the
bouncing ball automaton, where we assume that the bounces are not instan-
taneous but require time ǫ > 0. An additional discrete state (shaded) has
been added to allow us to model this.

ẋ1 = x2

ẋ2 = −g

ẋ3 = 0
x1 ≥ 0

ẋ1 = ẋ2 = 0
ẋ3 = 1

x3 ≤ ǫ

x1 < 0 ∨

x1 = 0 ∧ x2 ≤ 0
x3 := 0

x3 ≥ ǫ
x2 := −x2/c

Figure 3.15. Temporal regularization of the bouncing ball automaton.

62 Chapter 3. Hybrid Automata and Executions

1. Show that the automaton accepts a unique infinite execution for all
initial conditions. Is this execution Zeno?

2. Simulate the automaton for different values of ǫ. What happens as
ǫ→ 0?

Problem 3.11 The hybrid automaton of Figure 3.16 is another variant of
the bouncing ball automaton, where the ground is modeled as a stiff spring
with spring constant 1/ǫ > 0 and no damping. Repeat Problem 3.10 for this
automaton.

ẋ1 = x2

ẋ2 = −g
x1 ≥ 0

ẋ1 = x2

ẋ2 = −x1/ǫ

x1 ≤ 0

x1 < 0 ∨

x1 = 0 ∧ x2 ≤ 0

x1 ≥ 0
x2 := x2/c

Figure 3.16. Dynamic regularization of the bouncing ball.

Problem 3.12 Figures 3.17 and 3.18 show two variants of the water tank
hybrid automaton. In Figure 3.17 , it is assumed that the switching of the
inflow requires a small amount of time, ǫ > 0; two additional discrete states
(shaded) have been added to allow us to model this. In Figure 3.18, it is
assumed that switching of the inflow requires the water in the tank to fall
by at least a small amount (again ǫ > 0). Repeat Problem 3.10 for these
two systems. Is the limit as ǫ→ 0 the same in the two cases?

3.5. Problems 63

ẋ1 = w − v1
ẋ2 = −v2
ẋ3 = 0

x2 ≥ r2

ẋ1 = −v1
ẋ2 = w − v2
ẋ3 = 0
x1 ≥ r1

ẋ1 = w − v1
ẋ2 = −v2
ẋ3 = 1
x3 ≤ ǫ

ẋ1 = −v1
ẋ2 = w − v2
ẋ3 = 1

x3 ≤ ǫ

x2 ≤ r2
x3 := 0

x1 ≤ r1
x3 := 0

x3 ≥ ǫ

x3 ≥ ǫ

Figure 3.17. Temporal regularization of the water tank automaton.

ẋ1 = w − v1
ẋ2 = −v2
ẋ3 = ẋ4 = 0

x2 ≥ x4 − ǫ

ẋ1 = −v1
ẋ2 = w − v2
ẋ3 = ẋ4 = 0
x1 ≥ x3 − ǫ

x2 ≤ x4 − ǫ
x4 := x2

x1 ≤ x3 − ǫ
x3 := x1

Figure 3.18. Spatial regularization of the water tank automaton.

This is page 64
Printer: Opaque this

Chapter 4
Analysis and Synthesis Problems

The reason why we are interested in modeling hybrid systems is that we
would like to be able to analyze the resulting models, and infer some prop-
erties of the real system from them. If control inputs are available, we would
also like to be able to design controllers such that the closed loop hybrid
system satisfies certain desirable properties. In other words, given a hybrid
automaton model of a physical system and some desirable property (speci-
fication) that we would like this system to possess, we would like to be able
to address the following two questions:

1. Verification: does the hybrid automaton satisfy the desirable
property (meet the specification).

2. Synthesis: if there are some design choices to be made (e.g. the
system has control inputs and a controller needs to be designed) can
the design be done in such a way that the resulting system meets the
specification.

For real systems, verification and synthesis are usually followed by a process
of validation: the theoretical hybrid design is implemented on a prototype
of the real system and tests are performed to determine whether it meets
the specification. It is not uncommon for a design to fail the validation
test, due to factors that were omitted in the hybrid automaton model.
The design then needs to be tuned further and the process of synthesis-
verification-validation needs to be repeated.

4.1. Specifications 65

4.1 Specifications

What kinds of specifications may one want to impose on a hybrid system?
A common specification is stability: one would like to determine whether a
hybrid system is stable or asymptotically stable. If control inputs are avail-
able, the synthesis problem becomes one of stabilization: Can one choose
a controller such that the closed loop system is stable or asymptotically
stable? Just as for purely continuous systems, Lyapunov methods are very
useful in this context. Both the stability definitions and Lyapunov theorems
need to be appropriately modified to account for the presence of discrete
states. This topic will not be addressed further here.
We will concentrate primarily on properties that can be encoded as sets

of hybrid trajectories. Recall that a hybrid trajectory over the state space
Q × X (Definition 3.4) is a triple, (τ, q, x) consisting of a hybrid time
set τ and two sequences of functions, q and x mapping each interval of
τ to the discrete states Q and the continuous states R

n respectively. A
specification can be encoded as a set of desirable hybrid trajectories, H. A
hybrid automaton is then said to meet the specification if all the executions
of the hybrid automaton belong to this set H. (Recall that the executions
of a hybrid automaton are also hybrid trajectories, in particular the ones
that meet the conditions of Definition 3.5).
What kind of properties can be encoded like this? The most

common are properties that have to do with reachability. For example, the
property

“The state (q, x) always remains in a set of states F ⊆ Q×X”

is one such property, and so is the dual property

“The state (q, x) eventually reaches a set of states F ⊆ Q×X”

The first property is known as a safety property. Here the set F is as-
sumed to contain the “good” or “safe” states. Safety properties encode the
requirement that “bad” things should not happen to our system. For ex-
ample, when analyzing the behavior of two cars following one another on
an automated highway, F can be the set of states for which the two cars
have not collided (i.e. the spacing between them is greater than zero); we
would like to ensure that the cars always remain in the set F (i.e. do not
collide). Using notation from Temporal Logic this safety property can be
written as

2[(q, x) ∈ F]

2 stands for “always”; the way to read the above formula is “always (q, x)
is in F”.
The second property (“The state (q, x) eventually reaches F”) is a simple

case of what is known as a liveness property. It reflects the fact that
something good should eventually happen to our system. For example, cars

66 Chapter 4. Analysis and Synthesis Problems

on an automated highway not only want to avoid collisions with other cars,
but also want to reach their destination. In the temporal logic notation this
property can be written as

3[(q, x) ∈ F]

3 stands for “eventually”; the way to read the above formula is “eventually
(q, x) is in F”.
Using concepts like these one can encode arbitrarily complex properties.

For example the property

23[(q, x) ∈ F]

stands for “always, eventually (q, x) is in F”, or in other words, the state
visits the set F “infinitely often”. Another example is

32[(q, x) ∈ F]

which stands for “eventually always (q, x) is in F”, or in other words, (q, x)
reaches F at some point and stays there for ever after. And so on.
How can one check that a hybrid automaton meets such a spec-

ification? Roughly speaking there are three different approaches to this
problem:

1. Model Checking: For certain classes of hybrid systems the pro-
cess can be carried out completely automatically. The system
and the specification are encoded in an appropriate programming
language, and given to a computer to analyze. After a few min-
utes/hours/days/weeks the computer either runs out of memory, or
comes back with an answer: “The system satisfies the specification”,
or “The system does not satisfy the specification”. In the latter case
the computer also generates an execution of the hybrid automaton
that fails to meet the specification; such an execution is known as a
witness. The witness is useful for redesigning the system. The basics
of this approach will be given in Section 4.3.

2. Deductive: Induction arguments, progress variables, etc. are used to
develop a proof that the system meets the specification. Most of the
work in structuring the proof has to be done my hand. Computational
theorem proving tools may then be used to check the individual steps
of the proof. The basics of this approach will be the topic of the rest
of Section 4.2.

3. Optimal Control and Viability Theory: Reachability problems
can also be encoded in an optimal control or viability theory set-
ting. The key issues of the optimal control and viability approaches
to reachability for continuous systems will be reviewed in Chapter 5.
For hybrid systems, these approaches require some rather advanced
machinery from optimal control theory and non-smooth analysis. The

4.2. Deductive Methods 67

foundations of the optimal control and viability approaches to reach-
ability problems for hybrid systems will be presented in Chapter ??.
The viability theory approach will also be discussed in Appendix C,
for a class of hybrid systems known as impulse differential inclusions.
Most of the work with these approaches has to be done analytically
(by hand!) Because optimal control problems are notoriously diffi-
cult to solve analytically one often has to resort to numerical tools
(PDE solvers, etc.) to approximate the solution. The use of such tools
for the analysis and synthesis of hybrid systems will be discussed in
Chapter 7.

4.2 Deductive Methods

In this section we will introduce some basic principles of deductive analy-
sis.The discussion is motivated by safety specifications, but can be extended
to other types of specifications; examples are given in the problems at the
end of the chapter.
First, we note the following immediate fact.

Proposition 4.1 A hybrid automaton H satisfies a specification 2[(q, x) ∈
F] if and only if Reach ⊆ F .

Exercise 4.1 Prove Proposition 4.1.

Deductive arguments aim to establish bounds on Reach through invariant
sets. The definition of “invariant set” for hybrid automata is a direct gener-
alization of the definition for continuous dynamical systems: a set of states
is called invariant if all executions of the hybrid automaton starting in that
set remain in that set for ever. More formally,

Definition 4.2 (Invariant Set) A set of states, M ⊆ Q × X, of a
hybrid automaton, H, is called invariant if for all (q̂, x̂) ∈ M , all exe-
cutions (τ, q, x) starting at (q̂, x̂), all Ii ∈ τ and all t ∈ Ii we have that
(qi(t), xi(t)) ∈M .

In the above statement “execution (τ, q, x) starting at (q̂, x̂)” refers to a
hybrid trajectory with (q0(τ0), x0(τ0)) = (q̂, x̂) that satisfies the discrete
and continuous evolution conditions of Definition 3.5, but not necessarily
the initial condition (i.e. we allow (q̂, x̂) 6∈ Init in Definition 4.2). The reader
is asked to forgive this slight abuse of the terminology.
The following fact is a direct consequence of the definition.

Proposition 4.3 Consider a hybrid automaton H.

1. The union and intersection of two invariant sets of H are also
invariant sets of H.

2. If M is an invariant set and Init ⊆M , then Reach ⊆M .

68 Chapter 4. Analysis and Synthesis Problems

Exercise 4.2 Prove Proposition 4.3.

The two parts of the proposition can be used together to provide progres-
sively tighter bounds on Reach, by finding invariant sets that contain Init
and then taking their intersection.
Given a specification of the form 2[(q, x) ∈ F], the idea is to find an

invariant set that contains Init (and hence Reach) and is contained in F ,
i.e.

Init ⊆M ⊆ F.

How does one prove that a set is invariant? Usually by induction. Assume
we suspect that a certain set of states, M ⊆ Q × R

n, may be invariant.
First of all we may want to check that the initial states are contained in M

• Init ⊆M ,

otherwiseM may turn out to be useless for proving safety properties. Then
we check that if continuous evolution starts from a state in M then it
remains in M throughout. In other words, we check that

• for all T ≥ 0,

if

• (q̂, x̂) ∈M , and

• x : [0, T] → R
n is the solution to dx

dt = f(q̂, x) starting at x(0) = x̂,
and

• x(t) ∈ Dom(q̂) for all t ∈ [0, T),

then

• (q̂, x(T)) ∈M .

Exercise 4.3 Why is it sufficient to show that (q̂, x(T)) ∈M? What about
the intermediate times t ∈ (0, T)? (The answer is not difficult, but requires
a bit of thought.)

Finally, we check that if a discrete transition is possible from somewhere
in M , then the state after the discrete transition is also in M . In other
words, if

• (q̂, x̂) ∈M , and

• (q̂, q̂′) ∈ E, and

• x̂ ∈ G(q̂, q̂′)

then

• R(q̂, q̂′, x̂) ⊆M

4.3. Model checking 69

We have actually seen this procedure in practice already: these were the
steps we followed to determine the set of states reachable by the water tank
system.

4.3 Model checking

Finite state systems are relatively easy to work with because one can inves-
tigate their properties by systematically exploring their states. For example,
one can decide if a finite state system will eventually visit a particular set
of states by following the system trajectories one by one. This is tedious to
do by hand, but is easy to implement on a computer. Moreover, the process
is guaranteed to terminate: since the number of states is finite, sooner or
later we will find ourselves visiting the same states over and over again. At
this point either the desired set has already been reached, or, if not, it will
never be reached.
With hybrid systems it is in general impossible to do this. Because the

number of states is infinite, it is impossible to enumerate them and try to
explore them one by one. However, there are hybrid systems for which one
can find a finite state system which is, in some sense, equivalent to the
hybrid system. This is usually done by partitioning the state space into a
finite number of sets with the property that any two states in a give set
exhibit similar behavior. Then, to decide whether the hybrid system has
certain properties, one has to work with the sets of the partition (whose
number is finite), as opposed to the infinite states of the original hybrid
system. Moreover, the generation and analysis of the finite partition can
be carried out automatically by a computer.
The process of automatically analyzing the properties of systems by ex-

ploring their state space is known as model checking. In this section we
discuss some fundamental ideas behind model checking, and introduce a
class of hybrid systems, known as timed automata, that are amenable to
this approach. As with deductive methods the discussion will be motivated
by safety (reachability) analysis. Because of the complexity of the material
we will not develop the results in their full beauty and generality; directions
for further reading are given in the concluding section of this chapter.

4.3.1 Transition Systems

We first introduce a very general class of dynamical systems, known as
transition systems, on which the above questions can be formulated.

Definition 4.4 (Transition System) A transition system, T = (S, δ, S0, SF)
consists of

• A set of states S (finite or infinite);

70 Chapter 4. Analysis and Synthesis Problems

q0

q1 q2

q3 q4 q5 q6

Figure 4.1. Finite state transition system.

• A transition relation δ : S → 2S;

• A set of initial states S0 ⊆ S;

• A set of final states SF ⊆ S.

The set of final states is included because we are interested in reachability
type specifications. We will use it to encode desired final states, sets of
states in which we want to stay, etc.

Definition 4.5 (Trajectory of Transition System) A trajectory of a
transition system is finite or infinite sequence of states {si}Ni=0 such that

1. s0 ∈ S0; and,

2. si+1 ∈ δ(si) for all i = 0, 1, . . . , N − 1.

Example (Finite State Transition System) A transition system with
finite states is shown in Figure 4.1. The formal definition of the system is

1. S = {q0, . . . , q6};
2. δ(q0) = {q0, q1, q2}, δ(q1) = {q0, q3, q4}, δ(q2) = {q0, q5, q6}, δ(q3) =
δ(q4) = δ(q5) = δ(q6) = ∅;

3. S0 = {q0} (denoted by an arrow pointing to q0);

4. SF = {q3, q6} (denoted by a double circle).

Example (Transition System of a Hybrid Automaton) Hybrid au-
tomata can be transformed into transition systems by abstracting away
time. Consider a hybrid automaton H = (Q,X, Init, f,Dom,E,G,R) to-
gether with a distinguished “final” set of states F ⊆ Q×X. We will define
a transition system for the hybrid automaton. Start with

• S = Q×X, i.e. s = (q, x)

• S0 = Init

4.3. Model checking 71

• SF = F .

The transition relation δ can be defined in many parts: a discrete transition
relation δe : S → 2S for each edge e ∈ E of the graph and a continuous
transition relation δC : S → 2S to model the passage of time. For each
e = (q, q′) ∈ E define

δe(q̂, x̂) =

{
{q′} ×R(e, x̂) if [q̂ = q] ∧ [x̂ ∈ G(e)]
∅ if [q̂ 6= q] ∨ [x̂ 6∈ G(e)]

For the continuous transition relation let

δC(q̂, x̂) = {(q̂, x̂′) ∈ Q×X | ∃T ≥ 0, [x(T) = x̂′]∧[∀t ∈ [0, T), x(t) ∈ Dom(q̂)]}
where x(·) denotes the solution of the differential equation

ẋ = f(q̂, x) starting at x(0) = x̂

The overall transition relation is then

δ(s) = δC(s) ∪
⋃

e∈E

δe(s)

In words, a transition from s ∈ S to s′ ∈ S is possible in the transition
system if either a discrete transition e ∈ E of the hybrid system will bring
s to s′, or s can flow continuously to s′ after some time. Notice that in the
last statement time has been abstracted away. We do not care how long it
takes to get from s to s′, we only care whether it is possible to get there
eventually. The transition system captures the sequence of “events” that
the hybrid system may experience, but not the timing of these events.

Transition systems are designed to allow one to answer reachability (and
other) questions algorithmically. For example, say we would like to answer
the question

“Does there exist a trajectory of T such that si ∈ SF for some i?”

If this is the case we say that SF is reachable. More formally,

Definition 4.6 (Reachability) The set SF is said to be reachable by the
transition system T if there exists a finite trajectory {si}Ni=0 with N < ∞
such that sN ∈ SF .

Exercise 4.4 As discussed above, one can associate a transition system,
T , to a hybrid automaton and a distinguished set of its states F . Show that
SF is reachable by T if and only if F ∩ Reach 6= ∅. (Hint: Consider the
sequence of states x0(τ0), x0(τ

′
0), . . . , xi(τi), xi(τ

′
i), etc.)

Questions of reachability for transition systems can be approached using
the predecessor operator

Pre : 2S → 2S .

72 Chapter 4. Analysis and Synthesis Problems

Algorithm 1 (Backward Reachability)

initialization: W0 = SF , i = 0
repeat

if Wi ∩ S0 6= ∅
return “SF reachable”

end if
Wi+1 = Pre(Wi) ∪Wi

i = i+ 1
until Wi =Wi−1

return “SF not reachable”

Table 4.1. Backward reachability algorithm

For each set of states S′ ⊆ S, Pre(S′) is defined as

Pre(S′) = {s ∈ S | ∃s′ ∈ S′ with s′ ∈ δ(s)}.
In other words, the operator Pre takes a set of states, S′, and returns the
states that can reach S′ in one transition. The algorithm given in Table 4.1
can then be used to determine if SF is reachable by T .
Using an induction argument it is easy to show that if the algorithm ter-

minates (i.e. at some point it returns “SF reachable” or “SF not reachable”)
then it produces the right answer.

Exercise 4.5 Show this.

This algorithm is written in what is known as pseudo-code. It is con-
ceptually useful, but is still a long way from being implementable on a
computer. To effectively implement the algorithm one needs to figure out
a way to explain to the computer how to

1. store sets of states,

2. compute the Pre of a set of states,

3. take the union and intersection of sets of states,

4. check whether a set of states is empty, and

5. check whether two sets of states are equal.

Exercise 4.6 Show that 5. can be replaced by “take the complement of
sets”.

If the number of states S is finite all of these are relatively easy to do by
enumerating the states. None of these steps are completely straight forward,
however, if the state has real valued components (as is the case with hybrid
systems).
Even if one was able to perform all of these operations using a computer

program, it is still unclear whether the program would always produce an

4.3. Model checking 73

answer to the reachability question. The above algorithm may come up with
the answer “SF reachable”, the answer “SF not reachable”, but it may also
come up with no answer at all. This will be the case if new states get added
to Wi each time we go around the repeat-until loop (hence Wi−1 6= Wi)
but none of these states belongs to S0 (hence Wi ∩ S0 = ∅).

Example (Non-Terminating System) Consider the transition system
T = (S, δ, S0, SF) with S = R,

δ(x) = 2x

S0 = {−1}, SF = {1}. The Backwards Reachability algorithm produces
the following sequence of sets:

W0 = {1},W1 = {1, 1
2
}, . . . ,Wi = {1, 1

2
, . . . ,

(
1

2

)i

}, . . .

Notice that Wi+1 contains one more element that Wi, therefore we will
always have Wi 6=Wi+1. Moreover, because Wi ⊆ R+, −1 will never be in
Wi, therefore Wi ∩ S0 = ∅. Hence the algorithm will not terminate.

With finite state systems termination is not a problem: the set Wi will
sooner or later stop growing.

Example (Finite State Transition System (cont.)) When applied to
the finite state system of Figure 4.1 the Backwards Reachability Algorithm
produces the following sequence of sets:

W0 = {q3, q6},W1 = {q1, q2, q3, q6},W2 = {q0, q1, q2, q3, q6}
Notice that W2 ∩ S0 = {q0} 6= ∅. Therefore, after two steps the algorithm
terminates with the answer “SF reachable”.

Exercise 4.7 Assume the set S is finite and contains M states. Give an
upper bound on the number of times the algorithm will have to perform the
“repeat-until” loop.

4.3.2 Bisimulation

Since finite state systems are so much easier to work with, we are going
to try to turn our infinite state systems into finite state ones, by grouping
together states that have “similar” behavior. Such a grouping of states is
called a partition of the state space. A partition is a collection of sets of
states, {Si}i∈I , with Si ⊆ S, such that

1. Any two sets, Si and Sj , in the partition are disjoint, i.e. Si ∩Sj = ∅
for all i, j ∈ I with i 6= j. (A family of sets with this property is called
mutually disjoint).

74 Chapter 4. Analysis and Synthesis Problems

2. The union of all sets in the partition is the entire state space, i.e.
⋃

i∈I

Si = S

(A family of sets with this property is said to cover the state space).

The index set, I, of the partition may be either finite or infinite. If I is a
finite set (e.g. I = {1, 2, . . . ,M} forM <∞) then we say that the partition
{Si}i∈I is a finite partition.

Example (Finite State Transition System (cont.)) The collection of
sets

{q0}, {q1, q2}, {q3, q6}, {q4, q5}

is a partition of the state space S of the finite system of Figure 4.1. The
collection

{q0}, {q1, q3, q4}, {q2, q5, q6}

is also a partition. However, the collection

{q1, q3, q4}, {q2, q5, q6}

is not a partition (because it does not “cover” q0), and neither is

{q0, q1, q3, q4}, {q0, q2, q5, q6}

(because q0 appears twice).

Given a transition system, T = (S, δ, S0, SF) and a partition of the state
space {Si}i∈I we can define a transition system whose states are the ele-
ments of the partition Si ⊆ S, rather than individual states s ∈ S. This
transition system T̂ = (Ŝ, δ̂, Ŝ0, ŜF) is defined as

• Ŝ = {Si}i∈I , i.e. the states are the sets of the partition;

• δ̂ allows a transition from one set in the partition (say Si) to another
(say Sj) if and only if δ allows a transition from some state in Si (say
s ∈ Si) to some state in Sj (say s′ ∈ Sj). In mathematical notation,

δ̂(Si) = {Sj | ∃s ∈ Si, ∃s′ ∈ Sj such that s′ ∈ δ(s)}

• A set in the partition (say Si) is in the initial set of T̂ (i.e. Si ∈ Ŝ0)
if and only if some element of Si (say s ∈ Si) is an initial state of the
original transition system (i.e. s ∈ S0).

• A set in the partition (say Si) is a final set of T̂ (i.e. Si ∈ ŜF) if and
only if some element of Si (say s ∈ Si) is a final state of the original
transition system (i.e. s ∈ SF).

4.3. Model checking 75

Exercise 4.8 Show that the above definitions are equivalent to

δ̂(Si) = {Sj | δ(Si) ∩ Sj 6= ∅}
Si ∈ Ŝ0 ⇔ Si ∩ S0 6= ∅
Si ∈ ŜF ⇔ Si ∩ SF 6= ∅.

You need to define δ(Si) appropriately, but otherwise this is a tautology.

The transition system generated by the partition is known as the quotient
transition system. Notice that if the partition is finite, then the quotient
transition system T̂ is a finite state system and therefore can be easily
analyzed.
Using this method we can in principle construct finite state systems

out of any transition system. The problem is that for most partitions the
properties of the quotient transition system do not allow us to draw any
useful conclusions about the properties of the original system. However,
there is a special type of partition for which the quotient system T̂ is in a
sense equivalent to the original transition system, T . This type of partition
is known as a bisimulation.

Definition 4.7 (Bisimulation) A bisimulation of a transition system
T = (S, δ, S0, SF) is a partition {Si}i∈I of the state space S of T such
that

1. S0 is a union of elements of the partition,

2. SF is a union of elements of the partition,

3. if one state (say s) in some set of the partition (say Si) can transition
to another set in the partition (say Sj), then all other states ŝ ∈ Si

must be able to transition to some state in Sj. More formally, for all
i, j ∈ I and for all states s, ŝ ∈ Si, if δ(s)∩Sj 6= ∅, then δ(ŝ)∩Sj 6= ∅.

Exercise 4.9 Show that a partition {Si}i∈I is a bisimulation if and only
if conditions 1 and 2 above hold and 3 is replaced by “for all i, Pre(Si) is
a union of elements of {Si}i∈I”.

Example (Finite Transition System (cont.)) The partition

{q0}, {q1, q2}, {q3, q6}, {q4, q5}
is a bisimulation of the finite system of Figure 4.1. Let us test this:

1. S0 = {q0} which is an element of the partition;

2. SF = {q3, q6} which is also an element of the partition;

3. Let us study the third condition for the set {q1, q2}. From q1 one can
jump to the following sets in the partition

{q0}, {q3, q6}, {q4, q5}

76 Chapter 4. Analysis and Synthesis Problems

From q2 one can jump to exactly the same sets in the partition.
Therefore the third condition is satisfied for set {q1, q2}. It is also
easy to check this condition for the remaining sets (for the set {q0}
the third condition is trivially satisfied).

The partition

{q0}, {q1, q3, q4}, {q2, q5, q6}
on the other hand, is not a bisimulation. For example, SF is not a union of
elements of the partition. Also, from q1 one can transition to q0, whereas
from q3 and q4 (the other elements of the set {q1, q3, q4}) one cannot
transition to q0.

Bisimulations are important because of the following property.

Theorem 4.8 (Reachability Equivalence) Let {Si}i∈I be a bisimula-
tion of a transition system, T , and let T̂ be the corresponding quotient
transition system. SF is reachable by T if and only if ŜF is reachable by T̂ .

Proof: Assume first that SF is reachable by T . Then there exists a finite
sequence {si}Ni=0 such that s0 ∈ S0, sN ∈ SF and si+1 ∈ δ(si) for all
i = 0, 1, . . . , N − 1. Clearly there exists a sequence {S′

i}Ni=0 of elements of
the partition such that si ∈ S′

i for all i = 0, 1, . . . , N . Because sN ∈ SF and

sN ∈ S′
N we have that S′

N ∈ ŜF . Likewise, S
′
0 ∈ Ŝ0. Finally, because for all

i = 0, 1, . . . , N − 1, si+1 ∈ δ(si) we have that S′
i+1 ∈ δ̂(S′

i). Therefore, ŜF

is reachable by T̂ . Notice that so far the argument holds for any partition,
not only for bisimulations.
Conversely, assume that {Si}i∈I is a bisimulation and that ŜF is reach-

able by the corresponding quotient transition system T̂ . Then there exists
a finite sequence {S′

i}Ni=0 of elements of the partition such that S′
0 ∈ Ŝ0,

S′
N ∈ ŜF and S′

i+1 ∈ δ̂(S′
i) for all i = 0, 1, . . . , N − 1. Pick an arbitrary

state s0 ∈ S′
0. Notice that because s0 ∈ S′

0 ∈ Ŝ0 and the partition is a

bisimulation we must have s0 ∈ S0. Moreover, since S′
1 ∈ δ̂(S′

0) and the
partition is a bisimulation there exist s1 ∈ S′

1 such that s1 ∈ δ(s0). Proceed
inductively, defining a finite sequence of states {si}Ni=0 such that si ∈ S′

i

and si+1 ∈ δ(si). Notice that since sN ∈ S′
N ∈ ŜF and the partition is a

bisimulation we must have sN ∈ SF . Therefore SF is reachable by T .

It should be noted that this is a simplified version of a much deeper theorem.
It turns out that bisimulations preserve not only reachability properties,
but all properties that can be written as formulas in a temporal logic known
as the Computation Tree Logic (CTL).
Theorem 4.8 is a very important and useful result. For finite state systems

its implications are mostly in terms of computational efficiency. If we can
find a bisimulation of the finite state system (like we did in the finite state
example discussed above) we can study reachability in the quotient system
instead of the original system. The advantage is that the quotient system

4.3. Model checking 77

Algorithm 2 (Bisimulation)

initialization: P = {S0, SF , S \ (S0 ∪ SF)}
while there exists Si, Sj ∈ P such that Si ∩ Pre(Sj) 6= ∅

and Si ∩ Pre(Sj) 6= Si do
S′
i = Si ∩ Pre(Sj)
S′′
i = Si \ Pre(Sj)

P = (P \ Si) ∪ {S′
i, S

′′
i }

end while
return P

Table 4.2. Bisimulation algorithm

will in general be much smaller that the original system. In the above
example, the quotient system had 4 states whereas the original system had
7.
The implications are much more profound for infinite state systems. Even

when the original transition system has an infinite number of states, some-
times we may be able to find a bisimulation that consists of a finite number
of sets. Then we will be able to answer reachability questions for the infi-
nite state system by studying an equivalent finite state system. Since finite
state systems are so much easier to work with this could be a very big
advantage. A class of hybrid systems for which we can always find finite
bisimulations will be introduced in the next section.
The algorithm in Table 4.2 can be used to find a bisimulation of a

transition system T = (S, δ, S0, SF).
The symbol \ in the algorithm stands for set difference: Si \ Pre(Sj) is

the set that contains all elements of Si that are not elements of Pre(Sj),
in other words

Si \ Pre(Sj) = {s ∈ S | [s ∈ Si] ∧ [s 6∈ Pre(Sj)]}
The algorithm maintains a partition of the state space, denoted by P, which
gets refined progressively so that it looks more and more like a bisimulation.
The definition of the bisimulation suggests that if P is to be a bisimulation
then it must at least allow us to “distinguish” the initial and final states.
We therefore start with a partition that contains three sets: S0, SF and
everything else S \ (S0 ∪ SF), i.e.

P = {S0, SF , S \ (S0 ∪ SF)}
At each step of the algorithm, we examine the sets of the candidate
partition. Assume we can find two sets Si, Sj ∈ P such that Pre(Sj) con-
tains some elements of Si (i.e. Si ∩ Pre(Sj) 6= ∅) but not all of them
(i.e. Si 6⊆ Pre(Sj), or, equivalently, Si ∩ Pre(Sj) 6= Si). Then some
states s ∈ Si may find themselves in Sj after one transition (namely
those with s ∈ Si ∩ Pre(Sj)), while others may not (namely those with
s ∈ Si \ Pre(Sj)). This is not allowed if P is to be a bisimulation. We

78 Chapter 4. Analysis and Synthesis Problems

therefore replace Si by two sets: the states in Si that can transition to
Sj (S′

i = Si ∩ Pre(Sj)) and the states in Si that cannot transition to Sj

(S′′
i = Si \ Pre(Sj)). Notice that after the replacement P has one more

set than it did before. The process is repeated until for all sets Si, Sj ∈ P
either Si ∩ Pre(Sj) 6= ∅ or Si ∩ Pre(Sj) 6= Si. The resulting collection of
sets, P is a bisimulation. In fact:

Theorem 4.9 (Coarsest Bisimulation) If the Bisimulation Algorithm
terminates it will produce the coarsest bisimulation of the transition system
(i.e. the bisimulation containing the smallest number of sets).

Proof: We only show that if the algorithm terminates is produces a bisim-
ulation. Assume that the bisimulation algorithm terminates and returns a
partition P; notice that by default P is a finite partition. Since S0 and SF

are elements of the initial partition and the algorithm only splits elements,
S0 and SF are unions of elements of P. Moreover, the termination condition
implies that for any Si, Sj ∈ P either Si ∩ Pre(Sj) = ∅ or Si ⊆ Pre(Sj).
Therefore Pre(Sj) is a union of elements of P.

For finite state systems this algorithm is easy to implement (by
enumerating the states) and will always terminate.

Example (Finite State Transition System (cont.)) Let us apply the
bisimulation algorithm to the finite system of Figure 4.1. Initially

P = {S0, SF , S \ (S0 ∪ SF)} = {{q0}, {q3, q6}, {q1, q2, q4, q5}}
Notice that Pre({q3, q6}) = {q1, q2}. This is not an element of the partition
P. It intersects {q1, q2, q4, q5} but is not equal to it. We therefore split
{q1, q2, q4, q5} into two sets

{q1, q2, q4, q5} ∩ Pre({q3, q6}) = {q1, q2}
and

{q1, q2, q4, q5} \ Pre({q3, q6}) = {q4, q5}
After one iteration of the algorithm the partition becomes

P = {{q0}, {q3, q6}, {q1, q2}, {q4, q5}}
As we have already seen it is easy to check that this is a bisimulation.
Clearly S0 and SF are elements of the partition. Moreover,

Pre({q0}) = {q0, q1, q2}
which is a union of elements of the partition, and so on.

The problem with using the bisimulation algorithm on finite state sys-
tems is that it may be more work to find a bisimulation than to investigate
the reachability of the original system. Sometimes bisimulations can be

4.3. Model checking 79

computed by “inspection”, by taking advantage of symmetries of the tran-
sition structure. In the above example, we can immediately see that the
left sub-tree is a mirror image of the right sub-tree. This should make us
suspect that there is a bisimulation lurking somewhere. There is an entire
community in computer science that develops methods for detecting and
exploiting such symmetries.
When we try to apply the bisimulation algorithm to infinite state sys-

tems we face the same problems we did with the Backward Reachability
algorithm: how to store sets of states in the computer, how to compute Pre,
etc. Moreover, even in cases where we can do all these, the algorithm may
never terminate. The reason is that not all infinite state transition systems
have finite bisimulations. In the next section we will introduce a class of
(infinite state) hybrid systems for which we can not only implement the
above algorithm in a computer, but also ensure that it will terminate in a
finite number of steps.

4.3.3 Timed Automata

Timed automata are a class of hybrid systems that involve particularly
simple continuous dynamics: all differential equations are of the form ẋ = 1
and all the domains, guards, etc. involve comparison of the real valued
states with constants (x = 1, x < 2, x ≥ 0, etc.). Clearly timed automata
are somewhat limited when it comes to modeling physical systems. They
are very good however for encoding timing constraints (“event A must take
place at least 2 seconds after event B and not more than 5 seconds before
event C”, etc.). For some applications, such as multimedia, Internet and
audio protocol verification, etc. this type of description is sufficient for both
the dynamics of the system and the properties that we want the system to
satisfy. We conclude this chapter with a brief discussion of the properties of
timed automata. Because complicated mathematical notation is necessary
to formally introduce the topic we will give a rather informal exposition.

Consider x ∈ R
n. A subset of Rn set is called rectangular if it can be

written as a finite boolean combination of constraints of the form xi ≤ a,
xi < b, xi = c, xi ≥ d, and xi > e, where a, b, c, d, e are rational numbers.
Roughly speaking, rectangular sets are “rectangles” in R

n whose sides are
aligned with the axes, or unions of such rectangles. For example, in R

2 the
set

(x1 ≥ 0) ∧ (x1 ≤ 2) ∧ (x2 ≥ 1) ∧ (x2 ≤ 2)

is rectangular, and so is the set

[(x1 ≥ 0) ∧ (x2 = 0)] ∨ [(x1 = 0) ∧ (x2 ≥ 0)]

80 Chapter 4. Analysis and Synthesis Problems

The empty set is also a rectangular set (e.g. ∅ = (x1 ≥ 1) ∧ (x1 ≤ 0)).
However the set

{x ∈ R
2 | x1 = 2x2}

is not rectangular.

Exercise 4.10 Draw these sets in R
2. You should immediately be able to

see why rectangular sets are called rectangular.

Notice that rectangular sets are easy to encode in a computer. Instead of
enumerating the set itself (which is generally impossible since the set may
contain an infinite number of states) we can store and manipulate the list
of constraints used to generate the set (which is finite).
Roughly speaking, a timed automaton is a hybrid automaton which

• involves differential equations of the form ẋi = 1. Continuous
variables governed by this differential equation are known as clocks.

• the sets involved in the definition of the initial states, guards and
domain are rectangular sets

• the reset is either a rectangular set, or may leave certain states
unchanged.

Example (Timed Automaton) An example of a timed automaton is
given in Figure 4.2. We have

• Q = {q1, q2};
• X = R

2;

• f(q1, x) = f(q1, x) =

[
1
1

]
;

• Init = {(q1, (0, 0))};
• Dom(q1) = {x ∈ R

2 | x2 ≤ 3}, Dom(q2) = {x ∈ R
2 | x1 ≤ 5};

• E = {(q1, q2), (q2, q1)};
• G(q1, q2) = {x ∈ R

2 | x2 > 2}, G(q2, q1) = {x ∈ R
2 | x1 > 4};

• R(q1, q2, x) = {(3, 0)}, R(q2, q1, x) = {(0, x2)}

Exercise 4.11 Is this timed automaton non-blocking? Is it deterministic?

Notice that in the timed automaton of the example all the constants
that appear in the definition are non-negative integers. It turns out that
we can in general assume that this is the case: given any timed automaton
whose definition involves rational and/or negative constants we can define

4.3. Model checking 81

q1 q2

x2 > 2

x1 > 4

x1 := 3 ∧ x2 := 0

x1 := 0

x1 = x2 = 0

ẋ1 = 1
ẋ2 = 1

x2 ≤ 3

ẋ1 = 1

ẋ2 = 1

x1 ≤ 5

Figure 4.2. Example of a timed automaton.

x1

x2

1

1

2

2

3

3

4 5

Figure 4.3. Region graph for the timed automaton of Figure 4.2.

an equivalent timed automaton whose definition involves only non-negative
integers. This is done by “scaling” (multiplying by an appropriate integer)
and “shifting” (adding an appropriate integer) some of the states.
We can turn timed automata into transition systems by “abstracting

away” time, just like we did for general hybrid systems above. It turns out
that the transition system corresponding to a timed automaton always has
a finite bisimulation. One standard bisimulation that works for all timed
automata is the region graph. The region graph for the timed automaton
of Figure 4.2 is shown in Figure 4.5.
We will briefly describe the way the region graph is constructed. Assume

that all the constants that appear in the definition of the timed automaton
are non-negative integers (this can be done without loss of generality as
noted above). As usual, let us label the continuous variables (clocks) as
x1, . . . , xn. Let Ci be the largest constant with which xi is compared in
any of the sets used in the definition of the timed automaton (initial sets,

82 Chapter 4. Analysis and Synthesis Problems

guards, etc.). In the example C1 = 5 and C2 = 3. If all we know about
the timed automaton is these bounds Ci, xi could be compared with any
integer M with 0 ≤ M ≤ Ci in some guard, reset or initial condition set.
Therefore, the discrete transitions of the timed automaton may be able to
“distinguish” states with xi < M from states with xi =M and from states
with xi > M , for all 0 ≤ M ≤ Ci. Distinguish means, for example, that a
discrete transition may be possible from a state with xi < M but not from
a state with xi > M (because the guard contains the condition xi < M).
Because these sets may be distinguished by the discrete transitions we add
them to our candidate bisimulation. In the example this gives rise to the
sets

for x1 : x1 ∈ (0, 1), x1 ∈ (1, 2), x1 ∈ (2, 3), x1 ∈ (3, 4), x1 ∈ (4, 5), x1 ∈ (5,∞)

x1 = 0, x1 = 1, x1 = 2, x1 = 3, x1 = 4, x1 = 5,

for x2: x2 ∈ (0, 1), x2 ∈ (1, 2), x2 ∈ (2, 3), x2 ∈ (3,∞)

x2 = 0, x2 = 1, x2 = 2, x2 = 3.

The product of all these sets, i.e. the sets

{x ∈ R
2 | x1 ∈ (0, 1) ∧ x2 ∈ (0, 1)}

{x ∈ R
2 | x1 ∈ (0, 1) ∧ x2 = 1}

{x ∈ R
2 | x1 = 1 ∧ x2 ∈ (0, 1)}

{x ∈ R
2 | x1 = 1 ∧ x2 = 1}

{x ∈ R
2 | x1 ∈ (1, 2) ∧ x2 ∈ (3∞)}, etc.

define all the sets in R
2 that the discrete dynamics (initial states, guards,

domain and reset relations) can distinguish. Notice that in the continu-
ous state space R

2 these product sets are open squares (squares without
their boundary), open horizontal and vertical line segments (line segments
without their end points), points on the integer grid and open, unbounded
rectangles (when some xi > Ci).
Since ẋ1 = ẋ2 = 1, time flow makes the continuous state move diagonally

up along 45◦ lines. By allowing time to flow the timed automaton may
therefore distinguish points below the diagonal of each square, points above
the diagonal and points on the diagonal. For example, points above the
diagonal of the square

{x ∈ R
2 | x1 ∈ (0, 1) ∧ x2 ∈ (0, 1)}

will leave the square through the line

{x ∈ R
2 | x1 ∈ (0, 1) ∧ x2 = 1}

points below the diagonal will leave the square through the line

{x ∈ R
2 | x1 = 1 ∧ x2 ∈ (0, 1)}

4.3. Model checking 83

while points on the diagonal will leave the square through the point

{x ∈ R
2 | x1 = 1 ∧ x2 = 1}

This leads us to split each open square in three: two open triangles and an
open diagonal line segment.
It can in fact be shown that this is enough to generate a bisimulation.

Theorem 4.10 The region graph is a finite bisimulation of the timed
automaton.

It should be stressed that the region graph is not necessarily the coarsest
bisimulation. One may be able to find bisimulations with fewer sets; the
elements of these bisimulations will be unions of sets of the region graph. It
is generally considered bad form to try to construct the entire region graph
to investigate properties of a timed automaton. Usually, one either uses
the bisimulation algorithm to construct a coarse bisimulation, or uses the
reachability algorithm directly to investigate reachability. The point of The-
orem 4.10 is that it guarantees that there is at least one finite bisimulation
for each timed automaton, which in turn guarantees that the Bisimulation
and Reachability algorithms can be implemented and will terminate.
A counting exercise reveals that the total number of regions in the region

graph is of the order of

n! 2n
n∏

i=1

(2Ci + 2)

(! denotes factorial.) Even for relatively small n this is a very large number!
(! denotes exclamation point) What is worse, the number grows very quickly
(exponentially) as n increases. (In addition to n! and 2n, there is another
hidden exponential in this formula. Because on a computer numbers are
stored in binary, Ci is exponential in the number of bits used to store it).
This is bad news. It implies that a relatively simple timed automaton

can give rise to a region graph with a very large number of sets, which
will be a nightmare to analyze. It turns out that this is a general property
of timed automata and has nothing to do with the way the region graph
was constructed. Because timed automata have finite bisimulations, we
know that they can be automatically analyzed by a computer. However, in
the worst case, the number of operations that the computer will have to
perform to analyze the system will be exponential in the size of the problem
(e.g. the length of the input file we need to code our timed automaton for
the computer). This is irrespective of how well we write the program. In
computational complexity terminology, model checking for timed automata
turns out to be PSPACE Complete.
A second bit of bad news about the model checking approach is that it

does not work for more complicated systems. For example, one can show
that simple variants of timed automata do not have finite bisimulations.

84 Chapter 4. Analysis and Synthesis Problems

This is the case for example if we allow ẋi = ci(q) for some constant
ci 6= 1 (skewed clocks, leading tomulti-rate automata), or allow comparisons
between clocks (terms of the form xi ≤ xj in the guards or reset relations),
or reseting one clock to another (terms of the form xi := xj in the reset
relations). In computer theory terminology, the reachability question for
such systems is undecidable, i.e. there does not exist an algorithm that will
answer the question in finite time.
Fortunately, there are still many interesting systems to which the model

checking approach can produce very valuable results. In addition to timed
automata, reachability problems are known to be decidable for the so called
initialized variant of certain classes of hybrid systems. These are systems
for which the continuous state is reset (possibly non-deterministically in a
rectangular set) every time the continuous dynamics change as a result of
a discrete transition, and the continuous dynamics are governed by

• Skewed clocks, ẋi = ci(q) with ci(q) a rational number;

• Constant differential inclusions ẋi ∈ [li(q), ui(q)], with li(q) ≤ ui(q)
rational or possibly ±∞;

• Linear differential equations, ẋ = A(q)x, where A(q) is a matrix
with rational entries that is either nilpotent, or has distinct, real
eigenvalues, or distinct imaginary eigenvalues.

Moreover, the model checking approach can even be used on classes of
systems for which reachability problems are known to be undecidable in
general, but the operations necessary to implement the reachability or
bisimulation algorithms can be encoded computationally. This is the case,
for example, for non-initialized systems of the types listed above, linear sys-
tems with complex eigenvalues, systems where clocks are compared with
one another, etc. In this case there is no guarantee that the reachabil-
ity/bisimulation algorithm will ever terminate, but if it does then it is
guaranteed to give a right answer. Finally, it can be shown that for more
general classes of hybrid systems (e.g. with nonlinear continuous dynam-
ics, where it is even impossible to encode the operations needed for the
reachability/bisimulation algorithms) the reachability problem over com-
pact time intervals can be approximated arbitrarily closely by systems for
which reachability questions are decidable or semi-decidable (e.g. systems
with constant differential inclusions). The price to pay for this approxima-
tion is that the number of discrete states needed for the approximation is
in general exponential in the accuracy of the approximation.

4.4 Bibliography and Further Reading

Of the analysis questions listed in this chapter, the one that has arguably
attracted the most attention if the question of stability of equilibria and

4.4. Bibliography and Further Reading 85

invariant sets. Most of the work in this area has concentrated on extensions
of Lyapunov’s Direct Method to the hybrid domain [70, 71, 72]. Approaches
using Lyapunov like functions (barrier functions) have also been developed
for the study of other properties, safety properties ?? and classes of live-
ness properties ??. The work of [73] provided effective computational tools,
based on Linear Matrix Inequalities, for applying these results to a class of
piecewise linear systems. [38, 74] discuss extensions of LaSalle’s Method and
Lyapunov’s Indirect Method to the hybrid domain. Related to the latter is
also the work of [75, 76], where a direct study of the stability of piecewise
linear systems is developed. For an excellent overview of the literature in
this area the reader is referred to [77].
The corresponding synthesis problem of stabilization has been some-

what less extensively studied. Much of the work in this area deals with
switched systems (usually linear and/or planar). The proposed stabilization
schemes typically involve selecting appropriate times for switching between
a set of given systems [40, 78, 79, 80, 76]. In some cases this approach has
been extended to robust stabilization schemes for systems that involve cer-
tain types of uncertainty [81, 75]. A good coverage of the stability and
stabilization problems for hybrid systems can be found in [82].

Temporal logic is widely used in computer theory to encode properties
given as sets of trajectories (safety properties, etc.) as well as dynamics for
discrete systems. A very thorough treatment can be found in [83, 84].

Deductive methods are commonly used with discrete systems; see [83, 84,
85] for an overview. One way of formally extending deductive arguments to
the hybrid domain is presented in [86, 13, 87]; the approach of [86, 13] has
been applied to a number of examples, primarily to establish the safety of
transportation systems [88, 89, 90, 91, 92, 93].
Deductive arguments can be automated (at least partly) using theorem

provers. One tool that provides computational support for deductive argu-
ments for hybrid systems is STeP [94]. Other theorem provers that have
been used to code deductive arguments for hybrid systems are PVS ?? and
HOL ??.
Timed automata were the first class of hybrid systems that were shown to

be amenable to model checking methods in the classic paper [11]. Since then
a number of other classes of hybrid systems with this property have been es-
tablished: initialized multi-rate automata [95], initialized hybrid automata
with continuous dynamics governed by constant differential inclusions [96]
and classes of initialized hybrid automata with continuous dynamics gov-
erned by linear differential equations [97]. The limits of undecidability have
been established in [96]. It has also been shown that a very wide class of
hybrid systems can be approximated arbitrarily closely by such “decid-
able” hybrid systems [98] (albeit at the cost of exponential computational
complexity). For an excellent overview of the developments in this area
see [44].

86 Chapter 4. Analysis and Synthesis Problems

In the case of hybrid control systems, related methods have been de-
veloped for automatically synthesizing controllers to satisfy specifications
(e.g. given in temporal logic) whenever possible [14, 99, 15, 100].

Based on the theoretical results, computational tools been developed to
automatically perform verification or synthesis tasks [16, 101, 102, 103,
104].

4.5 Problems

Problem 4.1 Show that a hybrid system satisfies the specification 2[(q, x) ∈
F] if and only if there exists an invariant set M such that:

Init ⊆M ⊆ F.

Problem 4.2 Consider the thermostat system, shown in Figure 2.9.

1. Assume that Init = {OFF,ON}×{20}. Show that the system satisfies
the specification 2 [(q, x) ∈ {OFF,ON} × [18, 22]]. Does the system
satisfy the specification 2 [(q, x) ∈ {OFF,ON} × [19, 21]]?

2. Assume now that Init = {OFF,ON} × R. Show that the system
satisfies the specifications

32 [(q, x) ∈ {OFF,ON} × [18, 22]]

and

23[(q, x) ∈ {OFF,ON} × [19, 21].

Problem 4.3 As discussed in Section 4.3, one can associate a transition
system, T , to a hybrid automaton and a distinguished set of its states F .
Show that SF is reachable by T if and only if F ∩ Reach 6= ∅.
Problem 4.4 For a transition system, T , define an appropriate operator
Post : 2S → 2S that for each set of states Ŝ ⊆ S returns the set of states
that can be reached from Ŝ in one transition. Hence develop a forward reach-
ability algorithm. Show that if your algorithm terminates then it produces
the right answer.

Problem 4.5 Consider the water tank system, shown in graphical notation
in Figure 3.2. Assume that max{v1, v2} < w < v1 + v2. Show that the set
of states

{(q, x) | (x1 ≥ r1) ∧ (x2 ≥ r2)}
is invariant.
The condition max{v1, v2} < w < v1 + v2 implies that the rate at which

water is added to the system is less than the rate at which water is removed.
Physical intuition suggests that in this case at least one of the water tanks

4.5. Problems 87

will have to eventually drain. Why does the analysis of the hybrid automaton
fail to predict that?

Problem 4.6 Consider a hybrid automaton.

1. Show that the class of invariant subsets of Q × X is closed under
arbitrary unions and intersections.

2. Show that ifM ⊆ Q×X is invariant and Init ⊆M , then Reach ⊆M .

Problem 4.7 Consider the timed automaton shown in Figure 4.4, and its
region graph shown in Figure 4.5. Let e1 = (q1, q2) and e2 = (q2, q1). For
the four regions, P1, . . . , P4 shown in Figure 4.5 compute the predecessor
operators Pree1 (states that can end up in P after transition e1), Pree2
(states that can end up in P after transition e2) and

PreC(P) = {(q, x) ∈ Q× R
2 | ∃(q′, x′) ∈ P, t ≥ 0, such that

(q = q′) ∧
(
x′ = x+ t

[
1
1

])
}

Verify that all the predecessors are unions of partitions in the region graph
(or the empty set). (Note: The domains are assumed to be the whole of X
and so are omitted from the figure.)

q1 q2
x1 ≤ 3 ∧ x2 ≤ 2

x1 ≤ 1

x1 = 0 ∧ x2 = 0

x1 := 0

ẋ1 = 1
ẋ2 = 1

ẋ1 = 1
ẋ2 = 1

Figure 4.4. A timed automaton.

Problem 4.8 A hybrid automaton is called domain preserving if the state
remains in the domain along all executions, i.e. if for all executions (τ, q, x)
for all Ii ∈ τ and for all t ∈ Ii, xi(t) ∈ Dom(qi(t)). Assume that for all
q̂ ∈ Q, Dom(q̂) is a closed set.

1. Show that the hybrid automaton is domain preserving if

• for all (q̂, x̂) ∈ Init, we have that x̂ ∈ Dom(q̂); and,
• for all q̂ ∈ Q, for all x̂ ∈ Dom(q̂) and for all (q̂, q̂′) ∈ E such
that x̂ ∈ G(q̂, q̂′), R(q̂, q̂′, x̂) ⊆ Dom(q̂′).

what if the system is blocking?

2. Show that the bouncing ball system of Figure 4.6 is domain preserving.

88 Chapter 4. Analysis and Synthesis Problems

1 2 3

1

2

1 2 3

1

2

q1 q2P1

P2

P3

P4

Q1

Q2

x1 x1

x2 x2

Figure 4.5. Region graph for the automaton of Figure 4.2

Problem 4.9 Consider the bouncing ball system of Figure 4.6. Notice that
in this case we assume that the ball is released at height h with zero vertical
velocity.

(x1 ≤ 0) ∧ (x2 ≤ 0) x2 := −cx2

ẋ1 = x2

ẋ2 = −g

x1 ≥ 0

(x1, x2) = (h, 0)

Fly

Figure 4.6. Bouncing ball

1. Show that if c ∈ [0, 1] then the system satisfies the specification

2

[
(q, x) ∈

{
(Fly, x) | x1 +

x22
2g

≤ h

}]
.

2. Show that if c ∈ [0, 1) then for any i ∈ N the system satisfies the
specification

3

[
(q, x) ∈

{
(Fly, x) | x1 +

x22
2g

≤ 1

2i

}]
.

Problem 4.10 Consider the rocking block system of Figure 3.13. Assume
that r ∈ [0, 1). Show that the system satisfies the specifications:

2

[
cos(α(1 + x1)) +

α2

2
x22 ≤ 1

]

4.5. Problems 89

and

23[x1 = 0].

This is page 90
Printer: Opaque this

Chapter 5
Controller Synthesis for Discrete and
Continuous Systems

This chapter is the first of two chapters on designing control laws for hybrid
systems. What is a control law? It is a method by which we steer the
automaton using input variables, so that the closed loop exhibits certain
desirable properties. A control problem involves:

1. A plant

2. A specification

3. A controller

Controller synthesis involves coming up with a methodology for designing
controllers that meet the specification. The discussion in this chapter is
based on [?] and [36, 105]. Here, we will deal mostly with safety specifica-
tions; although the methodology presented in this chapter can be extended
to more general classes of properties.
Our first step will be to augment the finite state automaton and contin-

uous state differential equation models of Chapter 3 with input variables.
Typically some input variables can be controlled (their values can be as-
signed at will by a controller), while others cannot be controlled (their
values are determined by the environment). Uncontrollable variables (or
disturbances) typically represent:

• noise in the sensors, error from numerical computations;

• external forces, such as wind;

• unmodeled dynamics;

5.1. Controller synthesis for discrete systems 91

• uncertainty about the actions of other agents (such as in the air traffic
control and highway system examples).

Our focus will be on the design of controllers to ensure that the overall
system satisfies the safety property, while imposing minimal restrictions on
the controls it allows. There are at least two reasons why such a controller
is desirable:

1. As discussed above, safety properties can sometimes be satisfied us-
ing trivial controllers (that cause deadlocks or zeno executions for
example). Imposing as few restrictions as possible allows us to find a
meaningful controller whenever possible.

2. In many cases multiple, prioritized specifications are given for a par-
ticular problem. Imposing fewer restrictions on the controls when
designing controllers for higher priority specifications allows us
greater flexibility when trying to satisfy lower priority specifications.

5.1 Controller synthesis for discrete systems

We will start with the simplest case, the design of controllers for finite state
automata.

5.1.1 Controlled Finite State Automaton

Consider the discrete state system of Chapter ??, now augmented with
discrete input and disturbance variables.
Definition: A controlled finite state automaton M is a mathematical

model of a system represented as

(Q,Σ, Init, R) (5.1)

where

• Q is a finite set of discrete state variables

• Σ = Σ1 ∪ Σ2 is a finite set of discrete input variables, where Σ1

contains the controller’s inputs and Σ2 contains the environment’s
inputs, which cannot be controlled

• Init ⊆ Q is a set of initial states

• R : Q×Σ → 2Q is a transition relation which maps the state and input
space to subsets of the state space and thus describes the transition
logic of the finite automaton

Each transition between states depends on a joint action (σ1, σ2), where
σ1 ∈ Σ1 and σ2 ∈ Σ2. The behavior of the finite state automaton is non-
deterministic: the transition relation R(q, σ1, σ2) represents a set of possible

92 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

new states, rather than a single unique state. Transitions are prevented, or
blocked, from occurring at state q by setting R(q, σ1, σ2) = ∅.
A system trajectory (q[·], σ1[·], σ2[·]) ∈ Qω×Σω

1 ×Σω
2 is a finite or infinite

sequence of states and actions which satisfies, for i ∈ Z,

q[0] ∈ Init and q[i+ 1] ∈ R(q[i], σ1[i], σ2[i]) (5.2)

The controller specification is a trajectory acceptance condition Ω. The
trajectory acceptance condition describes a desired goal that the system
should achieve, which is expressed as a specification on the state trajectory.
For safety specifications, in which the state trajectories must remain within
a safe subset F ⊆ Q, the trajectory acceptance condition is written as
Ω = 2F , meaning that ∀i, q[i] ∈ F .

The controller wins the game (UNDEFINED??) if the trajectory satisfies
2F , otherwise the environment wins.

5.1.2 Controller Synthesis

The problem of synthesizing control laws σ1[·] ∈ Σω
1 in the presence of

uncertain actions σ2[·] ∈ Σω
2 was first posed by Church in 1962 [106], who

was studying solutions to digital circuits, and was solved by Büchi and
Landweber [107] and Rabin [108] in the late 1960’s and early 1970’s using a
version of the von Neumann-Morgenstern discrete game [?]. More recently,
Ramadge and Wonham [109] added new insight into the structure of the
control law. A temporal logic for modeling such games is introduced in [?].
We assume that the goal of the environment could be directly orthogonal

to that of the controller’s. This is a key assumption in our derivation of
controllers for safety critical systems: the control law must protect against
worst case uncertainty in the actions of the environment. With most real-
istic systems, the designer has a model of the environment and its actions:
the better the model, the more flexibility the designer has in choosing a
control law.
Returning to the controller specification of establishing the largest class

of initial conditions for which there exists a controller that keeps all the
executions of the automation inside F ⊂ Q. We will begin with the demon-
stration of how we might proceed through an example. Consider a finite
automaton with Q = {q1, . . . , q10}, U = D = {1, 2}, F = {q1, . . . , q8}, and
the transition structure of Figure 5.1 (the inputs are listed in the order
(u, d) and * denotes a “wild-card”). Try to establish the largest set of ini-
tial conditions, W ∗ such that there exists a feedback controller that keeps
the execution inside F . Clearly:

W ∗ ⊆ F = {q1, . . . , q8}

Next, look at states that can end up in F in one transition (q4, q5, and
q8). Notice that from q4 if u = 1 whatever d chooses to do we remain in F ,

5.1. Controller synthesis for discrete systems 93

c

(2,*)

(1,*)

(2,1)

(*,*)

(1,*)

(*,2)

(1,1)

(1,1)

(1,1)
(1,2)

(*,*)

(2,2)

(2,*)

(2,2)

(1,*)

(2,1)

(*,*)

(1,1)

(2,1)

(2,2)

(2,1)

(1,2)

(1,*)

(2,*)
q1

q2

q3

q4

q5

q6

q8

q10

F

FQ

q9

q7

Figure 5.1. Example of discrete controller synthesis

while from q5 and q8 whatever u chooses to do we leave F . Therefore:

W ∗ ⊆ {q1, q2, q3, q4, q6, q7}
Next look at states that can leave the above set in one transition (q4 and
q6). Notice that from q4 if d = 1 whatever u chooses we leave the set, while
from q6 if u = 1 d can choose d = 2 to force us to leave the set while if
u = 2 d can choose d = 1 to force us to leave the set. Therefore:

W ∗ ⊆ {q1, q2, q3, q7}
From the remaining states, if u chooses according to the following feedback
map:

g(q) =





{1} if q = q7
{2} if q ∈ {q1, q3}
{1, 2} if q = q2

we are guaranteed to remain in {q1, q2, q3, q7} for ever. Therefore,

W ∗ = {q1, q2, q3, q7}
and g is the least restrictive controller that renders W ∗ invariant (proof of
both facts is by enumeration).
More generally this scheme can be implemented by the following

algorithm [14]:

94 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

Algorithm 3 (Controlled Invariant Set)
Initialization:

W 0 = F , W 1 = ∅, i = 0
p while W i 6=W i+1 do

begin
W i−1 =W i ∩ {q ∈ Q : ∃u ∈ U ∀d ∈ D δ(x, (u, d)) ⊆W i}
i = i− 1

end

The index decreases as a reminder that the algorithm involves a predecessor
operation. This is a real algorithm (that is to say, it can be implemented
by enumerating the set of states and inputs and that it terminates after a
finite number of steps) since:

W i−1 ⊆W i and |W 0| = |F | ≤ |Q| <∞
It is also instructive to formulate this procss as a game by introducing a

value function:

J : Q× Z− → {0, 1} (5.3)

Consider the difference equation:

J(q, 0) =

{
1 q ∈ F
0 q ∈ F c

J(q, i− 1)− J(q, i) = min{0,maxu∈U mind∈D[minq′∈δ(q,(u,d)) J(q
′, i)− J(q, i)]}
(5.4)

We will refer to equation (5.24) as a discrete Hamilton-Jacobi equation.

Proposition 5.1 (Winning States for u) A fixed point J∗ : Q →
{0, 1} of (5.24) is reached in a finite number of iterations. The set of states
produced by the algorithm is W ∗ = {x ∈ X|J∗(x) = 1}.
Proof: We show more generally thatW i = {x ∈ X|J(x, i) = 1}. The proof
is by induction (see [110]).

This resembles a two person zero sum game between the control and the
disturbance. Consider what happens when a fixed point of (5.24) is reached.
Ignoring the outermost min for the time being leads to:

J∗(q) = max
u∈U

min
d∈D

min
q′∈δ(q,(u,d))

J∗(q′) (5.5)

Notice the similarity between this and (excuse the overloading of the
notation):

J∗(q0, x0) = max
g

min
d

(
min

χ=(τ,q,x,(u,d))∈Hg

J(χ)

)
(5.6)

The equations look very similar. The only difference is that instead of
having to worry about all feedback controllers, all disturbance trajectories
and all possible executions we reduce the problem to a pointwise argu-
ment. Clearly equation (5.5) is much simpler to work with that equation

5.1. Controller synthesis for discrete systems 95

(6.1). This is a standard trick in dynamic programming. Equation (5.5)
is a special case of what is known in dynamic programming as Bellman’s
equation, while the difference equation (5.24) is a form of value iteration
for computing a fixed point to Bellman’s equation.
What about the outer min? This is an inevitable consequence of turning

the sequence argument of equation (6.1) to a pointwise argument. It is
there to prevent states that have been labeled as unsafe at some point from
being relabeled as safe later on. If it were not there, then in the example of
Figure 5.1 state q10 would be labeled as safe after one step of the algorithm
(i.e. J(q10,−1) = 1). The extra min operation implements the intersection
with W i in the algorithm of the previous section, ensures the monotonicity
of W i with respect to i and guarantees termination.
The fixed point of equation (5.24) also provides a simple characterization

of a least restrictive controller that renders W ∗ invariant:

g(q) =

{ {
u ∈ U : mind∈D minq′∈δ(q,(u,d)) J

∗(q′) = 1
}

if q ∈W ∗

U if q ∈ (W ∗)c

Notice that g(q) 6= ∅ for all q by construction. Any u ∈ U needs to be
allowed outside W ∗ to make the controller least restrictive.
Summarizing:

Proposition 5.2 (Characterization of W ∗ and g) W ∗ is the maximal
controlled invariant subset of F and g is the unique, least restrictive
feedback controller that renders W ∗ invariant.

5.1.3 Discrete Hamilton-Jacobi Equation

Consider the finite automaton (3.1) with trajectory acceptance condition
Ω = 2F , for F ⊆ Q representing a safe set of states. We first describe the
iteration process for calculating the set of states from which the controller
can always keep the system inside F . We then show how this iteration
process can be written as the difference equation of a value function, which
we denote as the “discrete Hamilton-Jacobi equation”.

State Space Partition

We define the winning states W ∗ for the controller as the subset of F from
which the system (3.1) has a sequence of control actions σ1[·] which can
force the system to remain in F despite the actions of the environment
σ2[·]. The set W ∗ can be calculated as the fixed point of the following
iteration (where a negative index i ∈ Z− is used to indicate that each step
is a predecessor operation):

W 0 = F
W i−1 =W i ∩ {q ∈ Q | ∃σ1 ∈ Σ1 ∀σ2 ∈ Σ2 δ(q, σ1, σ2) ⊆W i} (5.7)

96 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

The iteration terminates when W i = W i−1 ∆
= W ∗. At each step of the

iteration, W i−1 ⊆W i, thus due to the assumption of the finiteness of |Q|,
the iteration terminates in a finite number of steps. The set W i contains
those states for which the controller has a sequence of actions σ1[i]σ1[i +
1] . . . σ1[0] which will ensure that the system remains in F for at least i
steps, for all possible actions σ2[·] ∈ Σ2.

The Value Function

Define the value function for this system as

J(q, i) : Q× Z− → {0, 1} (5.8)

such that

J(q, i) =

{
1 q ∈W i

0 q ∈ (W i)c
(5.9)

Therefore, W i = {q ∈ Q | J(q, i) = 1}. Since the controller tries to keep
the system inside F while the environment tries to force the system out of
F ,

max
σ1∈Σ1

min
σ2∈Σ2

min
q′∈δ(q,σ1,σ2)

J(q′, i) =

{
1 if ∃σ1 ∈ Σ1∀σ2 ∈ Σ2, δ(q, σ1, σ2) ⊆W i

0 otherwise
(5.10)

The “minq′∈δ(q,σ1,σ2)” in the above compensates for the nondeterminism
in δ; the order of operations maxσ1

minσ2
means that the controller plays

first, trying to maximize the minimum value of J(·). The environment has
the advantage in this case, since it has “prior” knowledge of the controller’s
action when making its own choice. Therefore, in general,

max
σ1∈Σ1

min
σ2∈Σ2

min
q′∈δ(q,σ1,σ2)

J(·) ≤ min
σ2∈Σ2

max
σ1∈Σ1

min
q′∈δ(q,σ1,σ2)

J(·) (5.11)

with equality occurring when the action (σ1, σ2) is a saddle solution, or a no
regret solution for each player. Here, we do not need to assume the existence
of a saddle solution, rather we always give advantage to the environment,
the player doing its worst to drive the system out of F , in order to ensure
a conservative solution.
The iteration process (5.7) may be summarized by the difference

equation:

J(q, i− 1)− J(q, i) = min{0, max
σ1∈Σ1

min
σ2∈Σ2

[min
q′∈δ(q,σ1,σ2)

J(q′, i)− J(q, i)]}
(5.12)

which describes the relationship between the change in J(·) due to one
step of the iteration and the change in J(·) due to one state transition.
We call equation (5.24) the “discrete Hamilton-Jacobi equation” for this
reason. The first “min” in the equation ensures that states outsideW i that
can be forced by the controller to transition into W i are prevented from

5.2. Controller Synthesis for Continuous State Systems using Optimal Control and Games 97

appearing in W i−1. This means that once a state has associated to it a
value of zero, the value stays at zero for all subsequent iterations: enforcing
the requirement that “once a state becomes unsafe, it remains unsafe”.

Proposition 5.3 (Winning States W ∗) A fixed point J∗(q) of (5.24)
is reached in a finite number of steps. The set of winning states for the
controller is W ∗ = {q ∈ Q | J∗(q) = 1}.
Proof: First note that, by induction on equation (5.24), once J(q, i) = 0

for some i, then J(q, j) = 0 for j < i. That the fixed point J∗(q) is reached
in a finite number of steps follows from this and the fact that |Q| is finite.
Suppose that the fixed point is reached at i = k. Let q be a winning

state. Thus the controller has a sequence of actions which ensures that the
system, starting at q, remains in F for at least k steps. Thus q ∈W k. Thus
q ∈ {q ∈ Q | J∗(q) = 1}. Therefore, W ∗ ⊆ {q ∈ Q | J∗(q) = 1}.
Now suppose that q ∈ {q ∈ Q | J∗(q) = 1}, and the environment has

a sequence of actions which drives the system out of F . Thus, for some
i ∈ {0,−1, . . . , k},

max
σ1∈Σ1

min
σ2∈Σ2

min
q′∈δ(q,σ1,σ2)

J(q′, i+ 1) = 0

which implies, from equation (5.24) that J(q, i) = 0. This in turn implies
that J(q, j) = 0 for j < i. Thus J∗(q) = 0, which is a contradiction.
Therefore, {q ∈ Q | J∗(q) = 1} ⊆W ∗.

A feedback controller for σ1 that renders W ∗ invariant can now be
constructed. For all q ∈ W ∗ the controller allows only the σ1 ∈ Σ1 for
which:

min
σ2∈Σ2

min
q′∈δ(q,σ1,σ2)

J∗(q′) = 1

Existence of such σ1 for all q ∈W ∗ is guaranteed by construction.

Proposition 5.4 (Characterization of W ∗) W ∗ is the largest controlled
invariant subset of F .

5.2 Controller Synthesis for Continuous State
Systems using Optimal Control and Games

Controller synthesis begins from using the theory of optimal control. This
is a large and involved topic in itself. We have attempted to give a short
summary of this in Appendix B and we will repeat some of the main results
to help the exposition of this chapter. We begin with optimal control, where
the formulation begins with minimizing

J(x, u) = φ(x(tf)) +

∫ tf

t0

L(x(t), u(t))dt (5.13)

98 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

subject to:

ẋ(t) = f(x(t), u(t)), x(t0) = x0 (5.14)

ψ(x(tf)) = 0 (5.15)

where L : Rn × R
m → R, φ : Rn → R, f : Rn × R

m → R
n Lipschitz

continuous in x and continuous in u and ψ : Rn → R. In Appendix B, we
review how how this problem can be related to the solution of a partial
differential equation, known as the Hamilton-Jacobi-Bellman equation, by
introducing the value function (or “cost to go” function), J∗ : Rn×R → R,
given by:

J∗(x, t) = min
u(·)

{
φ(x(tf)) +

∫ tf

t

L(x(τ), u(τ))dτ}

We argued that if a continuously differentiable solution to the Hamilton-
Jacobi-Bellman partial differential equation [111]:

∂J∗

∂t
(x, t) = −min

u∈U

{∂J∗

∂x
(x, t)f(x, u) + L(x, u)

}
(5.16)

with boundary condition J∗(x, 0) = φ(x) on ψ(x) = 0 can be found, then
the optimal controls are given by:

u∗(x, t) = arg min
u∈U

{∂J∗

∂x
f(x, u) + L(x, u)

}

Equation (B.19) can be written more compactly if we introduce the
Hamiltonian, J∗ : Rn × R

n × R
m → R:

H(x, p, u) = L(x, u) + pT f(x, u)

and define the optimal Hamiltonian as:

H∗(x, p) = min
u∈U

H(x, p, u)

Then equation (B.19) becomes:

∂J∗

∂t
= −H∗

(
x,
∂J∗

∂x
(x, t)

)

Notice that we have effectively turned the problem of optimizing a cost over
the space of curves (an infinite dimensional vector space), to optimizing a
cost pointwise over a finite dimensional vector space. Of course to achieve
this we are still required to solve a partial differential equation.

Remarks:

1. The solution is close to the solution obtained through the calculus of
variations. Simply replace the co-state p by ∂J∗

∂x (x, t).

2. On the positive side, dynamic programming (unlike the calculus of
variations) inherently leads to feedback solutions.

5.2. Controller Synthesis for Continuous State Systems using Optimal Control and Games 99

3. On the negative side, dynamic programming requires one to assume
differentiability of the value functions.

4. Differentiability is difficult to guarantee. Even if all the data is
“smooth”, the solution to the PDE may still develop “corners”
(known as shocks). The situation is exasperated by the fact that the
min operation is continuous but not smooth.

5. Optimal controls are often bang-bang. Consider the system:

ẋ = f(x) + g(x)u (affine in u)

L : R
n → R (independent of u)

u ∈ [U1, U2] (compact control set)

Then:

H

(
x,
∂J∗

∂x
(x, t), u

)
= L(x) +

∂J∗

∂x
(x, t)f(x) +

∂J∗

∂x
(x, t)g(x)u

therefore:

u∗(x, t) =





U1 if ∂J∗

∂x (x, t)g(x) > 0

[U1, U2] if ∂J∗

∂x (x, t)g(x) = 0

U2 if ∂J∗

∂x (x, t)g(x) < 0

Notice that u∗ switches between its extreme values whenever
∂J∗

∂x (x, t)g(x) changes sign. Therefore, even if J∗ is continuously
differentiable, H∗ is continuous, but not continuously differentiable.

6. If U is not compact, then the optimal controls may be undefined
pointwise (consider for example the previous situation with U =
(−∞,∞) or U = (U1, U2)).

7. The situation may be even worse if U is not convex. The optimal
controls may only be defined in the space of relaxed controls, which
are not piecewise continuous as a function of time [112].

8. Finally, both dynamic programming ad the calculus of variations
depend on local arguments (small perturbations about the optimal
solution). For certain systems these arguments may fail. For example,
there may be a curve connecting the initial point to a desired final
point, but no neighboring curves have this property. This leads to
abnormal extremals, which are not captured by the above arguments
and have to be studied separately.

5.2.1 The Theory of Games

Game theory is related to optimal control, with the difference that there are
two player (the control variables are divided into two classes) with possibly

100 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

conflicting objectives. The simplest case is the two player, zero sum game.
Consider again a curve:

(x, u, d) : R → R
n × R

mu × R
md

Assume that d is trying to minimize and u is trying to maximize the
function:

J(x, u, d) = φ(x(tf)) +

∫ tf

t0

L(x(t), u(t), d(t))dt

subject to:

ẋ(t) = f(x(t), u(t), d(t)), x(t0) = x0 (5.17)

ψ(x(tf)) = 0 (5.18)

Definition 5.5 A pair (u∗, d∗) is called a saddle equilibrium if for all
u, d:

J(x, u, d∗) ≤ J(x, u∗, d∗) ≤ J(x, u∗, d)

Dynamic programming arguments can also be used to characterize saddle
equilibria [113]. As before introduce a Hamiltonian:

H(x, p, u, d) = L(x, u, d) + pT f(x, u, d)

Proposition 5.6 If there exists a continuously differentiable function J∗ :
R

n × R → R such that:

∂J∗

∂t
(x, t) = −max

u∈U
min
d∈D

H

(
x,
∂J∗

∂x
(x, t), u, d

)

= −min
d∈D

max
u∈U

H

(
x,
∂J∗

∂x
(x, t), u, d

)

= H

(
x,
∂J∗

∂x
(x, t), u∗, d∗

)

then (u∗, d∗) is a saddle equilibrium.

The proof is similar to the one given in the optimal control case, and relies
on the fact that by freezing u to u∗ we turn the problem to an optimal
control problem for d (and vice versa).
Remarks:

1. The above partial differential equation is known as the Isaacs equa-
tion, and the minmax = maxmin requirement is known as the Isaacs
condition.

2. Saddle equilibria do not always exist.

3. A variational formulation is also possible.

4. The same remarks about convexity and compactness of the control
and disturbance sets apply.

5.2. Controller Synthesis for Continuous State Systems using Optimal Control and Games 101

5. The generalization of the saddle equilibrium concept to multi player
games is known as the Nash equilibrium. Assume there are N players,
each trying to minimize their own cost function:

Ji(x, u1, . . . , uN), i = 1, . . . , N

Definition 5.7 (u∗1, . . . , u
∗
N) is a non-cooperative Nash equilib-

rium if for all i and for all ui:

Ji(x, u
∗
1, . . . , ui, . . . u

∗
N) ≥ Ji(x, u

∗
1, . . . , u

∗
i , . . . u

∗
N)

The non-cooperative qualification needs to be introduced, since in this
setting it may be possible for “gangs” to form: players may be able to
improve their returns by collaborating with other players. Note that
the saddle equilibrium concept is implicitly non-cooperative, because
the game is zero sum.

The solution concept we have in mind for controller synthesis is not as
symmetric as the saddle equilibrium, since we give the benefit of the doubt
to the disturbance. The interpretation is that the control picks its strategy
and lets the disturbance know about it. The disturbance then does its best
to damage the controllers plans using this information. Consider a two
player game with cost functionals J1 and J2 that players 1 and 2 are trying
to minimize respectively. Assume that player 1 is the leader, i.e. decides on
a strategy and lets player 2 know before player 2 has to make a decision.
Given a strategy, g1, for player 1 define the rational responses of player 2
as the set of strategies:

R2(g1) = {g : J2(g1, g) ≤ J2(g1, g
′) for all g2}

Definition 5.8 g∗1 is a Stackelberg equilibrium strategy for the leader
if:

max
g∈R2(g∗

1)
J1(g

∗
1 , g) = min

g1
max

g∈R2(g1)
J1(g1, g)

In general, Stackelberg equilibrium strategies are difficult to compute in
feedback form, since the concept is prone to “side payments”, “incentives”
and “threats”. These are all techniques that can be employed by the leader
to make it more appealing for player 2 to adopt a certain strategy. For-
tunately, the games considered for controller synthesis will be zero sum
(J1 = −J2) which ensures means like that can not be employed and the
solution can be computed in feedback form using dynamic programming.

102 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

5.3 Reachability for nonlinear, continuous time
systems

Consider a continuous time control system,




ẋ = f(x, u)

x ∈ R
n

u ∈ U ⊆ R
m

f(·, ·) : Rn × U → R
n,

(5.19)

and an arbitrary time horizon, T ≥ 0. Let U[t,t′] denote the set of Lebesgue
measurable functions from the interval [t, t′] to U . To eliminate technical
difficulties we impose the following standing assumption.

Assumption 5.9 U ⊆ R
m is compact. f is bounded and Lipschitz

continuous.

Under Assumption 5.9 the control system
{
ẋ = f(x, u)

x(t) = x ∈ R
n

(5.20)

admits a unique solution x(·) : [t, T] → R
n for all t ∈ [0, T], x ∈ R

n and
u(·) ∈ U[t,T]. For τ ∈ [t, T] we will use

φ(τ, t, x, u(·)) = x(τ)

to denote this solution. Let Cf > 0 be a bound such that for all x, x̂ ∈ R
n

and for all u ∈ U ,

|f(x, u)| ≤ Cf and |f(x, u)− f(x̂, u)| ≤ Cf |x− x̂|.
Clearly, under Assumption 5.9 such bounds exist.
Given the control system of equation (A.2), the horizon T ≥ 0 and a

set of states K ⊆ R
n, a number of questions can be naturally formulated

regarding the relation between the set K and the state trajectories of (A.2)
over the horizon T . Problems of interest include the following.

Viability Does there exist a choice of u(·) ∈ U[0,T] for which the trajectory
x(·) satisfies x(t) ∈ K for all t ∈ [0, T]? Clearly this is impossible if
initially x(0) ∈ Kc. It may also be impossible, however, for some
initial states x(0) ∈ K.

Invariance Do the trajectories x(·) for all u(·) ∈ U[0,T] satisfy x(t) ∈ K
for all t ∈ [0, T]? Once again, this is impossible if initially x(0) ∈ Kc,
but may also be impossible for some initial states x(0) ∈ K.

Reachability Does there exist a u(·) ∈ U[0,T] and a t ∈ [0, T] such that the
trajectory satisfies x(t) ∈ K? This is trivially possible if x(0) ∈ K. It
may also be possible, however, for some x(0) ∈ Kc.

5.3. Reachability for nonlinear, continuous time systems 103

As usual, Kc stands for the complement of the set K in R
n. One would

typically like to characterize the set of initial states for which the answer to
the viability/invariance/reachability questions is “yes”. Or, more generally,
one would like to characterize the sets

Viab(t,K) = {x ∈ R
n | ∃u(·) ∈ U[t,T] ∀τ ∈ [t, T] φ(τ, t, x, u(·)) ∈ K}

Inv(t,K) = {x ∈ R
n | ∀u(·) ∈ U[t,T] ∀τ ∈ [t, T] φ(τ, t, x, u(·)) ∈ K}

Reach(t,K) = {x ∈ R
n | ∃u(·) ∈ U[t,T] ∃τ ∈ [t, T] φ(τ, t, x, u(·)) ∈ K},

Exercise 5.1 Show that Reach(t,K) = (Inv(t,Kc))
c
. Therefore, the in-

variance and reachability problems are duals of one another and need not
be treated separately.

5.3.1 Reachability through the Optimal Control Perspective

Our treatment follows [110] and [36].
Recall that continuous systems are a special class of hybrid systems with:

• Q = {q}, Q = {q0} (trivial discrete state);

• X = {x}, X = R
n;

• V = {u, d}, U ⊆ R
mu and D ⊆ R

md (no discrete inputs);

• Init ⊆ {q0} × X (drop the trivial dependence on the discrete state
from now on);

• f : X×U×D → R
n;

• I(q) = X;

• E = ∅ (no discrete dynamics);

• φ(q0, x) = V (no state dependent input constraints).

Dropping the trivial discrete dynamics, the system can be more compactly
characterized by an ordinary differential equation:

ẋ(t) = f(x(t), u(t), d(t))
x(0) = x0
u(t) ∈ U
d(t) ∈ D

(5.21)

To prevent technical problems, we introduce the following assumption:

Assumption 5.10 f is Lipschitz continuous in x and continuous in u
and d. u and d are piecewise continuous as functions of time. U and D are
convex and compact subsets of Rmu and R

md respectively.

We use UI to denote the set of piecewise continuous functions from an in
interval I ⊆ R to U and U for the union of UI over all I (and similarly for
D). The assumptions on f , u and d are needed to ensure that the system is

104 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

well posed. Under this assumption the system is (in a sense) deterministic
and non-blocking, since, by a standard existence and uniqueness argument
for ordinary differential equations, for every x0 ∈ R

n, T ≥ 0, u ∈ U[0,T]

and d ∈ D[0,T], there exists a continuous, piecewise differentiable function
x : [0, T] → X with x(0) = x0 and ẋ(t) = f(x(t), u(t), d(t)) for all t where
(u, d) is continuous (“almost everywhere”). For this reason we will use:

χ = (x0, u, d)

to denote the unique execution starting at x0 ∈ R
n under control u ∈ U

and disturbance d ∈ D.
In addition, the piecewise continuity assumption prevents the controller

from “cheating” by forcing the execution to be Zeno. Strictly speaking, the
execution of the system will have to be defined over a sequence of intervals,
where u and d are continuous over each interval. Piecewise continuity of
u and d implies that there exists an execution such that every compact
interval of time overlaps with a finite number of such intervals, or, in other
words, there can not be an infinite number of “transitions” (in this case
discontinuities in u and d) in a finite amount of time.

The assumptions on U and D will be needed to prevent technical prob-
lems when posing the optimal control and gaming problems. Consider a
set of states F ⊆ Q. Try to establish the maximal control invariant subset
of F , i.e. the largest set of initial states for which there exists a controller
that manages to keep all executions inside F . Somewhat informally this set
can be characterized as:

W ∗ = {x0 ∈ R
n : ∃u ∈ U ∀d ∈ D, 2F (x0, u, d) = True}

The only additional caveat is that u is implemented by a memoryless
controller. To eliminate technical complications we assume that:

Assumption 5.11 There exists a continuously differentiable function l :
R

n → R such that:

l(x) > 0 if x ∈ F o

l(x) = 0 if x ∈ ∂F
l(x) < 0 if x ∈ F c

l(x) = 0 ⇒ ∂l
∂x (x) 6= 0

The assumption implies that F is a closed set with non-empty interior,
whose boundary is a n− 1 dimensional manifold.

Dynamic Programming Solution

To apply the optimal control tools introduced in the previous section let
tf = 0, consider an arbitrary t ≤ 0 and introduce the value function:

Ĵ(x, t) = max
u∈U[t,0]

min
d∈D[t,0]

l(x(0))

5.3. Reachability for nonlinear, continuous time systems 105

Notice that this optimal control problem involves no Lagrangian (L ≡ 0),
just a terminal cost. The game obtained in this setting falls in the class
of two person zero sum games studied above. The (u, d) obtained by the
above optimal control problem is also a Stackelberg equilibrium for the
game between control and disturbance, with the control playing the role of
the leader. Recall that in general the computation of Stackelberg equilibria
in feedback form may be complicated by the possibility of “incentives”
and “threats”, employed by the leader to coerce the other player into a
beneficial course of action. In this case the situation is simplified by the
fact that the game is zero sum (any gain achieved by u is equal to a loss
suffered by d), so the possibility of incentives and threats is eliminated.
Ĵ can be computed using the dynamic programming tools discussed in

Appendix B. Introduce a Hamiltonian:

H : Rn × R
n × R

mu × R
md −→ R

(x, p, u, d) 7−→ pT f(x, u, d)

Consider the optimal Hamiltonian:

H∗(x, p) = max
u∈U

min
d∈D

H(x, p, u, d)

Notice again that the minimization over u and d is pointwise, as opposed to
over functions of time. Then, if Ĵ is continuously differentiable it satisfies:

∂Ĵ
∂t (x, t) = −H∗

(
x, ∂Ĵ∂x (x, t)

)

Ĵ(x, 0) = l(x)
(5.22)

Notice that the evolution of the partial differential equation is “backwards”
in time.
Consider the set:

Ŵt = {x0 ∈ X : Ĵ(x0, t) ≥ 0}

This is the set of all states for which starting at x(t) = x0, there exists a
controller for u such that for all disturbance trajectories d ∈ D[t,0], l(x(0)) ≥
0 or, in other words, x(0) ∈ F . This is not quite what we need yet. We
would like the set of all states for which there exists a u such that for all
d and for all t′ ∈ [t, 0], x(t′) ∈ F . This excludes points in Ŵt which leave
F at some point in [t, 0] but re-enter it before time 0. This requirement
can be encoded either after the computation of Ĵ , or by modifying the
Hamilton-Jacobi equation:

∂J
∂t (x, t) = −H∗

(
x, ∂J∂x (x, t)

)

J(x, 0) = l(x)
(5.23)

106 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

Compare this with the discrete Hamilton-Jacobi equation:

J(q, 0) =

{
1 q ∈ F
0 q ∈ F c

J(q, i− 1)− J(q, i) = min{0,maxu∈U mind∈D[minq′∈δ(q,(u,d)) J(q
′, i)− J(q, i)]}
(5.24)

δ(q, (u, d)) essentially implements the spatial partial derivative of J along
the dynamics of the system. The innermost minimization is not needed in
the continuous case, as the continuous system is “deterministic”. As before,
we seek a stationary solution to this equation. Assume that as t → −∞,
J(x, t) converges to a continuously differentiable function J∗ : X → R.

Proposition 5.12 The set W ∗ = {x ∈ X : J∗(x) ≥ 0} is the largest
controlled invariant set contained in F .

The solution to the partial differential equation also leads to a least
restrictive controller that renders W ∗ invariant. Consider:

g(x) =





{
u ∈ U : mind∈D

(
∂J∗(x)

∂x

)T

f(x, u, d) ≥ 0

}
if x ∈ ∂W ∗

U if x ∈ (W ∗)◦ ∪ (W ∗)c

(5.25)

Proposition 5.13 g is the unique, least restrictive memoryless controller
that renders W ∗ invariant.

Notice that no constraint is imposed on u in the interior of W ∗ (we can
delay action until we reach the boundary) and outside W ∗ (its too late to
do anything about it, so might as well give up!).

Geometric interpretation

For an arbitrary time t ≤ 0 define:

Wt = {x ∈ X : J(x, t) ≥ 0}
Consider and x ∈ ∂Wt and assume that:

H∗

(
x,
∂J

∂x
(x, t)

)
< 0

⇔ max
u∈U

min
d∈D

H

(
x,
∂J

∂x
(x, t), u, d

)
< 0

⇔ max
u∈U

min
d∈D

∂J

∂x
(x, t)f(x, u, d) < 0

⇔ ∀u ∈ U ∃d ∈ D such that
∂J

∂x
(x, t)f(x, u, d) < 0

But ∂J
∂x (x, t) is the normal to the boundary of Wt at x, pointing inside Wt.

Moreover, ∂J
∂x (x, t)f(x, u, d) is the inner product between this normal and

5.3. Reachability for nonlinear, continuous time systems 107

the vector f(x, u, d). Let θ be the angle between ∂J
∂x (x, t) and f(x, u, d).

Then:

∂J

∂x
(x, t)f(x, u, d) > 0 if θ < π/2

∂J

∂x
(x, t)f(x, u, d) = 0 if θ = π/2

∂J

∂x
(x, t)f(x, u, d) < 0 if θ > π/2

Therefore, the above statement is equivalent to:

for all u ∈ U there exists d ∈ D such that the normal to
∂Wt at x pointing towards the interior of Wt makes an angle
greater than π/2 with f(x, u, d),

or, equivalently:

for all u ∈ U there exists d ∈ D such that f(x, u, d) points
outside Wt.

These are points where whatever u does d can force them to leave the set
Wt instantaneously. Notice that the order of the quantifiers in the above
expression implies that d may depend on u, in addition to x and t. The
part of the boundary of Wt where H∗ < 0 is known as the “usable part”
in the pursuit-evasion game literature.
Returning back to the Hamilton Jacobi equation, we see that for these

points:

∂J

∂t
(x, t) = −min

{
0, H∗

(
x,
∂J

∂x
(x, t)

)}

= −H∗

(
x,
∂J

∂x
(x, t)

)

> 0

Therefore, as t decreases, J also decreases. For these points on the boundary
of Wt, J becomes negative instantaneously, and they “fall out of” Wt.
What if H∗ ≥ 0? A similar argument shows that in this case:

there exists u ∈ U such that for all d ∈ D the normal to
∂Wt at x pointing towards the interior of Wt makes an angle
at most π/2 with f(x, u, d),

or, equivalently:

there exists u ∈ U such that for all d ∈ D, f(x, u, d) either
points inside Wt or is tangent to ∂Wt.

These are points for which there exists a choice or u that for all d forces
the state to remain in Wt. Notice that the order of the quantifiers implies

108 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

that u may only depend x and t, and not d. For these points:

∂J

∂t
(x, t) = −min

{
0, H∗

(
x,
∂J

∂x
(x, t)

)}

= 0

Therefore, as t decreases, J remains constant. These are points that want
to move towards the interior of Wt. The role of the outermost minimum is
to ensure that the value of J does not increase for these points, so that Wt

does not grow. This is to prevent states that have been labeled as unsafe
(can reach F c) from being relabeled as safe later on.

Reachability through the Viability Perspective

In this section, we will develop a method that takes advantage of optimal
control tools to characterize the reachable, viable and invariant sets at
level sets of value functions. For this purpose we introduce a function l(·) :
R

n → R and define two optimal control problems with value functions
V1 : Rn × [0, T] → R and V2 : Rn × [0, T] → R given by

V1(x, t) = sup
u(·)∈U[t,T]

min
τ∈[t,T]

l(φ(τ, t, x, u(·))) (5.26)

V2(x, t) = inf
u(·)∈U[t,T]

min
τ∈[t,T]

l(φ(τ, t, x, u(·))). (5.27)

In the first problem the objective of the input u is to maximize the minimum
value attained by the function l along the state trajectory over the horizon
[t, T]. In the second problem the objective of u is to minimize this minimum.
Notice that the minimum with respect to time is well defined. For obvious
reasons we will subsequently refer to the first optimal control problem as the
SupMin problem and to the second problem as the InfMin problem. To
prevent technical difficulties we introduce a further standing assumption.

Assumption 5.14 l is bounded and Lipschitz continuous.

Under this assumption, let Cl > 0 be a bound such that for all x, x̂ ∈ R
n

|l(x)| ≤ Cl and |l(x)− l(x̂)| ≤ Cl|x− x̂|.
We first establish a connection between viability and the SupMin opti-

mal control problem. Assume that the set K is closed and is related to the
zero level set of the function l : Rn → R by

K = {x ∈ R
n | l(x) ≥ 0}.

A natural choice for the function l is the signed distance to the set K given
by

l(x) =

{
−d(x,K) if x ∈ Kc

d(x,Kc) if x ∈ K,
(5.28)

5.3. Reachability for nonlinear, continuous time systems 109

where d(x,K) stands for the usual distance to the set K

d(x,K) = inf
x̂∈K

|x− x̂|.

To ensure that l satisfies Assumption 5.14 one can impose a saturation to
the distance function at some value Cl.

Exercise 5.2 Assume K = [−1, 1] ⊆ R. Plot the function l(x) of equa-
tion 5.28. Plot also the function l(x) saturated at Cl = 0.5. Is the function
l(x) Lipschitz continuous? What is the Lipschitz constant?

The following propositions establish a link between the sets Viab and Inv
and the level sets of the value functions V1 and V2 respectively.

Proposition 5.15 Viab(t,K) = {x ∈ R
n | V1(x, t) ≥ 0}.

Proof: Consider x ∈ Viab(t,K). By definition there exists a u(·) ∈ U[t,T]

such that φ(τ, t, x, u(·)) ∈ K for all τ ∈ [t, T]. Note that

V1(x, t) ≥ min
τ∈[t,T]

l(φ(τ, t, x, u(·))) ≥ 0

therefore ViabF (t,K) ⊆ {x ∈ R
n | V1(x, t) ≥ 0}.

Conversely, assume that V1(x, t) ≥ 0 and consider a sequence ǫn ≥ 0
converging to zero. Then there exist un(·) ∈ U[t,T] such that

min
τ∈[t,T]

l(φ(τ, t, x, un(·))) ≥ −ǫn.

Because the set of solution starting in a compact set is compact ([114],
Theorem 3.5.2) there exists a subsequence (denoted again by un(·) for con-
venience) that converges to a solution φ(τ, t, x, u(·)) uniformly on compact
intervals. We claim that φ(τ, t, x, u(·)) ∈ K for all τ ∈ [t, T]. Assume,
for the sake of contradiction, that there exists some t̂ ≥ [t, T] such that
φ(t̂, t, x, u(·)) 6∈ K, i.e. l(φ(t̂, t, x, u(·))) < 0. Since l(·) is Lipschitz and the
convergence is uniform over the compact interval [t, T], there exists an N
such that

l(φ(t̂, t, x, un(·))) ≤ l(φ(t̂, t, x, u(·)))/2 < 0

for all n ≥ N . Therefore

0 > l(φ(t̂, t, x, u(·)))/2 ≥ min
τ∈[t,T]

l(φ(t̂, t, x, un(·))) ≥ −ǫn for all n ≥ N

which is a contradiction since the ǫn converge to zero.

Exercise 5.3 Show that if K is an open set and K = {x ∈ R
n | l(x) > 0},

then Viab(t,K) = {x ∈ R
n | V1(x, t) > 0}.

Proposition 5.16 Inv(t,K) = {x ∈ R
n | V2(x, t) ≥ 0}.

Proof: By definition, V2(x, t) ≥ 0 is equivalent to

inf
u(·)∈U[t,T]

min
τ∈[t,T]

l(φ(τ, t, x, u(·))) ≥ 0,

110 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

or, in other words, for all u(·) ∈ U[t,T], minτ∈[t,T] l(φ(τ, t, x, u(·))) ≥ 0. The
last statement is in turn equivalent to “for all u(·) ∈ U[t,T] and for all
τ ∈ [t, T], l(φ(τ, t, x, u(·))) ≥ 0”, i.e. φ(τ, t, x, u(·)) ∈ K.

Exercise 5.4 Show that if K is an open set and K = {x ∈ R
n | l(x) > 0},

then Inv(t,K) = {x ∈ R
n | V2(x, t) > 0}. This requires some work, along

the lines of the proof of Proposition 5.15.

Propositions 5.15 and 5.16 suggest that any method to characterize and
compute the value functions V1 and V2 automatically provides a method
for solving reachability problems for continuous systems. In the optimal
control literature the standard way for characterizing value functions is as
solutions to appropriate partial differential equations. Tools for numerically
solving partial differential equations can then be used to compute solutions
to the optimal control problems. Here we provide such a characterization
of the value functions V1 and V2. More specifically, we show that V1 is a
viscosity solutions of the terminal value problem

∂V1
∂t

(x, t) + min

{
0, sup

u∈U

∂V1
∂x

(x, t)f(x, u)

}
= 0 (5.29)

with V1(x, T) = l(x) over (x, t) ∈ R
n × [0, T]. Likewise, V2 is a viscosity

solution to the terminal value problem

∂V2
∂t

(x, t) + min

{
0, inf

u∈U

∂V2
∂x

(x, t)f(x, u)

}
= 0 (5.30)

with V2(x, T) = l(x) over (x, t) ∈ R
n × [0, T].

Our treatment uses the standard definition of viscosity solution [115].
For example, we say that V1 is a viscosity solution of (5.29) if and only if
it satisfies the following three conditions:

1. V1(x, T) = l(x).

2. For all (x0, t0) ∈ R
n × [0, T) and for all smooth W : Rn × [0, T) → R,

if V1 −W attains a local maximum at (x0, t0), then

∂W

∂t
(x0, t0) + min

{
0, sup

u∈U

∂W

∂x
(x0, t0)f(x0, u)

}
≥ 0.

3. For all (x0, t0) ∈ R
n × [0, T) and for all smooth W : Rn × [0, T) → R,

if V1 −W attains a local minimum at (x0, t0), then

∂W

∂t
(x0, t0) + min

{
0, sup

u∈U

∂W

∂x
(x0, t0)f(x0, u)

}
≤ 0.

Recall that a viscosity solution is not necessarily a differentiable func-
tion. However, it can be shown that wherever the viscosity solution is
differentiable it satisfies the partial differential equation in the classical
sense [115].

5.3. Reachability for nonlinear, continuous time systems 111

5.3.2 Example

The following trivial example illustrates some of the points raised above.
Consider the one dimensional system





ẋ = u

x ∈ R

u ∈ U = [1, 2].

For this system we will study the viability and invariance of the set

K = (−∞,−1] ∪ [1,∞)

Let

l(x) = x2 − 1

and notice that K = {x ∈ R | l(x) ≥ 0}. We gloss over the technical point
that l fails to satisfy Assumption 5.14; one can introduce a saturation on
l(x) to resolve this problem, but this would unnecessarily complicate the
solution.
Given a horizon T ≥ 0 it is easy to see that for all t ∈ [0, T]

Viab(t,K) = (−∞,−1− (T − t)] ∪ [1,∞)

Inv(t,K) = (−∞,−1− 2(T − t)] ∪ [1,∞).

Obviously, since whatever u does x is forced to increase, any initial condi-
tion x < 1 will sooner of later have to leave K. Therefore, one expects that
any x < 1, will sooner or later find itself outside Viab(t,K) and Inv(t,K),
provided the horizon T is sufficiently large.
We start with viability and check what equation (5.29) predicts for this

system. Consider the candidate value function

V1(x, t) =





x2 − 1 x > 0
−1 −(T − t) ≤ x ≤ 0
(x+ T − t)2 − 1 x < −(T − t).

Exercise 5.5 Show that V1 is a classical solution to the terminal value
problem (5.29) over R× [0, T].

A plot of V1 and its sub-zero level set are shown in Figure 5.2. The solution
seems to agree with our intuition: sooner or later all states to the left of
x = 1 are doomed to end up in {x ∈ R

n | V1(x, t) < 0} and therefore leave
K.
We now turn our attention to invariance, and show how the set Inv(t,K)

can be characterized using the solution of appropriate partial differential
equations for this example. Consider the candidate value function

V2(x, t) =





x2 − 1 x > 0
−1 −2(T − t) ≤ x ≤ 0
(x+ 2(T − t))2 − 1 x < −2(T − t)

(5.31)

112 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

−10
−8

−6
−4

−2
0

2

0

2

4

6

8

10
−20

0

20

40

60

80

100

V
1
(x

,t
)

xt −10 −8 −6 −4 −2 0 2
0

1

2

3

4

5

6

7

8

9

10

x

t

Figure 5.2. The value function V1(x, t) for T = 10. The dark region in the right
plot is the level set {(x, t) ∈ R× [0, T] | V1(x, t) > 0}.

−10
−8

−6
−4

−2
0

2

0

2

4

6

8

10
−20

0

20

40

60

80

100

V
2
(x

,t
)

xt −10 −8 −6 −4 −2 0 2
0

1

2

3

4

5

6

7

8

9

10

x

t

Figure 5.3. The value function V2(x, t) for T = 10. The dark region in the right
plot is the level set {(x, t) ∈ R× [0, T] | V2(x, t) ≥ 0}.

Exercise 5.6 Show that V2 is a classical solution to the terminal value
problem (5.30) over R× [0, T].

A plot of V2 and its zero level set are shown in Figure 5.3. Once again, the
solution agrees with our intuition for the set Inv(t,K). In Section 5.3.4 we
show that this relation is true in general.

5.3.3 Solution to the SupMin Problem

We start by showing that V satisfies an appropriate version of the
optimality principle.

Theorem 5.17 (SupMin Optimality Conditions) For all (x, t) ∈ R
n×

[0, T] and all h ∈ [0, T − t], V1(x, t) ≤ V1(x, t + h) and V1(x, T) = l(x).
Moreover,

V1(x, t) = sup
u(·)∈U[t,t+h]

[
min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u(·))), V1(φ(t+ h, t, x, u(·)), t+ h)

}]
.

5.3. Reachability for nonlinear, continuous time systems 113

Proof: The fact that V1(x, T) = l(x) is immediate from the definition of
V1. Moreover,

V1(x, t) = sup
u(·)∈U[t,T]

min
τ∈[t,T]

l(φ(τ, t, x, u(·))), and

V1(x, t+ h) = sup
u(·)∈U[t+h,T]

min
τ∈[t+h,T]

l(φ(τ, t+ h, x, u(·))).

Assume, for the sake of contradiction, that V1(x, t) > V1(x, t + h). Then
there exists u1(·) ∈ U[t,T] such that for all u2(·) ∈ U[t+h,T],

min
τ∈[t,T]

l(φ(τ, t, x, u1(·))) > min
τ∈[t+h,T]

l(φ(τ, t+ h, x, u2(·))). (5.32)

Choose u2(·) ∈ U[t+h,T] according to u2(τ) = u1(τ − h) for τ ∈ [t + h, T].
By uniqueness, φ(τ, t+h, x, u2(·)) = φ(τ−h, t, x, u1(·)) for all τ ∈ [t+h, T].
Therefore, by (5.32),

min
τ∈[t,T]

l(φ(τ, t, x, u1(·))) > min
τ∈[t+h,T]

l(φ(τ, t+ h, x, u2(·)))

= min
τ∈[t+h,T]

l(φ(τ − h, t, x, u1(·)))

= min
τ∈[t,T−h]

l(φ(τ, t, x, u1(·))),

which is a contradiction. Therefore, V1(x, t) ≤ V1(x, t+ h).
For the second part, we show that for all ǫ > 0,

V1(x, t) ≥ sup
u(·)∈U[t,t+h]

[
min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u(·))),

V1(φ(t+ h, t, x, u(·)), t+ h)}]− ǫ

V1(x, t) ≤ sup
u(·)∈U[t,t+h]

[
min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u(·))),

V1(φ(t+ h, t, x, u(·)), t+ h)}] + ǫ.

Since ǫ > 0 is arbitrary, if these two claims hold then

V1(x, t) = sup
u(·)∈U[t,t+h]

[
min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u(·))), V1(φ(t+ h, t, x, u(·)), t+ h)

}]
.

Case 1: Consider an arbitrary u1(·) ∈ U[t,t+h]. Fix ǫ > 0 and choose
u2(·) ∈ U[t+h,T] such that

V1(φ(t+h, t, x, u1(·)), t+h) ≤ min
τ∈[t+h,T]

l(φ(τ, t+h, φ(t+h, t, x, u1(·)), u2(·))+ǫ.

Define u(·) ∈ U[t,T] by

u(t) =

{
u1(t) if t ∈ [t, t+ h)
u2(t) if t ∈ [t+ h, T].

114 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

By uniqueness,

φ(τ, t, x, u(·)) =
{
φ(τ, t, x, u1(·)) if τ ∈ [t, t+ h)
φ(τ, t+ h, φ(t+ h, t, x, u1(·)), u2(·)) if τ ∈ [t+ h, T].

By definition of the value function

V1(x, t) ≥ min
τ∈[t,T]

l(φ(τ, t, x, u(·)))

=min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u(·))), min

τ∈[t+h,T]
l(φ(τ, t, x, u(·)))

}

=min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u1(·))),

min
τ∈[t+h,T]

l(φ(τ, t+ h, φ(t+ h, t, x, u1(·)), u2(·)))
}

≥min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u1(·))),

V1(φ(t+ h, t, x, u1(·)), t+ h)− ǫ}

≥ min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u1(·))), V1(φ(t+ h, t, x, u1(·)), t+ h)

}
− ǫ.

But u1(·) is arbitrary, therefore,

V1(x, t) ≥ sup
u(·)∈U[t,t+h]

[
min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u(·))), V1(φ(t+ h, t, x, u(·)), t+ h)

}]
−ǫ.

Case 2: Fix ǫ > 0 and select u(·) ∈ U[t,T] such that

V1(x, t) ≤ min
τ∈[t,T]

l(φ(τ, t, x, u(·))) + ǫ.

By definition

V1(φ(t+ h, t, x, u(·)), t+ h) ≥ min
τ∈[t+h,T]

l(φ(τ, t, x, u(·))).

Therefore,

V1(x, t) ≤ min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u(·))), min

τ∈[t+h,T]
l(φ(τ, t, x, u(·)))

}
+ ǫ

≤ min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u(·))), V1(φ(t+ h, t, x, u(·)), t+ h)

}
+ ǫ

≤ sup
u(·)∈U[t,t+h]

[
min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u(·))), V1(φ(t+ h, t, x, u(·)), t+ h)

}]
+ ǫ.

Theorem 5.17 makes two assertions. The first is that the “value” of a given
state x can only decrease as the “time to go” increases. Starting from x the
minimum value that l experiences over a certain time horizon is less than

5.3. Reachability for nonlinear, continuous time systems 115

or equal to the minimum value that l would experience if we stopped the
evolution at any time before the horizon expires. It is this property that
forces the level sets of V1 to change monotonically as t decreases (see, for
example, Figure 5.2). It is also the reason why the extra min was introduced
in the standard Hamilton-Jacobi-Bellman equation to produce the terminal
value problem (5.29). In particular, the two statements of the first part
together imply that for all (x, t) ∈ R

n × [0, T]

V1(x, t) ≤ l(x). (5.33)

The second part of the theorem is a variant of the standard principle of
optimality: it relates the optimal cost to go from (x, t) to the optimal cost
to go from (x(t + h), t + h) and the minimum value experienced by l over
the interval [t, t+ h].
Next, we show that under Assumption 5.14 the value function V1 is

“nice”.

Lemma 5.18 There exists a constant C > 0 such that |V1(x, t)| ≤ C and
|V1(x, t)− V1(x̂, t̂)| ≤ C(|x− x̂|+ (t− t̂)), for all (x, t), (x̂, t̂) ∈ R

n × [0, T].

Proof: V1 is bounded since l is bounded.
Fix x, x̂ ∈ R

n and t ∈ [0, T]. Consider ǫ > 0 and choose û(·) ∈ U[t,T] such
that

V1(x̂, t) ≤ min
τ∈[t,T]

l(φ(τ, t, x̂, û(·))) + ǫ.

By definition,

V1(x, t) ≥ min
τ∈[t,T]

l(φ(τ, t, x, û(·))).

Therefore,

V1(x̂, t)− V1(x, t) ≤ min
τ∈[t,T]

l(φ(τ, t, x̂, û(·)))− min
τ∈[t,T]

l(φ(τ, t, x, û(·))) + ǫ.

For all τ ∈ [t, T]

|φ(τ, t,x, û(·))− φ(τ, t, x̂, û(·))|

=

∣∣∣∣(x− x̂) +

∫ τ

t

[f(φ(s, t, x, û(·)), û(s))− f(φ(s, t, x̂, û(·)), û(s)] ds
∣∣∣∣

≤|x− x̂|+
∫ τ

t

|f(φ(s, t, x, û(·)), û(s))− f(φ(s, t, x̂, û(·)), û(s)| ds

≤|x− x̂|+ Cf

∫ τ

t

|φ(s, t, x, û(·))− φ(s, t, x̂, û(·))|ds.

By the Gronwall-Bellman Lemma (see, for example, [7]) there exists a con-
stant Cx > 0 such that |φ(τ, t, x, û(·)) − φ(τ, t, x̂, û(·))| ≤ Cx|x − x̂| for all
τ ∈ [t, T].

116 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

Let τ0 ∈ [t, T] be such that

l(φ(τ0, t, x, û(·))) = min
τ∈[t,T]

l(φ(τ, t, x, û(·))).

Then,

V1(x̂, t)− V1(x, t) ≤ l(φ(τ0, t, x̂, û(·)))− l(φ(τ0, t, x, û(·))) + ǫ

≤ Cl|φ(τ0, t, x̂, û(·)))− φ(τ0, t, x, û(·))|+ ǫ

≤ ClCx|x− x̂|+ ǫ.

The same argument with the roles of x and x̂ reversed establishes that

V1(x, t)− V1(x̂, t) ≤ ClCx|x− x̂|+ ǫ.

Since the argument holds for all ǫ > 0, there exists C > 0 such that

|V1(x, t)− V1(x̂, t)| ≤ C|x− x̂|.
Finally, consider x ∈ R

n and t, t̂ ∈ [0, T]. Without loss of generality
assume t < t̂. By Theorem 5.17

V1(x, t)− V1(x, t̂) ≤ 0.

To establish a lower bound on V1(x, t) − V1(x, t̂), let ǫ > 0 and choose
û(·) ∈ U[t̂,T] such that

V1(x, t̂) ≤ min
τ∈[t̂,T]

l(φ(τ, t̂, x, û(·))) + ǫ,

Define u(·) ∈ U[t,T] by

u(τ) =

{
û(τ + t̂− t) if τ ∈ [t, T − (t̂− t))

û(T) if τ ∈ [T − (t̂− t), T]

By uniqueness, φ(τ, t, x, u(·)) = φ(τ+t̂−t, t̂, x, û(·)) for all τ ∈ [t, T−(t̂−t)].
By definition,

V1(x, t) ≥ min
τ∈[t,T]

l(φ(τ, t, x, u(·))).

Therefore,

V1(x, t̂)− V1(x, t) ≤ min
τ∈[t̂,T]

l(φ(τ, t̂, x, û(·)))− min
τ∈[t,T]

l(φ(τ, t, x, u(·))) + ǫ.

Let τ0 ∈ [t, T] be such that

l(φ(τ0, t, x, u(·))) = min
τ∈[t,T]

l(φ(τ, t, x, u(·))).

If τ0 ∈ [t, T − (t̂− t)], then l(φ(τ0, t, x, u(·))) = l(φ(τ0 + t̂− t, t̂, x, û(·))) and
therefore

V1(x, t̂)− V (x, t) ≤ ǫ.

5.3. Reachability for nonlinear, continuous time systems 117

If τ0 ∈ [T − (t̂− t), T] then

V1(x, t̂)− V1(x, t) ≤ l(φ(T, t̂, x, û(·)))− l(φ(τ0, t, x, u(·))) + ǫ

= l(φ(T − (t̂− t), t, x, u(·)))− l(φ(τ0, t, x, u(·))) + ǫ

≤ Cl|φ(T − (t̂− t), t, x, u(·))− φ(τ0, t, x, u(·))|+ ǫ

≤ ClCf |τ0 − (T − (t̂− t))|+ ǫ

≤ ClCf |t̂− t|+ ǫ.

The desired bound follows since this inequality holds for all ǫ > 0.

Next, introduce the Hamiltonian H1 : Rn × R
n → R defined by

H1(p, x) = min

{
0, sup

u∈U
pT f(x, u)

}
. (5.34)

The following fact, together with the boundedness and continuity of V1
established in Lemma 5.18, will be used to establish that the viscosity
solution to (5.29) is unique.

Lemma 5.19 There exists a constant C > 0 such that |H1(p, x) −
H1(q, x)| < C|p−q| and |H1(p, x)−H1(p, y)| < C|p||x−y|, for all p, q ∈ R

n

and all x, y ∈ R
n.

Proof: Notice that

|H1(p, x)−H1(q, x)| =
∣∣∣∣min

{
0, sup

u∈U
pT f(x, u)

}
−min

{
0, sup

u∈U
qT f(x, u)

}∣∣∣∣ .

Therefore, to show the first statement of the lemma it suffices to show that
∣∣∣∣sup
u∈U

pT f(x, u)− sup
u∈U

qT f(x, u)

∣∣∣∣ < |p− q|,

i.e. study the case where supu∈U p
T f(x, u) < 0 and supu∈U q

T f(x, u) < 0.
A similar comment extends to the second statement of the lemma.

From this point on the proof is the same as for the standard Hamilton-
Jacobi equation for optimal control.

sup
u∈U

pT f(x, u)− sup
u∈U

qT f(x, u) = sup
u∈U

(p− q)T f(x, u)

≤ |p− q|Cf .

A similar argument with the roles of p and q reversed establishes the first
part. Similarly,

sup
u∈U

pT f(x, u)− sup
u∈U

pT f(y, u) ≤ sup
u∈U

pT (f(x, u)− f(y, u))

≤ |p| sup
u∈U

|f(x, u)− f(y, u)|

≤ |p|Cf |x− y|.

118 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

Finally, the following fact (see, for example, [116], page 546) saves us the
trouble of checking the viscosity solution conditions at the initial time.

Lemma 5.20 Assume that V1 satisfies the viscosity conditions for equa-
tion (5.29) over R

n × (0, T). Then for all W : Rn × [0, T] → R such that
V1 −W attains a local maximum (minimum) at (x0, t0) ∈ R

n × [0, T)

∂W

∂t
(x0, t0) +H1

(
∂W

∂x
(x0, t0), x

)
≥ 0 (≤ 0).

Theorem 5.21 (SupMin Value Function Characterization) V1 is the
unique bounded and uniformly continuous viscosity solution of the terminal
value problem

∂V

∂t
(x, t) +H1

(
∂V

∂x
(x, t), x

)
= 0

over (x, t) ∈ R
n × [0, T] with boundary condition V (x, T) = l(x).

Proof: Recall that V1(x, T) = l(x). Therefore, under Lemma 5.20, it
suffices to show that

1. For all (x0, t0) ∈ R
n× (0, T) and for all smooth W : Rn× (0, T) → R,

if V1 −W attains a local maximum at (x0, t0), then

∂W

∂t
(x0, t0) + min

{
0, sup

u∈U

∂W

∂x
(x0, t0)f(x0, u)

}
≥ 0.

2. For all (x0, t0) ∈ R
n× (0, T) and for all smooth W : Rn× (0, T) → R,

if V1 −W attains a local minimum at (x0, t0), then

∂W

∂t
(x0, t0) + min

{
0, sup

u∈U

∂W

∂x
(x0, t0)f(x0, u)

}
≤ 0.

Uniqueness then follows by Lemmas 5.18 and 5.19 and a standard
uniqueness result for viscosity solutions [116].
Part 1: Consider an arbitrary (x0, t0) ∈ R

n × (0, T) and a smooth W :
R

n × (0, T) → R such that V1 −W attains a local maximum at (x0, t0).
Then, there exists δ1 > 0 such that for all (x, t) ∈ R

n × (0, T) with |x −
x0|2 + (t− t0)

2 < δ1

(V1 −W)(x0, t0) ≥ (V1 −W)(x, t). (5.35)

We would like to show that

∂W

∂t
(x0, t0) + min

{
0, sup

u∈U

∂W

∂x
(x0, t0)f(x0, u)

}
≥ 0.

Assume, for the sake of contradiction, that this is not the case. Then, for
some θ > 0,

∂W

∂t
(x0, t0) + min

{
0, sup

u∈U

∂W

∂x
(x0, t0)f(x0, u)

}
< −2θ < 0. (5.36)

5.3. Reachability for nonlinear, continuous time systems 119

We distinguish two cases.
Case 1.1: supu∈U

∂W
∂x (x0, t0)f(x0, u) < 0. Then

∂W

∂t
(x0, t0) + sup

u∈U

∂W

∂x
(x0, t0)f(x0, u) < −2θ.

Moreover, there exists an ǫ > 0 such that for all u ∈ U

∂W

∂x
(x0, t0)f(x0, u) < −ǫ

Therefore, since W is smooth, there exists δ2 ∈ (0, δ1) such that for all
(x, t) ∈ R

n × (0, T) with |x− x0|2 + (t− t0)
2 < δ2 and all u ∈ U ,

∂W

∂t
(x, t)+min

{
0,
∂W

∂x
(x, t)f(x, u)

}
=
∂W

∂t
(x, t)+

∂W

∂x
(x, t)f(x, u) < −θ < 0.

Consider an arbitrary u(·) ∈ U[t0,T]. By continuity of the solution with
respect to time, there exists δ3 > 0 such that for all t ∈ [t0, t0 + δ3],

|φ(t, t0, x0, u(·))− x0|2 + (t− t0)
2 < δ2. (5.37)

Therefore, by equation (5.35),

V1(φ(t0 + δ3,t0, x0, u(·)), t0 + δ3)− V1(x0, t0)

≤W (φ(t0 + δ3, t0, x0, u(·)), t0 + δ3)−W (x0, t0)

=

∫ t0+δ3

t0

d

dt
W (φ(t, t0, x0, u(·)), t)dt

=

∫ t0+δ3

t0

∂W

∂t
(φ(t, t0, x0, u(·)), t)dt

+

∫ t0+δ3

t0

∂W

∂x
(φ(t, t0, x0, u(·)), t)f(φ(t, t0, x0, u(·)), u(t))dt

<− θδ3.

By Theorem 5.17

V1(x0, t0) = sup
u(·)∈U[t0,t0+δ3]

[
min

{
min

t∈[t0,t0+δ3]
l(φ(t, t0, x0, u(·))), V1(φ(t0 + δ3, t0, x0, u(·)), t0 + δ3)

}]
.

Therefore, there exists u(·) ∈ U[t0,t0+δ3] such that

V1(x0, t0) ≤ min

{
min

t∈[t0,t0+δ3]
l(φ(t, t0, x0, u(·))), V1(φ(t0 + δ3, t0, x0, u(·)), t0 + δ3)

}
+
θδ3
2

≤ V1(φ(t0 + δ3, t0, x0, u(·)), t0 + δ3) +
θδ3
2

which is a contradiction.
Case 1.2: supu∈U

∂W
∂x (x0, t0)f(x0, u) ≥ 0. By equation (5.36),

∂W

∂t
(x0, t0) < −2θ < 0.

120 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

Since W is smooth, there exists δ2 ∈ (0, δ1) such that for all (x, t) ∈ R
n ×

(0, T) with |x− x0|2 + (t− t0)
2 < δ2,

∂W

∂t
(x, t) < −θ < 0.

By equation (5.35),

V1(x0, t0 + δ2)− V1(x0, t0) ≤W (x0, t0 + δ2)−W (x0, t0)

=

∫ t0+δ2

t0

∂W

∂t
(x0, t)dt

< −θδ2.

This contradicts Theorem 5.17.
Part 2: Consider an arbitrary (x0, t0) ∈ R

n × (0, T) and a smooth W :
R

n × (0, T) → R such that V1 −W attains a local minimum at (x0, t0).
Then, there exists δ1 > 0 such that for all (x, t) ∈ R

n × (0, T) with |x −
x0|2 + (t− t0)

2 < δ1

(V1 −W)(x0, t0) ≤ (V1 −W)(x, t). (5.38)

We would like to show that

∂W

∂t
(x0, t0) + min

{
0, sup

u∈U

∂W

∂x
(x0, t0)f(x0, u)

}
≤ 0.

Assume, for the sake of contradiction, that this is not the case. Then, for
some θ > 0,

∂W

∂t
(x0, t0) + min

{
0, sup

u∈U

∂W

∂x
(x0, t0)f(x0, u)

}
> 2θ > 0.

Therefore, there exists û ∈ U such that

∂W

∂t
(x0, t0) + min

{
0,
∂W

∂x
(x0, t0)f(x0, û)

}
> 2θ > 0.

By smoothness of W , there exists δ2 ∈ (0, δ1) such that for all (x, t) ∈
R

n × (0, T) with |x− x0|2 + (t− t0)
2 < δ2

∂W

∂t
(x, t) + min

{
0,
∂W

∂x
(x, t)f(x, û)

}
> θ > 0. (5.39)

By continuity of the solution with respect to t, there exists δ3 > 0 such
that for all t ∈ [t0, t0 + δ3],

|φ(t, t0, x0, û)− x0|2 + (t− t0)
2 < δ2. (5.40)

5.3. Reachability for nonlinear, continuous time systems 121

Therefore, by equation (5.38), for all t ∈ [t0, t0 + δ3],

V1(φ(t, t0, x0, û), t)− V1(x0, t0)

≥W (φ(t, t0, x0, û), t)−W (x0, t0)

=

∫ t

t0

∂W

∂t
(φ(τ, t0, x0, û), τ)dτ

+

∫ t

t0

∂W

∂x
(φ(τ, t0, x0, û), τ)f(φ(τ, t0, x0, û), û)dτ

≥
∫ t

t0

∂W

∂t
(φ(τ, t0, x0, û), τ)dτ

+

∫ t

t0

min

{
0,
∂W

∂x
(φ(τ, t0, x0, û), τ)f(φ(τ, t0, x0, û), û)

}
dτ

> θ(t− t0).

In particular,

V1(φ(t0 + δ3, t0, x0, û), t0 + δ3)− V1(x0, t0) > θδ3. (5.41)

Recall that, by Theorem 5.17,

V1(x0, t0) ≥ min

{
min

t∈[t0,t0+δ3]
l(φ(t, t0, x0, û)), V1(φ(t0 + δ3, t0, x0, û), t0 + δ3)

}
.

Case 2.1: V1(φ(t0 + δ3, t0, x0, û), t0 + δ3) ≤ mint∈[t0,t0+δ3] l(φ(t, t0, x0, û)).
Then V1(x0, t0) ≥ V1(φ(t0 + δ3, t0, x0, û), t0 + δ3) and therefore

V1(φ(t0 + δ3, t0, x0, û), t0 + δ3)− V1(x0, t0) ≤ 0.

This contradicts equation (5.41).
Case 2.2: V1(φ(t0 + δ3, t0, x0, û), t0 + δ3) > mint∈[t0,t0+δ3] l(φ(t, t0, x0, û)).
Then

V1(x0, t0) ≥ min
t∈[t0,t0+δ3]

l(φ(t, t0, x0, û)). (5.42)

Recall that for all t ∈ [t0, t0 + δ3] with t > t0

V1(φ(t, t0, x0, û), t)− V1(x0, t0) ≥ θ(t− t0) > 0 (5.43)

(in fact, V1(φ(·, t0, x0, û), ·) is monotone increasing as a function of t ∈
[t0, t0 + δ3]). By Theorem 5.17, for all t ∈ [t0, t0 + δ3]

l(φ(t, t0, x0, û)) ≥ V1(φ(t, t0, x0, û), t) ≥ V1(x0, t0).

Hence,

min
t∈[t0,t0+δ3]

l(φ(t, t0, x0, û)) ≥ V1(x0, t0)

and, by equation (5.42),

V1(x0, t0) = min
t∈[t0,t0+δ3]

l(φ(t, t0, x0, û)).

122 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

The minimum occurs at t = t0 and the minimizer is unique. If this were
not the case, then there would exist τ ∈ [t0, t0 + δ3] with τ > t0 such that

min
t∈[t0,t0+δ3]

l(φ(t, t0, x0, û)) = l(φ(τ, t0, x0, û)).

Then

V1(x0, t0) = l(φ(τ, t0, x0, û)) ≥ V1(φ(τ, t0, x0, û), τ),

which would contradict equation (5.43). Therefore,

V1(x0, t0) = min
t∈[t0,t0+δ3]

l(φ(t, t0, x0, û)) = l(x0).

By Theorem 5.17,

V1(x0, t0) ≤ V1(x0, t0 + δ3) ≤ l(x0).

Therefore, V1(x0, t0+δ3) = l(x0) = V1(x0, t0). However, by equation (5.38),

V1(x0, t0 + δ3)− V1(x0, t0) ≥W (x0, t0 + δ3)−W (x0, t0)

=

∫ t0+δ3

t0

∂W

∂t
(x0, t)dt

≥
∫ t0+δ3

t0

(
θ −min

{
0,
∂W

∂x
(x0, t)f(x0, û)

})
dt

≥ θδ3.

This contradiction completes the proof.

Finally, we note the independence of Viab(t,K) on the function l used
to characterize the set K.

Exercise 5.7 Let l : Rn → R and l̂ : Rn → R be two Lipschitz continuous,
bounded functions such that {x ∈ R

n | l(x) > 0} = {x ∈ R
n | l̂(x) > 0}.

Let V1 : Rn × [0, T] → R and V̂1 : Rn × [0, T] → R be the viscosity solutions

of (5.29) with boundary conditions V1(x, T) = l(x) and V̂1(x, T) = l̂(x)
respectively. Then {x ∈ R

n | V1(x, t) > 0} = {x ∈ R
n | V̂1(x, t) > 0} for all

t ∈ [0, T].

5.3.4 Solution of the InfMin Problem

The procedure for establishing the properties of the value function V2 is
effectively the same. We start by showing that V2 satisfies an appropriate
version of the optimality principle.

Theorem 5.22 (InfMin Optimality Conditions) For all (x, t) ∈ R
n×

[0, T] and all h ∈ [0, T − t] V2(x, t) ≤ V2(x, t + h) and V2(x, T) = l(x).
Moreover,

V2(x, t) = inf
u(·)∈U[t,t+h]

[
min

{
min

τ∈[t,t+h]
l(φ(τ, t, x, u(·))), V2(φ(t+ h, t, x, u(·)), t+ h)

}]
.

5.4. Viability Perspective (John) 123

The implications of the theorem are similar to those of Theorem 5.17. The
first part states that the “value” of a given state can only decrease as the
“time to go” increases. Just as with V1, it is this property that forces the
level sets of V2 to change monotonically with t (see Figure 5.3) and results
in the extra minimization in equation (5.30). The second part is again a
variant of the principle of optimality.
Next, we show that under Assumption 5.14 the value function V2 is well

behaved.

Lemma 5.23 There exists a constant C > 0 such that |V2(x, t)| ≤ C and
|V2(x, t)− V2(x̂, t̂)| ≤ C(|x− x̂|+ (t− t̂)), for all (x, t), (x̂, t̂) ∈ R

n × [0, T].

We introduce the Hamiltonian

H2(p, x) = min

{
0, inf

u∈U
pT f(x, u)

}
, (5.44)

and show that

Lemma 5.24 There exists a constant C > 0 such that |H2(p, x) −
H2(q, x)| < C|p−q| and |H2(p, x)−H2(q, y)| < C|p||x−y|, for all p, q ∈ R

n

and all x, y ∈ R
n.

Putting all the above facts together leads to the proof of the charac-
terization theorem for the value function of the InfMin optimal control
problem.

Theorem 5.25 (InfMin Value Function Characterization) V2 is the
unique bounded and uniformly continuous viscosity solution to the terminal
value problem

∂V

∂t
(x, t) +H2

(
∂V

∂x
(x, t), x

)
= 0

over (x, t) ∈ R
n × [0, T] with V (x, t) = l(x).

5.4 Viability Perspective (John)

We summarize some concepts from non-smooth analysis and viability the-
ory that will be needed to introduce the results. Recall that a function
g(·) : Rn → R is called lower semi-continuous if for all x ∈ R

n and all
ǫ > 0, there exists δ > 0 such that for all x′ ∈ R

n with |x − x′| < δ,
g(x) ≤ g(x′) + ǫ. The epigraph of g is the set

Epi(g) = {(x, y) ∈ R
n+1 | y ≥ g(x)}.

A standard result in non-smooth analysis shows that g is lower semi-
continuous if and only if Epi(g) is a closed subset of Rn+1.
For a closed set, K ⊆ R

n, and a point x ∈ K, we use TK(x) to denote
the contingent cone (or Bouligand tangent cone) to K at x, i.e. the set of

124 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

v ∈ R
n for which there exists a sequence of real numbers hn > 0 converging

to 0 and a sequence of vn ∈ R
n converging to v satisfying

∀ n ≥ 0, x+ hnvn ∈ K.

For an arbitrary set, K, let 2K denote the power set of K, i.e. the set
of all subsets of K. A set valued map F (·) : Rn → 2R

n

is called upper
semi-continuous if for all x ∈ R

n and all ǫ > 0 there exists δ > 0 such
that for all x′ with |x − x′| < δ, F (x′) ⊆ F (x) + ǫB. (As usual B denotes
a closed ball in R

n, of radius 1 centered at the origin.) We say that a set
valued map F is Marchaud if

1. F is upper semi-continuous;

2. For all x ∈ R
n, F (x) is convex, compact and nonempty;

3. The growth of F is linear, that is there exists c > 0 such that for all
x ∈ R

n

sup{|v| | v ∈ F (x)} ≤ c(|x|+ 1).

We say F is Lipschitz if there exists a constant λ > 0 (known as the
Lipschitz constant) such that for all x, x′ ∈ R

n

F (x) ⊆ F (x′) + λ‖x− x′‖B.
Viability theory deals with the properties of the set of solutions of dif-

ferential inclusions. Notice that the control system of equation (A.2) can
be thought of as a differential inclusion by setting

F (x) = {f(x, u) | u ∈ U}.
For a set valued map F (·) : Rn → 2R

n

, a solution of the differential inclusion

ẋ ∈ F (x) (5.45)

over an interval [0, T] starting at x0 ∈ R
n is an absolutely continuous

function x(·) : [0, T] → R
n such that x(0) = x0 and ẋ(t) ∈ F (x(t)) for

almost every t ∈ [0, T].

Definition 5.26 (Viable and Invariant Sets) A solution x(·) : [0, T] →
R

n of (C.1) is called viable in a set K ⊆ R
n, if x(t) ∈ K for all t ∈ [0, T].

A set K ⊆ R
n is called locally viable under the differential inclusion (C.1)

if for all x0 ∈ R
n there exists T > 0 and a solution x(·) : [0, T] → R

n

of (C.1) starting at x0 that is viable in K. K is called viable under (C.1)
if the above holds for all T > 0. K is called invariant under (C.1) if for all
x0 ∈ K all solutions of (C.1) starting at x0 are viable in K.

The following characterizations of viable and invariant sets can be found
in [114].

Theorem 5.27 (Viability Conditions) Assume F is Marchaud. A closed
set K ⊆ R

n is viable under the differential inclusion ẋ ∈ F (x) if and only
if for all x ∈ K, TK(x) ∩ F (x) 6= ∅.

5.5. Pursuit evasion differential games (Claire) 125

Theorem 5.28 (Invariance Conditions) Assume F is Marchaud and
Lipschitz. A closed set K ⊆ R

n is invariant under the differential inclusion
ẋ ∈ F (x) if and only if for all x ∈ K, F (x) ⊆ TK(x).

If a set is not viable/invariant, one would often like to determine the largest
subset of it that is.

Definition 5.29 (Viability and Invariance Kernels) Consider a set
K ⊆ R

n. The viability kernel, ViabF (K), of K under the differential in-
clusion (C.1) is the set of states x0 ∈ K for which there exists an infinite
solution x(·) : [0,∞) → R

n of (C.1) starting at x0 that is viable in K. The
invariance kernel, InvF (K), of K is the set of states x0 ∈ K for which all
solutions of (C.1) starting at x0 are viable in K.

The following characterizations of the viability and invariance kernels can
be found in [114].

Theorem 5.30 (Viability Kernel Characterization) Assume F is Mar-
chaud and K is closed. ViabF (K) is the largest closed subset of K (possibly
the empty set) that satisfies the conditions of Theorem 5.27.

Theorem 5.31 (Invariance Kernel Characterization) Assume F is
Marchaud and Lipschitz and K is closed. InvF (K) is the largest closed
subset of K (possibly the empty set) that satisfies the conditions of
Theorem 5.28.

5.5 Pursuit evasion differential games (Claire)

5.6 Bibliography and Further Reading

The treatment of the optimal control interpretation of reachability concepts
comes from [117] and the differential games results are from [118].
The control SupMin problem is a special case of the optimal control

problem treated by [119, 120], where l is also allowed to depend on t and
u. In [119] the value function of the problem is shown to satisfy a set
of discontinuous, quasi-variational inequalities. Though this approach is
conceptually appealing, the discontinuity and the implicit dependence of
the Hamiltonian on the value function severely limit its usefulness from
the numerical computation point of view (as the authors of [119] point
out). The authors of [120] simplify this characterization to the following
continuous variational inequality

sup
u∈U

min

{
l(x)− V (x, t),

∂V

∂t
(x, t) +

∂V

∂x
(x, t)f(x, u)

}
= 0. (5.46)

126 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

The main advantage of equation (5.46) is that the Hamiltonian is continu-
ous. In [120] specialized numerical schemes were developed to exploit this
fact and approximate the solutions to the variational inequality (5.46).
The InfMin problem was also treated in [120] and in [121] from a

viability point of view. In [120] a continuous variational inequality

min

{
l(x)− V (x, t),

∂V

∂t
(x, t) + inf

u∈U

∂V

∂x
(x, t)f(x, u)

}
= 0. (5.47)

was also proposed to address the InfMin problem.
Other methods in the optimal control literature that can also be adapted

to characterize the sets Viab(t,K) and Inv(t,K). For example, one can treat
the problem as maximizing or minimizing the “exit time” from the setK. It
can be shown that this involves solving the terminal value problem (5.53)
over only the set K, with rather complicated boundary conditions [122,
123]. A different method for characterizing the set Inv using a standard
optimal control approach is discussed in Problems 5.6 and 5.7. Yet another
approach is to solve the modified terminal value problem

−∂V
∂t

(x, t) =

{
supu∈U

∂V
∂x (x, t)f(x, u) if x ∈ K

min
{
0, supu∈U

∂V
∂x (x, t)f(x, u)

}
if x ∈ Kc.

(5.48)

This approach was proposed in [105] and will be discussed further in
Chapter ??.
The authors of [124] also consider a Hamiltonian similar to that of

equation (5.48) for differential games. Related work on differential games in-
cludes [125] (extending the results of [119]) and [118] (based on the classical
results of [126]).
The infinite horizon variant of the SupMin optimal control problem is

studied in [127] for the case of classical controls and in [128] for relaxed
controls. The infinite horizon InfMin problem is studied in [120], again
for relaxed controls. In all these references characterizations of the value
function as viscosity solutions to variational inequalities are derived. An
alternative characterization of both infinite horizon problems using viabil-
ity theory is discussed below in Problems 5.2–5.5. This characterization is
motivated by a connection between viability theory and the value function
of optimal control problems established in [129, 130].

5.7 Problems

Problem 5.1 Assume F is Marchaud. Then for all x ∈ R
n there exists

K > 0 such that all solutions to ẋ ∈ F (x) starting at x satisfy |x(t)−x| ≤ kt
for all t sufficiently small.

5.7. Problems 127

Problem 5.2 Consider the following infinite horizon variants of the
SupMin and InfMin optimal control problems:

V ∗
1 (x) = inf

u(·)∈U[0,∞)

sup
t∈[0,∞)

l(φ(t, 0, x, u(·))) (5.49)

V ∗
2 (x) = sup

u(·)∈U[0,∞)

sup
t∈[0,∞)

l(φ(t, 0, x, u(·))). (5.50)

Assume that l(·) is Lipschitz and bounded from above, f(·, ·) is Lipschitz
and bounded and F (·) is Marchaud. Show that for all x ∈ R

n and all t ≥ 0,
the following properties hold:

1. l(x) ≤ V ∗
1 (x) ≤ V ∗

2 (x).

2. V ∗
1 (x) = infu(·)∈U[0,t]

max
{
supτ∈[0,t] l(φ(τ, 0, x, u(·))), V ∗

1 (φ(t, 0, x, u(·)))
}
.

3. V ∗
2 (x) = supu(·)∈U[0,t]

max
{
supτ∈[0,t] l(φ(τ, 0, x, u(·))), V ∗

2 (φ(t, 0, x, u(·)))
}
.

Problem 5.3 Consider again the value functions V ∗
1 and V ∗

2 of Prob-
lem 5.2. Assume an auxiliary state variable, y ∈ R, is appended to the
state and consider the extended dynamics

(ẋ, ẏ) ∈ F̂ (x, y) with

{
ẋ ∈ F (x)

ẏ = 0.
(5.51)

Show that Epi(V ∗
1) is the viability kernel of Epi(l) under the differential

inclusion (5.51). You may assume that Epi(V ∗
1) is a closed set.

Problem 5.4 Under the assumptions of 5.2, show that Epi(V ∗
2) is the in-

variance kernel of Epi(l) under the differential inclusion (5.51). You may
again assume that Epi(V ∗

2) is a closed set.

Problem 5.5 In the setting of Problem 5.2, assume that a closed set K ⊆
R

n is such that K = {x ∈ R
n | l(x) ≤ 0}. Show that ViabF (K) = {x ∈

R
n | V ∗

1 (x) ≤ 0} and InvF (K) = {x ∈ R
n | V ∗

2 (x) ≤ 0}.
Problem 5.6 Let K = {x ∈ R

n | l(x) ≥ 0} and consider the value
function

V3(x, t) = inf
u(·)∈U[t,T]

l(φ(T, t, x, u(·))).

Show that Inv(t, L) =
⋂

τ∈[t,T]{x ∈ R
n | V3(x, τ) ≥ 0}. Hence show that

V2(x, t) = minτ∈[t,T] V3(x, τ) for all (x, t) ∈ R
n × [0, T],

Problem 5.7 In the setting of problem ??, a standard optimal control ar-
gument shows that V3 is the unique viscosity solution to the terminal value
problem

∂V3
∂t

(x, t) + inf
u∈U

∂V3
∂x

(x, t)f(x, u) = 0 (5.52)

128 Chapter 5. Controller Synthesis for Discrete and Continuous Systems

with V3(x, T) = l(x) over (x, t) ∈ R
n × [0, T]. Show that the function

minτ∈[t,T] V3(x, τ) is the unique bounded, uniformly continuous viscosity so-
lution to the terminal value problem (5.30). Compute and plot the function
V3 for the example of Section 5.3.2.

Problem 5.8 Motivated by Problems 5.6 and 5.7 one might expect to be
able to compute Viab(t,K) by taking intersections of the level sets of the
value function

V4(x, t) = sup
u(·)∈U[t,T]

l(φ(T, t, x, u(·))).

Using standard optimal control results, one can show that V4 is a viscosity
solution of

∂V4
∂t

(x, t) + sup
u∈U

∂V4
∂x

(x, t)f(x, u) = 0 (5.53)

with V4(x, T) = l(x) over (x, t) ∈ R
n × [0, T]. Compute and plot the value

function V4 for the example of Section 5.3.21. Show that Viab(t,K) 6=⋂
τ∈[t,T]{x ∈ R

n | V4(x, τ) ≥ 0}. What goes wrong when we try to extend
the proof in problem 5.6 to the function V4?

Problem 5.9 Prove Theorem 5.22.

Problem 5.10 Prove Lemma 5.23.

Problem 5.11 Prove Theorem 5.25.

1Even though one guess what the solution is like, it turns out that it is a viscosity

solution, so more work is needed to prove that our guess is indeed right.

This is page 129
Printer: Opaque this

Chapter 6
Controller Synthesis for Hybrid
Systems

This chapter is the counterpart of Chapter 5 developing the tools for the
design of controllers for hybrid systems. Recall as in that chapter that a
control problem involves:

1. A plant, to be controlled

2. A specification

3. A controller

and that controller synthesis involves coming up with a methodology for
designing controllers that meet the specification. The discussion in this
chapter is based on [110] and [36]. Recall from Chapter 3 that the plant is
modeled by an open hybrid automaton, H = (Q, X, V , Init, f , I, E, G,
R,φ), where

• Q is a finite collection of discrete state variables;

• X is a finite collection of continuous state variables;

• V is a finite collection of input variables. We assume V = VD ∪ VC ,
where VD contains discrete and VC contains continuous variables.

• Init ⊆ Q×X is a set of initial states;

• f : Q×X×V → R
n is an input dependent vector field;

• I : Q → 2X×V assigns to each q ∈ Q an input dependent invariant
set;

• E ⊂ Q×Q is a collection of discrete transitions;

130 Chapter 6. Controller Synthesis for Hybrid Systems

• G : E → 2X×V assigns to each e = (q, q′) ∈ E a guard;

• R : E × X × V → 2X assigns to each e = (q, q′) ∈ E, x ∈ X and
v ∈ V a reset relation; and,

• φ : Q×X → 2V assigns to each state a set of admissible inputs.

To avoid technical difficulties we introduce the additional assumption that
φ(q, x) 6= ∅ and f is Lipschitz in x and continuous in v.

In this chapter, the control objective or specification is assumed to be
encoded by means of a safety property (Q ∪X,2F) (always F) with F ⊆
Q×X. Finally, we will assume that the input variables of H are partitioned
into controls, U and disturbances, D:

V = U ∪D
The disturbances represent uncontrolled inputs such as noise, unmodeled
dynamics, the actions of other subsystems (in a distributed system), etc.

6.1 The Controller Structure

A controller can be defined as a map from state executions to sets of
allowable inputs:

C : X ∗ → 2U

The interpretation is that, given a finite execution, the controller restricts
the valuations of the control input variables that are allowed at the fi-
nal state. With this in mind we can define the set of closed loop causal
executions as:

HC = {(τ, q, x, (u, d)) ∈ H|∀t ∈ τ, u(t) ∈ C((τ, q, x) ↓t)}
Clearly, HC ⊆ H. We say C satisfies property (Q ∪X,2F) if:

2F (χ) = True for all χ ∈ HC

To prevent technical problems, assume that for all ({[τi, τ ′i]}Ni=0, q, x, v) ∈
H, ∅ 6= C(x) ⊆ φ(q(τ ′N), x(τ ′N))|U . This ensures that the controller will not
attempt to “cheat” by stalling the execution. This is not enough however.
The controller may still be able to cheat by:

1. Blocking the execution at a state (q, x) by applying u ∈ φ(q, x)|U
such that for all d ∈ φ(q, x)|D (x, (u, d)) 6∈ I(q) and for all e ∈ E
either (x, (u, d)) 6∈ G(e) or R(e, x, (u, d)) = ∅.

2. Forcing the execution to be Zeno (take infinite number of transitions
in a finite amount of time). Recall the water tanks example.

Both of these caveats have to do with modeling over-abstraction: the model
of the plant should be such that the controller is not able to cheat in this

6.1. The Controller Structure 131

way. The first loophole can be eliminated by fairly simple assumptions on
the plant, similar to the non-blocking assumptions for autonomous hybrid
automata. The second loophole is more difficult to deal with. Typically one
assumes that all loops among discrete states require a non zero amount
of time. This assumption may be somewhat restrictive and is difficult to
enforce by manipulating the primitives of the model. Here we will overlook
these technical problems.

6.1.1 Controller Properties

Given a plant hybrid automaton and a property our goal is to find a
controller that satisfies the specification.

Memoryless Controllers

A controller, C, is called memoryless (or pure feedback) if for all χ, χ′ ∈ H∗

ending at the same state, C(χ) = C(χ′). A memoryless controllers can be
characterized by a feedback map:

g : Q×X → 2U

To prevent technical problems, we again restrict our attention to memory-
less controllers such that for all (q, x) ∈ Q×X ∅ 6= g(q, x) ⊆ φ(q, x). Given
a plant, H, and a memoryless controller, g, we can defined the closed loop
open hybrid automaton, Hg = (Q, X, V , Init, f , I, E, G, R,φg), where
φg(q, x) = φ(q, x) ∩ g(q, x). It is easy to show that:

Proposition 6.1 If C is memoryless controller with feedback map g, then
Hg = HC .

This property allows one to nest controller synthesis problems, provided
they can be solved by memoryless controllers. In general, is unclear whether
the set of closed loop causal executions is the set of executions of some
hybrid automaton.
For properties of the form (Q∪X,2F), it turns out that it it suffices to

look for a solution among memoryless controllers.

Proposition 6.2 A controller that satisfies property (Q∪X,2F) exists if
and only if a memoryless controller that satisfies (Q ∪X,2F) exists.
Proof: The if part is obvious. For the only if part, assume that there ex-
ists a controller C that solves the synthesis problem (H,2F), but there
does not exist a feedback controller that solves the synthesis problem.
Therefore, there must exist (q, x) ∈ F and two different finite executions
χ1 = (τ1, q1, x1, (u1, d1)) ∈ HC and χ2 = (τ2, q2, x2, (u2, d2)) ∈ HC end-
ing in (q, x) such that C(q1, x1) 6= C(q2, x2). Moreover, the “information”
about whether (q, x) was reached via χ1 or whether it was reached via χ2

must be essential for subsequent control decisions.

132 Chapter 6. Controller Synthesis for Hybrid Systems

More formally, assume (q, x) is reached via χ2, and let χ′ denote a sub-
sequent execution, that is assume that the concatenation χ2χ

′ belongs to
H. Note that, since χ1 also ends in (q, x), χ1χ

′ also belongs to H. Let
χ2χ

′ = (τ ′2, q
′
2, x

′
2, (u

′
2, d

′
2)) and χ1χ

′ = (τ ′1, q
′
1, x

′
1, (u

′
1, d

′
1)). Assume that

for all t ∈ τ ′2 \ τ2, a control u(t) ∈ C((q′1, x
′
1) ↓t) is applied (instead of a

control u(t) ∈ C((q′2, x
′
2) ↓t)). Then, as the fact that (q, x) was reached

via χ2 is essential, there must exist a subsequent execution χ′ such that
χ2χ

′ ∈ H (in fact χ2χ
′ ∈ H\HC) and 2F (χ2χ

′) = False. This implies that
there exists t ∈ τ ′2 such that (q′2(t), x

′
2(t)) ∈ F c. Since C is assumed to solve

the synthesis problem and χ2 ∈ HC , 2F (χ2) = True, therefore t ∈ τ ′2 \ τ2.
However, since for all t ∈ τ ′2 \ τ2, u(t) ∈ C((q′1, x

′
1) ↓t), and

(τ ′1, q
′
1, x

′
1, (u

′
1, d

′
1)) ∈ H, we have that χ1χ

′ ∈ HC . But the above dis-
cussion indicates that there exists t ∈ τ ′1 (in fact t ∈ τ ′1 \ τ1) such that
(q′1(t), x

′
1(t)) ∈ F c. This contradicts the assumption that C solves the

synthesis problem (H,2F).

Motivated by Proposition 6.2, we restrict our attention to feedback con-
trollers. For brevity, we refer to the problem of finding a controller for a
plant H that satisfies a specification (Q∪X,2F) as the controller synthesis
problem (H,2F).

Controlled Invariant Sets

Typically, for a controller synthesis problem one treats the set of initial
conditions, Init, as variable and attempts to establish the largest set of
states for which there exists a controller that satisfies the specification.
This set of initial conditions turns out to be a “controlled invariant set”.

Definition 6.3 (Controlled Invariant) A set W ⊆ Q × X is called
controlled invariant if there exists a controller that solves the controller
synthesis problem (H ′,2W) when H ′ is identical to H except for Init′

which is equal to W .

A controlled invariant setW is called maximal if it is not a proper subset of
another controlled invariant set. We say a controller renders W invariant
if it solves the controller synthesis problem (H ′,2W) where Init′ =W .

Proposition 6.4 A controller that solves the synthesis problem (H,2F)
exists if and only if there exists a unique maximal controlled invariant W ⊆
Q×X such that Init ⊆W ⊆ F .

Proof: If there exists any control invariant W ⊆ F (in particular, if there
exists a unique maximal one) then, by definition, the synthesis problem
(H,2F) can be solved for I =W .

For the only if part, if the synthesis problem can be solved for some Init,
there exists a set Înit and a feedback controller g such that for all d and
for all (q0, x0) ∈ Înit the execution (τ, q, x, (u, d)) with u(t) ∈ g(q(t), x(t))

6.1. The Controller Structure 133

for all t ∈ τ satisfies (q(t), x(t)) ∈ F for all t ∈ τ . Consider the set:

W =
⋃

d

⋃

(q0,x0)∈Înit

⋃

t∈τ

(q(t), x(t))

Then clearlyW ⊆ F . Moreover, for any (q0, x0) ∈W consider the execution
(τ, q, x, (u, d)) with arbitrary d ∈ D and u(t) ∈ g(q(t), x(t)). Then, by
definition of W , (q(t), x(t)) ∈ W for all t ∈ τ . Therefore, controller g
renders the set W invariant.
Having established the existence of controlled invariant subsets of F ,

consider now two such sets W1 ⊆ F and W2 ⊆ F . We show that their
union is also a controlled invariant subset of F . Clearly W1 ∪W2 ⊆ F . For
i = 1, 2, as Wi is controlled invariant, there exists a feedback controller
gi that solves the controller synthesis problem (H,2Wi), with Init = Wi.
Consider the feedback controller g with:

g(q, x) =

{
g1(q, x) if (q, x) ∈W1

g2(q, x) otherwise

Consider an arbitrary (q0, x0) ∈ W1 ∪W2. Then either (q0, x0) ∈ W1 or
(q0, x0) ∈ (W1 ∪ W2) \ W1 ⊆ W2. In the first case, all executions are
guaranteed to satisfy 2W1 as g1 renders W1 invariant. For the second case,
consider an arbitrary execution χ = (τ, q, x, (u, d)) with u(t) ∈ g(q(t), x(t))
for all t ∈ τ . Since g2 solves the controller synthesis problem (H,2W2)
with Init = W2, either 2(W2 \W1)(χ) = True or (q, x) ∈ W2 \W1 until
(q, x) ∈ W1, which brings us back to the first case. Hence, g solves the
controller synthesis problem (H,2(W1 ∪W2)) with Init = W1 ∪W2, and
the set W1 ∪W2 is controlled invariant.
Summarizing, the class of controlled invariant subsets of F is closed under

union. Hence, it possesses a unique maximal element.

Least Restrictive Controllers

We would like to derive a memoryless controller that solves the problem
while imposing minimal restrictions on the controls it allows. There are at
least two reasons why such a controller is desirable:

1. As discussed above, safety properties can sometimes be satisfied us-
ing trivial controllers (that cause deadlocks or zeno executions for
example). Imposing as few restrictions as possible allows us to find a
meaningful controller whenever possible.

2. In many cases multiple, prioritized specifications are given for a par-
ticular problem. Imposing fewer restrictions on the controls when
designing controllers for higher priority specifications allows us
greater flexibility when trying to satisfy lower priority specifications.

134 Chapter 6. Controller Synthesis for Hybrid Systems

Memoryless controllers that solve the synthesis problem (H,2F) can be
partially ordered by the relation:

g1 � g2 ⇔ g1(x) ⊆ g2(x) for all x ∈ X

Definition 6.5 A memoryless controller that solves (H,2F) is called least
restrictive if it is maximal among the controllers that solve (H,2F).

There is a conjecture that for every controller synthesis problem (H,2F)
either there is no solution or there exists a unique least restrictive controller
that solves the problem. As of now there is no proof of this fact however.

Some Remarks on “Implementation”

The notion of a controller introduced above may be inadequate when it
comes to implementation. For one thing, the set valued map g allows non-
deterministic choices of control inputs. Since in practice only one input
can be applied to the system at any time, this nondeterminism has to
somehow be resolved when it comes time to implement such a controller.
The set valued map can in this sense be thought of as a family of single
valued controllers; implementation involves choosing one controller from
this family.
Normally, one would “implement” a controller by another hybrid au-

tomaton, which, when composed with the plant automaton yields the
desired behavior. To do this one would need to introduce output variables
to the hybrid automaton and define formal semantics for composition, as in
Lecture 8. The process is slightly more complicated for the models consid-
ered here because of the presence of the state dependent input constraints,
encoded by φ. We will assume that the entire state is available to the
controller. In general this will not be the case. If a controller is to be imple-
mented by a hybrid automaton, the information the controller has about
the plant is obtained through the valuations of the output variables of the
plant, which are not necessarily in one to one correspondence with the
valuations of the state variables. The controller synthesis problem under
partial observation (output feedback) is much more complicated than the
full observation (state feedback) problem addressed here (partly because it
makes it harder to define composition as discussed above).

6.2 Game Theoretic Approach to Controller
Synthesis

To guarantee that a safety specification is met despite the action of the
disturbances we cast the design problem as a zero sum dynamic game. The
two players in the game are the control u and the disturbance d and they
compete over cost a function that encodes the safety specification. We seek

6.2. Game Theoretic Approach to Controller Synthesis 135

the best possible control action and the worst possible disturbance. Note
that if the specifications can be met for this pair then they can also be met
for any other choice of the disturbance.
Consider a controller synthesis problem (H,2F). The game can be cast

in the standard min-max setting by introducing a cost function induced by
the discrete metric. The discrete metric is simply a map m : (Q × X) ×
(Q×X) −→ R defined by:

m((q1, x1), (q2, x2)) =

{
0 if (q1, x1) = (q2, x2)
1 if (q1, x1) 6= (q2, x2)

It is easy to check that m satisfies the axioms of a metric. The metric
induces a map on subsets of Q×X by defining:

M : 2Q×X × 2Q×X −→ R

(W1,W2) 7−→ min
((q1,x1),(q2,x2))∈W1×W2

m((q1, x1), (q2, x2))

In other words, M(W1,W2) = 0 if W1 ∩W2 6= ∅ and M(W1,W2) = 1 if
W1 ∩W2 = ∅.
Consider an execution, χ = (τ, q, x, (u, d)), of the hybrid automaton H

starting at an initial state (q0, x0) ∈ I. Define the cost of this execution by:

J : H −→ R

χ 7−→ min
t∈τ

M({(q(t), x(t))}, F c)

Note that J can only take on two values, J(χ) ∈ {0, 1}. Therefore, J
implicitly defines a property of the hybrid automaton. In fact:

Proposition 6.6 J(χ) = 1 if and only if 2F (χ) = True.

Intuitively, u tries to maximize the cost function J (prevent the state
from leaving F). Because we have no control over the actions of d, we
assume that it tries to minimize J (force the state to leave F). As we would
like to establish conditions under which 2F is guaranteed to be satisfied
we bias the game in favor of the disturbance whenever there is ambiguity
over how the game will proceed. For example, multiple executions may be
possible for the same initial condition, control and disturbance trajectories,
due to nondeterminism. Moreover, the order in which the two players play
in the game may be important, if one player is assumed to have access
to the decision of the other player before choosing his/her action. In both
these cases we would like to give the disturbance the “benefit of the doubt”.
Consider the max-min solution:

J∗(q0, x0) = max
g

min
d

(
min

χ=(τ,q,x,(u,d))∈Hg

J(χ)

)
(6.1)

Motivated by Proposition 6.7 we restrict our attention to feedback strate-
gies for u in equation (6.1). Following the standard game theoretic
convention, the “player” who appears first in the right hand side of equation

136 Chapter 6. Controller Synthesis for Hybrid Systems

(6.1) (the controller g) is also assumed to play first. The player who appears
second (the disturbance d) is assumed to have access to the strategy of the
first player, when called upon to make his/her decision. The minimum over
χ removes all nondeterminism. Therefore, provided a solution to this equa-
tion can be found, J∗ is a well defined function of the initial state (q0, x0).
In addition, the minimum over χ implicitly restricts attention to control
and disturbance trajectories that satisfy the state based input constraint
φ. Using J∗ we define a set W ∗ ⊆ Q×X by:

W ∗ = {(q0, x0) ∈ Q×X|J∗(q0, x0) = 1} (6.2)

Proposition 6.7 W ∗ is the maximal controlled invariant subset of F .

Proof: We first show W ∗ is controlled invariant. Assume for the sake of
contradiction that it is not. Then for all g there exists an (q0, x0) ∈W ∗, a
d, a χ = (τ, q, x, (u, d)) ∈ Hg and a t ∈ τ with (q(t), x(t)) 6∈W ∗. By Propo-
sition 6.6, J(χ) = 0, which, by equation (6.1), implies that J∗(q0, x0) = 0.
This contradicts the assumption that (q0, x0) ∈W ∗.

Next we show that W ∗ is maximal. Assume for the sake of contradiction
that it is not, that is there exists another controlled invariant Ŵ with
W ∗ ⊂ Ŵ ⊆ F . Then, by definition, there exists a controller g such that
Hg satisfies 2F with I = Ŵ . In other words, for all (q0, x0) ∈ Ŵ , for all
d and for all χ = (τ, q, x, (u, d)) ∈ Hg, 2F (χ) = True, or, equivalently,
J(χ) = 1. But, from equation (6.1) this would imply that J∗(q0, x0) = 1.
This contradicts the assumption that W ∗ ⊂ Ŵ .

If a solution to equation 6.1 can be computed, then there exists a feed-
back controller (namely one that achieves the maximum) that renders W ∗

invariant. We would like to find a least restrictive such controller. Our abil-
ity to solve the synthesis problem using this technique hinges on finding
a solution to equation 6.1. In some cases this can be done by brute force;
this typically involves guessing a controller and showing that it achieves
the maximum. More systematically, this can be done using optimal control
techniques, in particular dynamic programming.

6.2.1 Example: The Steam Boiler

The problem of controlling a steam boiler was introduced first in [131, 132].
The model presented here is taken from [133]. The controller synthesis for
this model can be found in [110]. The continuous dynamics of the boiling
process are summarized by the differential equations:

ẇ = p1 + p2 − r

ṙ = d

The dynamics of pump i are summarized by the open hybrid automaton of
Figure 6.2. Notice that pi is both an output variable of the pump and an

6.2. Game Theoretic Approach to Controller Synthesis 137

P1 P2

r

w

d

u1

p1 p2

u2

Figure 6.1. The Steam Boiler

ci=0

OFF GOING_ON

ON

Ti:=0

Ti:=0
Ti:=0 -

-
-

-
pi=0
ui=0

ui=1

ui=0 Ti<Ti ui=1

pi=0

Ti>Ti ui=1

ui=1

-pi=Pi

.

Ti = 1
.

Ti = 1
.

Ti = 0

Figure 6.2. The pump hybrid automaton

input variable of the boiling process. For a formal definition of the model
(with slight differences in the notation) please refer to Lecture 8.
The composite automaton has 4 continuous, real valued state variables:

x = (w, r, T1, T2) ∈ R
4

9 discrete states:

q ∈ {(OFF,OFF), (OFF,GOING ON), . . . , (ON,ON)}

2 discrete input variables:

(u1, u2) ∈ {0, 1} × {0, 1} = U

138 Chapter 6. Controller Synthesis for Hybrid Systems

and one continuous input variable:

d ∈ [−D1, D2] = D

s the notation suggests, u1 and u2 will play the role of controls and d will
play the role of the disturbance. The additional requirement that r ∈ [0, R]
can be encoded by a state dependent input constraint:

φ(q, x) =





U× [0, D2] if r ≤ 0
U×D if r ∈ (0, R)
U× [−D1, o] if r ≥ R

Proposition 6.8 If Init ⊆ Q × R × [0, R] × R
2, then for all χ =

(τ, q, x, u1, u2, d) and for all t ∈ τ , r(t) ∈ [0, R].

Our goal is to design a controller that keeps the water level in a given
range, [M1,M2], with 0 ≤ M1 < M2]. This requirement can easily be
encoded by a safety property (Q ∪X,2F) with

F = Q× [M1,M2]× R
3

We will try to achieve this goal by treating the situation as a game between
(u1, u2) and d over the cost function J . Recall that this involves solving
the equation:

J∗(q0, x0) = max
g

min
d

(
min

χ=(τ,q,x,(u,d))∈Hg

J(χ)

)

Fortunately, for this example, the equation simplifies considerably.
First, notice that the steam boiler system is deterministic, in the sense

that for each initial state and each input sequence consistent with φ the
automaton accepts a unique execution. In this case, we can represent an
execution more compactly by ((q0, x0), (u1, u2), d) with the interpretation
that (u1, u2) and d represent the entire sequence for these variables. More-
over, if the memoryless controller we pick is single valued, this implies we
need not worry about the innermost minimization.
Next notice that J can be encoded by means of two real valued cost

functions:

J1(x
0, u1, u2, d) = inf

t≥0
w(t) and J1(x

0, u1, u2, d) = − sup
t≥0

w(t)(6.3)

Clearly:

J = 1 ⇔ (J1 ≥M1) ∧ (J2 ≥ −M2)

The problem of finding a solution to the game over the discrete cost function
(known as qualitative game or game of kind) reduces to finding solutions to
two real valued games (known as quantitative games or games of degree).
Even though there is no obvious benefit to doing this, it allows us to use
tools from continuous optimal control to address the problem.

6.2. Game Theoretic Approach to Controller Synthesis 139

Start with the game over J1. Guess a possible solution:

u∗i (q, x) = 1 for all (q, x), and d∗(q, x) =

{
D2 if r < R
0 if r = R

(6.4)

Notice that both players resort to a feedback strategy (a trivial one).

Lemma 6.9 (u∗1, u
∗
2, d

∗) is globally a saddle solution for the game between
(u1, u2) and d over J1.

Proof: See [110].

A saddle solution is a solution to equation (6.1) for which the order in
which the players make their decisions turns out to be unimportant. In
other words, a solution for which for all (q, x):

J∗
1 (q, x) = max

(u1,u2)
min
d
J1((q, x), (u1, u2), d) = min

d
max

(u1,u2)
J1((q, x), (u1, u2), d)

Or, in other words, a solution for which for all (q, x), u1, u2 and d:

J1((q, x), (u1, u2), d
∗) ≤ J1((q, x), (u

∗
1, u

∗
2), d

∗) ≤ J1((q, x), (u
∗
1, u

∗
2), d)

The last definition is usually somewhat easier to to work with. It is in fact
used to prove the lemma.
The saddle cost:

J∗
1 (q, x) = J1((q, x), (u

∗
1, u

∗
2), d

∗)

Can be computed in closed form. This allows us then to compute the set of
states for which there exists a control that for all actions of the disturbance
prevents draining. This set turns out to be of the form:

W ∗
1 = {(q, x) : J∗

1 (q, x) ≥M1} = {(q, x) : w ≥ ŵ(r, T1, T2)}
Two level sets of this function are shown in Figure 6.3.
The expression for J∗ also allows us to compute the least restrictive

controller that renders the set W ∗
1 invariant. It turns out to be unique:

Lemma 6.10 The feedback controller g11 given by:

u1 ∈ {0, 1} and u2 ∈ {0, 1} if [w > ŵ(r, 0, 0)] ∨ [w < ŵ(r, T1, T2)]

u1 = 1 and u2 ∈ {0, 1} if ŵ(r, 0, 0) ≥ w > ŵ(r, T1, 0)

u1 ∈ {0, 1} and u2 = 1 if ŵ(r, 0, 0) ≥ w > ŵ(r, 0, T2)

u1 = 1 and u2 = 1 if w = ŵ(r, T1, T2)

is the unique, least restrictive, non-blocking, feedback controller that renders
W 1∗

1 invariant.

Proof: See [110].

Note that the first term applies to states in the interior of the safe set (w >
ŵ(r, 0, 0)) as well as all the states outside the safe set (w < ŵ(r, T1, T2)).
The expression for ŵ (see [110]) suggests that ŵ is monotone in T1 and T2.

140 Chapter 6. Controller Synthesis for Hybrid Systems

0
1

2
3

4

0

1

2

3

4

5
0

5

10

15

20

rT1

w

T2=Tp2

T2=0

Figure 6.3. Lower limit on w to avoid draining

Therefore, the condition on the last case is enabled if and only if all other
conditions fail. The two middle conditions may overlap, however. Therefore
there is some nondeterminism in the choice of safe controls (some states
may be safe with either one or the other pump on, but not neither).

6.2.2 Game Theoretic Controller Synthesis for Finite State
Machines

Consider a plant automaton H = (Q, X, V , Init, f , I, E, G, R,φ), with:

• Q = {q}, Q <∞ (finite discrete states);

• X = {x}, X = {0} (trivial continuous state);

• V = {u, d}, V <∞ (finite inputs);

• Init ⊆ Q× {0} (drop the trivial dependence on the continuous state
from now on);

• f(q, x, v) = 0 (trivial continuous dynamics);

• I(q) = ∅ (no time evolution);

• E ⊂ Q×Q;

• G(e) ⊆ {0}×V (drop the trivial dependence on the continuous state
from now on);

• R(e, 0, v) = {0}; and,

6.2. Game Theoretic Approach to Controller Synthesis 141

• φ(q, 0) = V.

Notice the similarity between this hybrid automaton and the finite au-
tomata considered earlier in the class. Recall that a finite automaton is
a collection (Q,Σ,∆, q0, QF) consisting of a finite set of states, a finite
alphabet, a transition relation, an initial state and a set of final states.
Comparing the two definitions we see that Q plays the same role in both
cases, V plays the role of Σ, Init plays the role of q0, while QF = Q (re-
strictions on where we should and should not end up will be encoded in
terms of the specification later on). The transition relation is given by:

(q, v, q′) ∈ ∆ ⇔ ((q, q′) ∈ E) ∧ (v ∈ G(q, q′))

Recall that the transition relation can also be encoded by means of a
transition map:

δ(q, v) = {q′ ∈ Q : ((q, q′) ∈ E) ∧ (v ∈ G(q, q′))}

To prevent trivial safe solutions we add a non-blocking assumption:

∀q ∈ Q, ∀u ∈ U, ∃d ∈ D such that δ(q, (u, d)) 6= ∅

Remarks:

1. The dependence on the trivial continuous state will be dropped to
simplify the notation.

2. Strictly speaking the hybrid automaton definition of a finite state
system is slightly more general, since many initial states are allowed.
In any case, Init will not be very important, since we will be trying
to determine the largest set if initial conditions for which a safety
specification can be satisfied.

3. All the action takes place at a single point in time (the executions
are over time sequences of the form [0, 0][0, 0], . . .). An alternative
interpretation is that time has been abstracted away. This can be
encoded by setting I(q) = {0} for all q; the interpretation is that
the transition can take place after an unspecified amount of delay. In
either case, the execution can be reduced down to a pair of sequences,
one for the states (q[i]) and one for the inputs (v[i]) such that:

q[0] ∈ Init and ∀i ≥ 0, q[i+ 1] ∈ δ(q[i], v[i])

4. Because time has been abstracted away and φ(q) = V, the non-
blocking assumption eliminates all possibilities of cheating by the
controller (zeno executions are meaningless in this setting).

5. Players u and d play simultaneously. Subsumes turn based play [134]
and priority play [109] (see [134] and [135]).

142 Chapter 6. Controller Synthesis for Hybrid Systems

6.3 Controller Synthesis for Hybrid Systems

In this section, we bring the discrete and continuous parts together, and
develop controller synthesis for hybrid systems. Our treatment follows [36]
and [110].
Recall that the plant is modeled by an open hybrid automaton, H = (Q,

X, V , Init, f , I, E, G, R,φ), where:

• Q is a finite collection of discrete state variables;

• X is a finite collection of continuous state variables;

• V is a finite collection of input variables. We assume V = VD ∪ VC ,
where VD contains discrete and VC contains continuous variables.

• Init ⊆ Q×X is a set of initial states;

• f : Q×X×V → R
n is an input dependent vector field;

• I : Q → 2X×V assigns to each q ∈ Q an input dependent invariant
set;

• E ⊂ Q×Q is a collection of discrete transitions;

• G : E → 2X×V assigns to each e = (q, q′) ∈ E a guard;

• R : E × X × V → 2X assigns to each e = (q, q′) ∈ E, x ∈ X and
v ∈ V a reset relation; and,

• φ : Q×X → 2V assigns to each state a set of admissible inputs.

Also recall that the set the input variables are partitioned into controls
(that can be used to steer the system) and disturbances (whose values can
not be controlled):

V = U ∪D
Assumption 6.11 To avoid technical problems we assume that:

1. f is Lipschitz continuous in x and continuous in v.

2. for all (q, x) ∈ Q×X, φ(q, x) = U×D 6= ∅.
3. for all q ∈ Q and for all v ∈ V, I(q)|X is an open set.

4. for all (q, x) ∈ Q×X, and for all u ∈ U there exists d ∈ D such that:

[(x, u, d) ∈ I(q)] ∨ [((x, u, d) ∈ G(q, q′) ∧ (R(q, q′, x, u, d) 6= ∅)]
Part 1 is standard, and is needed for existence of continuous evolution. Part
2 implies that acceptable control and disturbance inputs always exists,
and that the choice of u can not influence the possible choices of d and
vice versa. Part 3 implies that we need not worry about what happens
on the boundary of the invariant set (otherwise we would have to assume

6.4. Definitions of Operators 143

transverse invariants, define the Out set, etc.). Finally, part 4 (together
with part 3) implies that the controller can not block the system execution.
Notice that this assumption is not symmetric for u and d. The reason is
that, since we are dealing with safety specifications it will never be to the
benefit of d to stop the execution.
As before we will try to establish the largest controlled invariant subset

of a given set F ⊆ Q × X, and design a controller that renders this set
invariant. To avoid technical problems we assume that:

Assumption 6.12 F is a closed set.

We will again take an adverserial approach and treat the design as a game
between u and d. Whenever possible we will give the advantage to d, in
particular:

1. In the order of play (u will be the “leader” of the game).

2. When resolving non-determinism.

6.4 Definitions of Operators

Notice that the disturbance has two choices. It can:

1. Try to make the system “jump” outside F .

2. Try to “steer” the system outside F along continuous evolution.

The control also has two choices:

1. Try to “jump” to another state in F when the disturbance tries to
steer out of F .

2. Try to “steer” the system and keep it in F along continuous evolution.

To charactrize alternative 1 for the disturbance, introduce the uncon-
trollable predecessor operator, Pred : 2Q×X → 2Q×X, which, given a set
K ⊆ Q×X returns:

Pred(K) = Kc ∪ {(q, x) ∈ Q×X : ∀u ∈ U ∃d ∈ D, q′ ∈ Q such that
[(x, u, d) ∈ G(q, q′)] ∧ [R(q, q′, x, u, d) ∩Kc 6= ∅]}

For a given K, Pred(K) returns the set of states that are either in the com-
plement of K, or whatever u does may find themselves in the complement
of K by a discrete transition.
To charactrize alternative 1 for the control, introduce the controllable

predecessor operator, Preu : 2Q×X → 2Q×X, which, given a set K ⊆ Q×X

144 Chapter 6. Controller Synthesis for Hybrid Systems

returns:

Preu(K) = K ∩ {(q, x) ∈ Q×X : ∃u ∈ U such that ∀d ∈ D,
[∃q′ ∈ Q such that (x, u, d) ∈ G(q, q′)]∧
[(x, u, d) 6∈ I(q)]∧
[(x, u, d) ∈ G(q, q′) → R(q, q′, x, u, d) ⊆ K]}

For a given K, Preu(K) returns the set of states that are already in K and
there exists a control action that can force a transition that keeps the state
in K.
Some simple facts about these two operators:

Proposition 6.13 For all K ⊆ Q × X, Preu(K) ⊆ K, Pred(K) ⊇ Kc

and Preu(K) ∩ Pred(K) = ∅
Remarks:

• The two operators are asymmetric.

• The order of the quantifiers is consistent with u being the leader in
the game.

• Since all non-determinism is resolved in favor of d, u has to work
harder:

– it has to ensure a transition back into K exists (first condition
in the definition of Preu(K)),

– it has to be able to “force” the transition (no mention of I(q) in
the definition of Pred(K)),

– it has to ensure all possible transitions stay in K (last condition
in the definition of Preu(K)).

Finally, to characterize alternative 2 for bot u and d introduce the reach-
avoid operator, Preu : 2Q×X × 2Q×X → 2Q×X, which, given two disjoint
sets K ⊆ Q×X and L ⊆ Q×X returns:

Reach(K,L) = {(q0, x0) ∈ Q×X : ∀u ∈ U ∃d ∈ D, t ≥ 0 such that
[(q(t), x(t)) ∈ K)] ∧ [∀t′ ∈ [0, t] ((q(t′), x(t′)) 6∈ L]

where (q, x) : [0, t] → Q × X is a segment of continuous evolution with
inputs u and d, i.e.:

(q(0), x(0)) = (q0, x0) and ∀t′ ∈ [0, t]
q(t′) = q0

(x(t′), u(t′), d(t′)) ∈ I(q0)
ẋ(t′) = f(q0, x(t

′), u(t′), d(t′))

Given two disjoint sets K and L, the operator Reach returns the set of
states for which whatever u does, d can chose an appropriate trajectory
to bring the state of the system to K along continuous evolution, without
going first through L.

6.5. Basic Algorithm 145

Proposition 6.14 For all K,L ⊆ Q × X with K ∩ L = ∅, K ⊆
Reach(K,L) ⊆ Lc.

Notice that the definition of Reach is somewhat informal, since:

• u is implicitly assumed to be a feedback strategy (in fact, without
loss of generality a memoryless feedback strategy, see Lecture 21).

• u and d are allowed to be piecewise continuous (recall the justification
for this given in Lecture 26).

6.5 Basic Algorithm

Using the above definitions, the following algorithm can now be formulated
for computing the largest controlled invariant subset of a given set F .
Algorithm 4 (Controlled Invariant Set)

Initialization:
W 0 = F , W 1 = ∅, i = 0

while W i 6=W i+1 do
begin

W i−1 =W i \ Reach(Pred(W i),Preu(W
i))

i = i− 1
end

Pictorially, the operations involved in one step of the algorithm is illustrated
in Figure 6.4.

Proposition 6.15 If the algorithm terminates in a finite number of steps,
the fixed point W ∗ is the maximal controlled invariant subset of F .

Proof: Clearly, W ∗ ⊆ . . . ⊆ W i−1 ⊆ W i ⊆ . . . ⊆ F . Assume that the
algorithm terminates in a finite number of steps. Then:

W ∗ =W ∗ \ Reach(Pred(W ∗),Preu(W
∗))

⇔ W ∗ ∩ Reach(Pred(W
∗),Preu(W

∗))

⇔ Reach(Pred(W
∗),Preu(W

∗)) ⊆ (W ∗)c

But:

(W ∗)c ⊆ Pred(W
∗) ⊆ Reach(Pred(W

∗),Preu(W
∗)) ⊆ (W ∗)c

⇔ Reach(Pred(W
∗),Preu(W

∗)) = Pred(W
∗) = (W ∗)c

Consider an arbitrary (q0, x0) ∈W ∗. Then:

(q0, x0) 6∈ Reach(Pred(W
∗),Preu(W

∗))

Taking the negation of the expression for Reach this becomes:

∃u ∈ U such that ∀d ∈ D, ∀t ≥ 0 [(q(t), x(t)) 6∈ Pred(W
∗))]∨[∃t′ ∈ [0, t] ((q(t′), x(t′)) ∈ Preu(W

∗)]

146 Chapter 6. Controller Synthesis for Hybrid Systems

ci
(W)

i
u

Pre (W)d
iPre (W)

d u
Reach(Pre (W), Pre (W))i i

Figure 6.4. One step of the algorithm.

Replacing Pred(W
∗) by (W ∗)c and substituting the definition of Preu(W

∗):

∃u ∈ U such that ∀d ∈ D, ∀t ≥ 0 [(q(t), x(t)) ∈W ∗]∨
[∃t′ ∈ [0, t] such that ∃u(t′) ∈ U such that ∀d(t′) ∈ D,
(∃q′ ∈ Q such that (x(t′), u(t′), d(t′)) ∈ G(q(t′), q′))∧
((x(t′), u(t′), d(t′)) 6∈ I(q(t′)))∧
((x(t′), u(t′), d(t′)) ∈ G(q(t′), q′) → R(q(t′), q′, x(t′), u(t′), d(t′)) ⊆W

In other works, if (q0, x0) ∈W ∗ either u can keep the system forever in W ∗

without any discrete transitions taking place, or it can drive the system so
that (q(τ1), x(τ1)) ∈ W ∗ (the first discrete transition the state is again in
W ∗). Controlled invariance of W ∗ follows by induction.

To show maximality, consider an arbitrary (q0, x0) ∈ (W ∗)c. Then, since
the algorithm terminated in a finite number of steps, there exists i such
that:

(q0, x0) ∈W i \W i−1

⇔ (q0, x0) ∈ Reach(Pred(W
i),Preu(W

i))

⇔ ∀u ∈ U ∃d ∈ D, t ≥ 0 such that [(q(t), x(t)) ∈ Pred(W
i)] ∧ [∀t′ ∈ [0, t], ((q(t′), x(t′)) 6∈ Preu(W

i)]

Substituting the definition of Pred leads to:

∀u ∈ U ∃d ∈ D, ∃t ≥ 0 such that [∀t′ ∈ [0, t] ((q(t′), x(t′)) 6∈ Preu(W
i)]∧

[((q(t), x(t)) ∈ (W i)c)∨
(∀u(t) ∈ U ∃d(t) ∈ D, q′ ∈ Q such that [(x(t), u(t), d(t)) ∈ G(q(t),
[R(q(t), q′, x(t), u(t), d(t)) ∩ (W i)c 6= ∅])

6.5. Basic Algorithm 147

Since W j ⊆W i, for all j ≤ i, the above shows that in finite time the state
may end up either in F c or in W j for some j > i whatever the control does
(at best it ends up in W i+1). Therefore, by induction, the state leaves F
in finite time.

This is page 148
Printer: Opaque this

Chapter 7

Computational Methods (Claire)

7.1 Flight Level Control: A Numerical Case Study

To illustrate the results of Section 5.3.3, we consider the problem of main-
taining an aircraft at a desired flight level. Commercial aircraft at cruising
altitudes are typically assigned a flight level by Air Traffic Control (ATC).
The flight levels are separated by a few hundred feet (e.g. 500 or 1000, de-
pending on altitude and the type of airspace). Air traffic moves in different
directions at different flight levels (north to south in one level, east to west
in another, etc.). This arrangement is desirable because it greatly simplifies
the task of ATC: the problem of ensuring aircraft separation, which is nor-
mally three dimensional, can most of the time be decomposed to a number
of two dimensional problems.
Changes in the flight level happen occasionally and have to be cleared

by ATC. At all other times the aircraft have to ensure that they remain
within certain bounds (e.g. ±250 feet) of their assigned level. At the same
time, they also have to maintain certain limits on their speed, flight path
angle, acceleration, etc. imposed by limitations of the engine and airframe,
passenger comfort requirements, or to avoid dangerous situations such as
aerodynamic stall. In this section we formulate a a SupMin optimal control
problem that allows us to address such constraints.

7.1. Flight Level Control: A Numerical Case Study 149

Yg

Xg

Yb
Xb

Yw

Xw

α

γ

θ

V

L

D

T

Mgh

Figure 7.1. Coordinate frames and forces for the aircraft model.

7.1.1 Aircraft Model

We restrict our attention to the movement of the aircraft in the vertical
plane and describe the motion using a point mass model. Such models
are commonly used in ATC research (see, for example, [110, 136]). They
are fairly simple, but still capture the essential features of aircraft flight.
The analysis presented here is an extension to three dimensions of an
aerodynamic envelope protection problem studied in [110].
Three coordinate frames are used to describe the motion of the aircraft:

the ground frame (Xg–Yg), the body frame (Xb–Yb) and the wind frame
(Xw–Yw). The angles of rotation between the frames are denoted by θ
(ground to body frame, known as the pitch angle), γ (ground to wind frame,
known as the flight path angle) and α (wind to body frame, known as the
angle of attack). V ∈ R denotes the speed of the aircraft (aligned with the
positive Xw direction) and h its altitude. Figure 7.1 shows the different
forces applied to the aircraft: its weight (mg, acting in the negative Yg
direction), the aerodynamic lift (L, acting in the positive Yw direction),
the aerodynamic drag (D, acting in the negative Xw direction) and the
thrust exerted by the engine (T , acting in the positive Xb direction).

A force balance leads to the following equations of motion

mV̇ = T cos(α)−D −mg sin(γ)

mV γ̇ = L+ T sin(α)−mg cos(γ).

150 Chapter 7. Computational Methods (Claire)

From basic aerodynamics, the lift and drag can be approximated by

L =
CLSρV

2

2
(1 + cα) = aLV

2(1 + cα)

D =
CDSρV

2

2
= aDV

2,

where, CL, CD, and c are (dimension-less) lift and drag coefficients, S is the
wing surface area, ρ is the air density and, as is commonly done in practice,
the dependence of the drag on the angle of attack has been suppressed.

A three state model with x1 = V , x2 = γ and x3 = h suffices for
our purposes. The system is controlled by two inputs, the thrust, u1 = T ,
and the pitch angle1, u2 = θ. We assume rectangular bounds on the inputs,
u ∈ U = [Tmin, Tmax]× [θmin, θmax]. After a small angle approximation on α
(valid for airliners, which usually operate around trimmed flight conditions)
the equations of motion become

ẋ = f(x, u) =




−aD

m x21 − g sin(x2)
aL

m x1(1− cx2)− g cos(x2)
x1

x1 sin(x2)


+




1
m
0
0


u1 +




0
alc
m x1
0


u2

(7.1)

7.1.2 Cost Function and Optimal Controls

For safety reasons, certain combinations of speed and flight path angle
should be avoided, because they may result in aerodynamic stall. Part of
the task of the controller is therefore to keep V and γ within a safe “aero-
dynamic envelope”. Following [110], we consider a simplified rectangular
envelope; improvements that can be introduced to make the envelope more
realistic are discussed in [137, 105]. We require that

Vmin ≤ x1 ≤ Vmax and γmin ≤ x2 ≤ γmax,

for some Vmin ≤ Vmax and γmin ≤ γmax. In addition, to ensure that the
aircraft does not stray away from its flight level we require that for some
hmin ≤ hmax,

hmin ≤ x3 ≤ hmax.

We set2 K = [Vmin, Vmax]× [γmin, γmax]× [hmin, hmax].

1In practice, one can only control the second derivative of the pitch angle using the

aerodynamic surfaces. This makes the model weakly non-minimum phase. Here we ignore
this complication.

2Strictly speaking, to follow the development on Section ?? one needs to assume that
the set K is open. It is easy to see, however, that allowing K to be closed makes no

difference in this case.

7.1. Flight Level Control: A Numerical Case Study 151

To encode these constraints as a cost in a SupMin problem we define a
function l(·) : R3 → R by

l(x) = min {x1 − Vmin, x2 − γmin, x3 − hmin, Vmax − x1, γmax − x2, hmax − x3} .
Notice that l(x) ≥ 0 for x ∈ K and l(x) < 0 for x 6∈ K. Clearly, l is
Lipschitz continuous. To keep l bounded (and since we are only interested
in the behaviour around the set K) we “saturate” the function l outside
the set [Vmin−δV, Vmax+δV]× [γmin−δγ, γmax+δγ]× [hmin−δh, hmax+δh]
for δV, δγ, δh > 0.
The problem is now in a form that we can apply the results of

Section 5.3.3. The Hamiltonian of equation (5.34) becomes

H1(p, x) =min
{
0, p1

(
−aD
m
x21 − g sin(x2)

)

+ p2

(
aL
m
x1(1− cx2)− g

cos(x2)

x1

)
+ p3x1 sin(x2)

+
1

m
p1û1 +

aLc

m
x1p2û2

}
.

The optimal controls are given by

û1 =

{
Tmin if p1 < 0
Tmax if p1 > 0

and û1 =

{
θmin if p2 < 0
θmax if p2 > 0

(recall that x1 > 0). The singularities at p1 = 0 and p2 = 0 play very little
role in the numerical computation and so will not be investigated further
here; a more thorough treatment (for the 2 dimensional case with state x1
and x2) can be found in [110].

7.1.3 Numerical Results

The resulting optimal Hamiltonian was coded in a numerical tool devel-
oped at Stanford University [138, 139] for computing viscosity solutions
to Hamilton-Jacobi equations using the algorithms of [140, 141]. The re-
sults are shown in Figures 7.2 and 7.3. The parameters used were aL =
65.3Kg/m, aD = 3.18Kg/m, m = 160 · 103Kg, g = 9.81m/s2, c = 6,
θmin = −20◦, θmax = 25◦, Tmin = 60 · 103N , and Tmax = 120 · 103N .
They correspond to an Airbus A330 aircraft cruising at 35000 feet. The
parameters used in the function l were Vmin = 92m/s, Vmax = 170m/s,
γmin = −20◦, γmax = 25◦, hmin = −150m, hmax = 150m, δV = 5m/s,
δγ = 2.5◦, δh = 10m. The computation was performed on a 100×100×100
grid and required 10298 seconds on a Pentium III, 800MHz processor
running Red Hat Linux.
Figure 7.2 shows the level set Viab(0,K) = {x ∈ R

3 | V1(x, 0) ≥ 0} for
two different values of the horizon, T = 1.0s (left) and T = 2.0s (right). As
expected from Part ?? of Theorem 5.17, these sets are nested (the level set
“shrinks” as T increases). For T ≈ 2.0s the shrinking stops; the level sets for

152 Chapter 7. Computational Methods (Claire)

Figure 7.2. Two level sets of the value function V1(x, 0), for T = 1s (left) and
T = 2s (right).

Figure 7.3. Projection of the T = 2s level set along the x3 axis (left) and along
the x1 axis (right).

values T ≥ 2 are all the same. The general shape of the level sets suggests
that certain states (e.g. combining high altitude with high flight path angle,
low speed with high flight path angle etc.) are unsafe and should be avoided.
If the aircraft ever gets to such a state, then, whatever the controller does
from then on, it will sooner or later violate its flight envelope requirements.
If the initial condition is inside the level set unsafe states can be avoided by
applying the optimal controls of Section 7.1.2 whenever the state trajectory
hits the boundary of the level set (see [142, 143] for practical problems
associated with such a control strategy).
Better intuition about the unsafe states can be obtained if the level set

for T = 2.0s is projected along the axes (Figure 7.3). The projection along
the x2 axis leads to the square [Vmin, Vmax]× [hmin, hmax] in the x1–x3 co-
ordinates. This suggests that any combination of speed and altitude within
these bounds is safe for some value of flight path angle. The projection
along the x3 axis leads to the set shown on the left in Figure 7.3; the

7.2. Bibliography and Further Reading 153

shape of the set is in fact the same for all altitudes. Combinations of low
speed with high flight path angle and high speed with low flight path angle
are unsafe; the aircraft is bound to violate the speed restrictions for such
combinations. The projection along the x1 axis is shown on the right in
Figure 7.3. Combinations of high altitude with high flight path angle and
low altitude with low flight path angle are unsafe for all speeds; the aircraft
is bound to violate the flight level limitations for such combinations. The
situation gets worse as the speed increases.

7.2 Bibliography and Further Reading

d/dt, checkmate, Saint-Pierre, Asarin et.al.

This is page 154
Printer: Opaque this

Chapter 8

Stochastic Hybrid Systems (John)

This is page 155
Printer: Opaque this

Chapter 9
Stability of Hybrid Systems

For the purpose of studying stability of hybrid automata, we will again
drop reference to inputs (and outputs) of the system and focus on the state
trajectory. Later, we will bring the inputs (and outputs) back in when we
talk about stabilizing controllers.

9.1 Review of Stability for Continuous Systems

For reference to the following material, see [7, ?], Chapters 3 and 2
respectively.
Consider the following continuous system:

ẋ = f(x), x(0) = x0 (9.1)

where f : Rn → R
n is globally Lipschitz continuous.

• Definition (Equilibrium of (9.1)): x = xe is an equilibrium point
of (9.1) if f(xe) = 0. Without loss of generality in the following we
will assume that xe = 0.

• Definition (Stability of (9.1)): The equilibrium point xe = 0 of
(9.1) is stable (in the sense of Lyapunov) if for all ǫ > 0 there exists
a δ > 0 such that

||x0|| < δ ⇒ ||x(t)|| < ǫ, ∀t ≥ 0 (9.2)

where x : [0,∞) → R
n is the solution to (9.1), starting at x0.

156 Chapter 9. Stability of Hybrid Systems

The equilibrium point xe = 0 of (9.1) is asymptotically stable if it is
stable and δ can be chosen so that

||x0|| < δ ⇒ lim
t→∞

||x(t)|| = 0 (9.3)

• More definitions for stability: exponentially stable, globally (asymp-
totically, exponentially) stable, locally (asymptotically, exponen-
tially) stable, unstable . . .

• Note that the definition of stability allows xe = 0 to be stable without
x(t) converging to 0; note also that for system (9.1) with a single
unstable equilibrium point, for all x0 the solution can be bounded.

Consider a continuously differentiable (C1) function V : Rn → R. The
rate of change of V along solutions of (9.1) is computed as:

V̇ (x) =

n∑

i=1

∂V

∂xi
ẋi =

n∑

i=1

∂V

∂xi
fi(x) =

∂V

∂x
f(x) (9.4)

This function is denoted the Lie derivative of V with respect to f .

Theorem 9.1 (Lyapunov Stability Theorem) Let xe = 0 be an equi-
librium point of ẋ = f(x), x(0) = x0 and D ⊂ R

n a set containing xe = 0.
If V : D → R is a C1 function such that

V (0) = 0 (9.5)

V (x) > 0, ∀x ∈ D\{0} (9.6)

V̇ (x) ≤ 0, ∀x ∈ D (9.7)

then xe is stable. Furthermore, if xe = 0 is stable and

V̇ (x) < 0, ∀x ∈ D\{0} (9.8)

then xe is asymptotically stable.

Note that the Lyapunov function defines level sets {x ∈ R
n : V (x) ≤ c}

for c > 0 (see Figure 9.1). If a state trajectory enters one of these sets, it
has to stay inside it, since V̇ (x) ≤ 0 implies that if V (x) = c at t = t0, then
V (x(t)) ≤ V (x(0)) ≤ c, ∀t ≥ t0.
Proof: For stability, we need to prove that for all ǫ > 0 there exists δ > 0

such that:

||x0|| < δ ⇒ ||x(t)|| < ǫ, ∀t ≥ 0 (9.9)

We will use the following notation: for any r > 0, let Br = {x ∈ R
n :

||x|| < r}, Sr = {x ∈ R
n : ||x|| = r}, and Ωr = {x ∈ R

n : V (x) < r}.
See Figure 9.2. Choose r1 ∈ (0, ǫ) such that Br1 ⊆ D (we do this because

there is no guarantee that Bǫ ⊆ D). Let c1 = minx∈Sr1
V (x). Choose

c2 ∈ (0, c1). Note that there is no guarantee that Ωc2 ⊂ Br1 . Why not?
However, if δ > 0 is chosen so that Bδ ⊆ Ωc2 , then V (x0) < c2. Since
V is non-increasing along system executions, executions that start inside

9.1. Review of Stability for Continuous Systems 157

xe

V(x) = 1
V(x) = 2

V(x) = 3

Figure 9.1. Level sets V (x) = 1, V (x) = 2, and V (x) = 3 for a Lyapunov function
V ; thus if a state trajectory enters one of these sets, it has to stay inside it since
V̇ (x) ≤ 0.

D

Br
1

Bδ

Ωc2

xe

Figure 9.2. Figure for Proof of Lyapunov Stability Theorem (for continuous
systems); WLOG xe = 0.

Bδ cannot leave Ωc2 . Thus for all t > 0 we have x(t) ∈ Br1 ⊂ Bǫ. Thus
||x(t)|| ≤ ǫ for all t > 0.

• Example (Pendulum) Consider the pendulum, unit mass, unit
length, where x1 is the angle of the pendulum with the vertical, and
x2 is the angular velocity of the pendulum.

ẋ1 = x2

ẋ2 = −g sinx1

158 Chapter 9. Stability of Hybrid Systems

To show that xe = 0 (pendulum pointing downwards) is a stable
equilibrium, consider the candidate Lyapunov function:

V (x) = g(1− cosx1) +
x22
2

(9.10)

defined over the set {x ∈ R
n : −π < x1 < π}. Clearly, V (0) = 0, and

V (x) > 0, ∀x ∈ {x ∈ R
n : −π < x1 < π}\{0}. Also,

V̇ (x) = [g sinx1 x2]

[
x2

−g sinx1

]
= 0

so the equilibrium point xe = 0 is stable. Is it asymptotically stable?

• Finding Lyapunov functions in general is HARD. Often a solution is
to try to use the energy of the system as a Lyapunov function (as in
the example above). However, for linear systems, finding Lyapunov
functions is easy: For a stable linear system ẋ = Ax, a Lyapunov
function is given by V (x) = xTPx, where P is a positive definite
symmetric matrix which solves the Lyapunov Equation ATP +PA =
−I. (Recall that a matrix P is said to be positive definite if xTPx > 0
for all x 6= 0. It is called positive semidefinite if xTPx ≥ 0 for all
x 6= 0.)

9.2 Stability of Hybrid Systems

Consider an autonomous hybrid automaton H = (S, Init, f , Dom, R).

Definition 9.2 (Equilibrium of a Hybrid Automaton) The continu-
ous state xe = 0 ∈ R

n is an equilibrium point of H if:

1. f(q, 0) = 0 for all q ∈ Q, and

2. R(q, 0) ⊂ Q× 0.

• Thus, discrete transitions are allowed out of (q, 0), as long as the
system jumps to a (q′, x) in which x = xe = 0.

• It follows from the above definition that if (q0, 0) ∈ Init and (τ, (q, x))
represents the hybrid execution starting at (q0, 0), then x(t) = 0 for
all t ∈ τ .

As we did for continuous systems, we would like to characterize the notion
that if the continuous state starts close to the equilibrium point, it stays
close, or converges, to it.

• Definition (Stable Equilibrium of a Hybrid Automaton): Let
xe = 0 be an equilibrium point of the hybrid automaton H. Then
xe = 0 is stable if for all ǫ > 0 there exists δ > 0 such that for all

9.2. Stability of Hybrid Systems 159

(τ, (q, x)) starting at (q0, x0),

||x0|| < δ ⇒ ||x(t)|| < ǫ, ∀t ∈ τ (9.11)

• Definition (Asymptotically Stable Equilibrium of a Hybrid
Automaton): Let xe = 0 ∈ X be an equilibrium point of the hybrid
automaton H. Then xe = 0 is asymptotically stable if it is stable and
δ can be chosen so that for all (τ, (q, x)) starting at (q0, x0),

||x0|| < δ ⇒ lim
t→τ∞

||x(t)|| = 0 (9.12)

• Remark: In the above, (τ, (q, x)) is considered to be an infinite exe-
cution, with τ∞ =

∑
i(τ

′
i − τi). Notice that τ∞ <∞ if χ is Zeno and

τ∞ = ∞ otherwise.

One would expect that a hybrid system for which each discrete state’s
continuous system is stable would be stable, at least if R(q, x) ∈ Q × {x}
for all x. But this is NOT NECESSARILY the case:

• Example: Consider the hybrid automaton H with:

– Q = {q1, q2}, X = R
2

– Init = Q× {x ∈ X : ||x|| > 0}
– f(q1, x) = A1x and f(q2, x) = A2x, with:

A1 =

[
−1 10

−100 −1

]
, A2 =

[
−1 100
−10 −1

]

– Dom = {q1, {x ∈ R
2 : x1x2 ≤ 0}} ∪ {q2, {x ∈ R

2 : x1x2 ≥ 0}}
– R(q1, {x ∈ R

2 : x1x2 ≥ 0}) = (q2, x) and R(q2, {x ∈ R
2 : x1x2 ≤

0}) = (q1, x)

• Remark 1: Since f(q1, 0) = f(q2, 0) = 0 and R(q1, 0) =
(q2, 0), R(q2, 0) = (q1, 0), xe = 0 is an equilibrium of H.

• Remark 2: Since the eigenvalues of both systems are at −1±j
√
1000,

the continuous systems ż = Aix for i = 1, 2 are asymptotically stable.
(See phase portraits for each in Figure 9.3.)

• Remark 3: xe = 0 is unstable for H! If the switching is flipped, then
xe = 0 is stable! (See phase portraits for each in Figure 9.4.)

• Remark 4: This simple example (drawn from [144]) shows that in
general we cannot expect to analyze the stability of a hybrid system
by studying the continuous components separately.

Theorem 9.3 (Lyapunov Stability Theorem (for hybrid systems))
Consider a hybrid automaton H with xe = 0 an equilibrium point, and
R(q, x) ∈ Q× {x}. Assume that there exists an open set D ⊂ Q×R

n such
that (q, 0) ∈ D for some q ∈ Q. Let V : D → R be a C1 function in its
second argument such that for all q ∈ Q:

160 Chapter 9. Stability of Hybrid Systems

x ’ = (− x + 10 y)
y ’ = (− 100 x − y)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

x ’ = (− x + 100 y)
y ’ = (− 10 x − y)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 9.3. (a) Phase portrait of ẋ = A1x; (b) Phase portrait
of ẋ = A2x. Figure generated using phase plane software from
http://math.rice.edu/̃polking/odesoft/, freely downloadable.

1. V (q, 0) = 0;

2. V (q, x) > 0 for all x, (q, x) ∈ D\{0}, and

3. ∂V (q,x)
∂x f(q, x) ≤ 0 for all x, (q, x) ∈ D

If for all (τ, q, x) starting at (q0, x0) where (q0, x0) ∈ Init ∩ D, and all
q′ ∈ Q, the sequence {V (q(τi), x(τi)) : q(τi) = q′} is non-increasing (or
empty), then xe = 0 is a stable equilibrium of H.

• We call such function “Lyapunov-like” (see Figure 9.5).

• A drawback of this Theorem is that the sequence {V (q(τi), x(τi))}
must be evaluated (which may require integrating the vector field
and then we lose the fundamental advantage of Lyapunov theory)

• Also, it is in general difficult to derive such a function V

9.2. Stability of Hybrid Systems 161

x ’ = (x y<=0) (− x + 10 y) + (x y>0) (− x + 100 y)
y ’ = (x y<=0) (− 100 x − y) + (x y>0) (− 10 x − y)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

x ’ = (x y>0) (− x + 10 y) + (x y<=0) (− x + 100 y)
y ’ = (x y>0) (− 100 x − y) + (x y<=0) (− 10 x − y)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 9.4. (a) Phase portrait of H; (b) Phase portrait of H, switching conditions
flipped.

• HOWEVER, for certain classes of hybrid automata, which have vec-
tor fields linear in x, computationally attractive methods exist to
derive Lyapunov-like functions V

Proof: We sketch the proof for Q = {q1, q2} and (q, ·) /∈ R(q, ·). Define
the sets in Figure 9.6 similar to the previous proof, ie.

Ωc2i
= {x ∈ Br1i

: V (qi, x) < c2i} (9.13)

where c2i ∈ (0, c1i) where c1i = minx∈Sr1i
V (qi, x). Now let r =

min{δ1, δ2}, and inside Br, in each of q1 and q2, repeat the construction
above, ie.

Ωc2i
= {x ∈ Br : V (qi, x) < c2i} (9.14)

where c2i ∈ (0,minx∈Sr
V (qi, x)). Also, let Bδi

⊂ Ωc2i
. Let δ = min{δ1, δ2}.

Consider the hybrid trajectory (τ, q, x) starting at x0 ∈ Bδ, and assume
that the initial discrete state q0 is equal to q1. By the corresponding
continuous Lyapunov theorem, x(t) ∈ Ωc21

for t ∈ [τ0, τ
′
0]. Therefore,

162 Chapter 9. Stability of Hybrid Systems

q
2

q
1

V(q,x)

τ

Figure 9.5. Showing V (q1, x) and V (q2, x). Solid segments on qi mean that the
system is in qi at that time, dotted segments mean the system is in qj , j 6= i.

xe
Bδ

Ωc

Br1

2

xe
Bδ

Ωc

Br1

2

1

1

1

2

2

2

D1
D2

q
1

q
2

Figure 9.6. Figure for Proof of Lyapunov Stability Theorem (for hybrid systems).

x(τ1) = x(τ ′0) ∈ Ωc22
(where equality holds because of the restricted defini-

tion of the transition map). By the continuous Lyapunov Theorem again,
x(t) ∈ Ωc22

and thus x(t) ∈ Bǫ for t ∈ [τ1, τ
′
1]. By the assumption of

the non-increasing sequence, x(τ ′1) = x(τ2) ∈ Ωc21
. The result follows by

induction.

Corollary 9.4 (A more restrictive Lyapunov Stability Theorem (for hybrid systems))
Consider a hybrid automaton H with xe = 0 an equilibrium point, and

9.3. Lyapunov Stability for Piecewise Linear Systems 163

R(q, x) ∈ Q×{x}. Assume that there exists an open set D ⊂ R
n such that

0 ∈ D. Let V : D → R be a C1 function such that for all q ∈ Q:

1. V (0) = 0;

2. V (x) > 0 for all x ∈ D\{0}, and

3. ∂V (x)
∂x f(q, x) ≤ 0 for all x ∈ D

Then xe = 0 is a stable equilibrium of H.

Proof: Define V̂ : Q×R
n → R by V̂ (q, x) = V (x) for all q ∈ Q, x ∈ R

n

and apply Theorem 3.

9.3 Lyapunov Stability for Piecewise Linear
Systems

Theorem 9.5 (Lyapunov Stability for Linear Systems) The equilib-
rium point xe = 0 of ẋ = Ax is asymptotically stable if and only if for all
matrices Q = QT > 0 there exists a unique matrix P = PT > 0 such that

PA+ATP = −Q (9.15)

Proof: For the “if” part of the proof, consider the Lyapunov function
(from Lecture Notes 4) V (x) = xTPx. Thus,

V̇ = xTP ẋ+ ẋTPx = xT (PA+ATP)x) = −xTQx < 0 (9.16)

For the “only if” part of the proof, consider

P =

∫ ∞

0

eA
T tQeAtdt (9.17)

which is well-defined since Re(λi(A)) < 0. Clearly,

PA+ATP =

∫ ∞

0

eA
T tQeAtAdt+

∫ ∞

0

AT eA
T tQeAtdt (9.18)

=

∫ ∞

0

d

dt
eA

T tQeAtdt = −Q (9.19)

Also, P is unique: to prove this, assume there exists another solution P̂ 6= P .
Then,

0 = eA
T t(Q−Q)eAt (9.20)

= eA
T t[(P − P̂)A+AT (P − P̂)]eAt (9.21)

=
d

dt
eA

T t(P − P̂)eAt (9.22)

164 Chapter 9. Stability of Hybrid Systems

which means that eA
T t(P − P̂)eAt is constant for all t ≥ 0. Thus,

eA
T 0(P − P̂)eA0 = lim

t→∞
eA

T t(P − P̂)eAt (9.23)

thus P = P̂ , which contradicts the assumption and thus concludes the
proof.

• Equation (9.15) is called a Lyapunov equation. We may also write
the matrix condition in the Theorem of Lyapunov Stability for Linear
Systems as the following inequality:

ATP + PA < 0 (9.24)

which is called a linear matrix inequality (LMI), since the left hand
side is linear in the unknown P .

Example: Switched Linear System, Revisited.
Consider the linear hybrid system example from page 5 (with the

switching flipped):

• Q = {q1, q2}, X = R
2

• Init = Q× {x ∈ X : ||x|| > 0}
• f(q1, x) = A1x and f(q2, x) = A2x, with:

A1 =

[
−1 10
−100 −1

]
, A2 =

[
−1 100
−10 −1

]

• Dom = {q1, {x ∈ R
2 : x1x2 ≥ 0}} ∪ {q2, {x ∈ R

2 : x1x2 ≤ 0}}
• R(q1, {x ∈ R

2 : x1x2 ≤ 0}) = (q2, x) and R(q2, {x ∈ R
2 : x1x2 ≥

0}) = (q1, x)

Proposition 9.6 x = 0 is an equilibrium of H.

Proof: f(q1, 0) = f(q2, 0) = 0 and R(q1, 0) = (q2, 0), R(q2, 0) = (q1, 0).

Proposition 9.7 The continuous systems ẋ = Aix for i = 1, 2 are
asymptotically stable.

Recall that Pi > 0 (positive definite) if and only if xTPix > 0 for all
x 6= 0, and I is the identity matrix.
Consider the candidate Lyapunov function:

V (q, x) =

{
xTP1x if q = q1
xTP2x if q = q2

Check that the conditions of the Theorem hold. For all q ∈ Q:

1. V (q, 0) = 0

2. V (q, x) > 0 for all x 6= 0 (since the Pi are positive definite)

9.3. Lyapunov Stability for Piecewise Linear Systems 165

3. ∂V
∂x (q, x)f(q, x) ≤ 0 for all x since:

∂V

∂x
(q, x)f(q, x) =

d

dt
V (q, x(t))

= ẋTPix+ xTPiẋ

= xTAT
i Pix+ xTPiAix

= xT (AT
i Pi + PiAi)x

= −xT Ix
= −‖x‖2 ≤ 0

It remains to test the non-increasing sequence condition. Notice that the
level sets of xTPix are ellipses centered at the origin. Therefore each level
set intersects the switching line xi = 0 (for i = 1, 2) at exactly two points,
x̂ and −x̂. Assume that x(τi) = x̂ and q(τi) = q1. The fact that V (q1, x(t))
does not increase for t ∈ [τi, τ

′
i] (where q(t) = q1) implies that the next

time a switching line is reached, x(τ ′i) = α(−x̂) for some α ∈ (0, 1]. There-
fore, ‖x(τi+1)‖ = ‖x(τ ′i)‖ ≤ ‖x(τi)‖. By a similar argument, ‖x(τi+2)‖ =
‖x(τ ′i+1)‖ ≤ ‖x(τi+1)‖. Therefore, V (q(τi), x(τi)) ≤ V (q(τi+2), x(τi+2)).

9.3.1 Globally Quadratic Lyapunov Function

The material in this section and the next is drawn from the work of Mikael
Johansson [73, ?], and also from [?, 70, ?].

Theorem 9.8 (Globally Quadratic Lyapunov Function) Consider a
hybrid automaton H = (S, Init, f,Dom,R) with equilibrium xe = 0.
Assume that for all i:

• f(qi, x) = Aix,Ai ∈ R
n×n

• Init ⊆ Dom

• for all x ∈ R
n

|R(qi, x)| =
{

1 if (qi, x) ∈ ∂Dom
0 otherwise

(9.25)

and {(q′, x′) ∈ R(qi, x)} ⇒ {(q′, x′) ∈ Dom, x′ = x}. Furthermore,
assume that for all χ ∈ E∞

H , τ∞(χ) = ∞. Then, if there exists P =
PT > 0 such that

AT
i P + PAi < 0, ∀i (9.26)

xe = 0 is asymptotically stable.

Proof: First note that there exists γ > 0 such that

AT
i P + PAi + γI ≤ 0, ∀i (9.27)

Also, note that with the given assumptions there exists a unique, infinite,
and non-Zeno execution χ = (τ, q, x) for every (q0, x0) ∈ Init. For all i ≥ 0,

166 Chapter 9. Stability of Hybrid Systems

the continuous evolution x : τ → R
n of such an execution satisfies the

following time-varying linear differential equation:

ẋ(t) =
∑

i

µi(t)Aix(t), t ∈ [τi, τ
′
i] (9.28)

where µi : τ → [0, 1] is a function such that for t ∈ [τi, τ
′
i],

∑
i µi(t) = 1.

Letting V (q, x) = xTPx, we have that for t ∈ [τi, τ
′
i],

V̇ (q(t), x(t)) =
∑

i

[µi(t)x(t)
T (AT

i P + PAi)x(t)] (9.29)

≤ −γ||x(t)||2
∑

i

µi(t) (9.30)

= −γ||x(t)||2 (9.31)

Now, since V (q, x) = xTPx, we have that

λmin||x||2 ≤ V (q, x) ≤ λmax||x||2 (9.32)

where 0 < λmin ≤ λmax are the smallest and largest eigenvalues of P
respectively. It follows that

V̇ (q(t), x(t)) ≤ − γ

λmax
V (q(t), x(t)), t ∈ [τi, τ

′
i] (9.33)

and hence

V (q(t), x(t)) ≤ V (q(τi), x(τi))e
−γ(t−τi)/λmax , t ∈ [τi, τ

′
i] (9.34)

Thus, from (9.32):

λmin||x(t)||2 ≤ λmax||x(τi)||2e−γ(t−τi)/λmax , t ∈ [τi, τ
′
i] (9.35)

Since the execution χ by assumption is non-Zeno, we have that τi → ∞ as
i→ ∞. Hence, ||x(t)|| goes to zero exponentially as t→ τ∞, which implies
that the equilibrium point xe = 0 is asymptotically (actually exponentially)
stable.

Example 1: Consider the hybrid automaton H of Figure 9.7, with

>

q1 q2

= A xx

<0x1

x
1 0

> 0x1x1< 0

= x A x
1 2

Figure 9.7. Example 1

9.3. Lyapunov Stability for Piecewise Linear Systems 167

A1 =

[
−1 1
−1 −1

]
, A2 =

[
−2 1
−1 −2

]
(9.36)

Since the eigenvalues of A1 are λ(A1) = {−1 ± i} and of A2 are λ(A2) =
{−2± i}, both ẋ = A1x and ẋ = A2x have an asymptotically stable focus.
H satisfies the assumptions of the previous theorem; indeed, AT

1 +A1 < 0
and AT

2 +A2 < 0, so the inequalities in the theorem are satisfied for P = I.
Hence, the origin is an asymptotically stable equilibrium point for H.

x ’ = (x<=0) (− x + y) + (x>0) (− 2 x + y)
y ’ = (x<=0) (− x − y) + (x>0) (− x − 2 y)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 9.8. Example 1

Example 2 [?]: Consider the hybrid automaton from Figure 1 again,
but let

A1 =

[
−5 −4
−1 −2

]
, A2 =

[
−2 −4
20 −2

]
(9.37)

The eigenvalues of A1 are λ(A1) = {−6,−1} and of A2 are λ(A2) = {−2±
4
√
5i} so that ẋ = A1x has an asymptotically stable node and ẋ = A2x

has an asymptotically stable focus. The evolution of the continuous state
is shown in Figure 9.9 for four different initial states. The origin seems to
be a stable equilibrium point – indeed, the Lyapunov function indicated by
the dashed level sets proves asymptotic stability of the origin. Yet from the
shape of its level sets, we see that the Lyapunov function is not globally
quadratic, but piecewise quadratic, in the sense that it is quadratic in each
discrete mode. (In fact, we can show for this example that it is not possible
to find a quadratic Lyapunov function).

168 Chapter 9. Stability of Hybrid Systems

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y

x ’ = (x<=0) (− 5 x − 4 y) + (x>0) (− 2 x − 4 y)
y ’ = (x<=0) (− x − 2 y) + (x>0) (20 x − 2 y)

Figure 9.9. Continuous evolution for a hybrid automaton that does not have a
globally quadratic Lyapunov function. Still, the origin is an asymptotically stable
equilibrium point, which can be proved by using a Lyapunov function quadratic
in each discrete state.

9.3.2 Piecewise Quadratic Lyapunov Function

If we assume that the hybrid automaton is restricted further so that the
domains are given by polyhedra, then we can make some more general
statements about the stability of the hybrid system:

Dom = ∪i{qi} × {x ∈ R
n : Ei1x ≥ 0, . . . , Einx ≥ 0} (9.38)

where

Ei =



Ei1

...
Ein


 ∈ R

n×n (9.39)

It then follows that (qi, 0) ∈ Dom for all i. Suppose that the reset relation
R satisfies:

|R(qi, x)| =
{

1 if (qi, x) ∈ ∂Dom
0 otherwise

(9.40)

9.3. Lyapunov Stability for Piecewise Linear Systems 169

such that

(qk, x
′) ∈ R(qi, x) ⇒ Fkx = Fix, qk 6= qi, x

′ = x (9.41)

where Fk, Fi ∈ R
m×n are given matrices (which hence define the boundaries

of Dom). The LMI condition in Theorem 1 would require that

xT (AT
i P + PAi)x < 0, ∀x 6= 0, (qi, x) ∈ Q× R

n (9.42)

It is however sufficient to require that

xT (AT
i P + PAi)x < 0, ∀x 6= 0, (qi, x) ∈ Dom (9.43)

This can be done by specifying a matrix Si such that xTSix ≥ 0 for all x
with (qi, x) ∈ Dom. Then,

AT
i P + PAi + Si < 0 (9.44)

still implies that

xT (AT
i P + PAi)x < 0, ∀x 6= 0, (qi, x) ∈ Dom (9.45)

but xT (AT
i P+PAi)x < 0 does not have to hold for x 6= 0 with (qk, x) ∈ Inv

and i 6= k. The matrix Si may be given as Si = ET
i UiEi, where Ei is

given by the representation of H and Ui = UT
i ∈ R

n×n is chosen to have
non-negative elements.
We can also let V depend on the discrete state, ie. V (qi, x) = xTPix

for (qi, x) ∈ Inv. We choose Pi = FT
i MFi, where Fi is given by the

representation of H, and M =MT ∈ R
n×n is to be chosen.

Theorem 9.9 (Piecewise Quadratic Lyapunov Function) H = (S, Init, f,Dom,R)
with equilibrium xe = 0. Assume that for all i:

• f(qi, x) = Aix,Ai ∈ R
n×n

• Dom = ∪i{qi} × {x ∈ R
n : Ei1x ≥ 0, . . . , Einx ≥ 0}

• Init ⊆ Dom

• for all x ∈ R
n

|R(qi, x)| =
{

1 if (qi, x) ∈ ∂Dom
0 otherwise

(9.46)

such that

(qk, x
′) ∈ R(qi, x) ⇒ Fkx = Fix, qk 6= qi, x

′ = x (9.47)

where Fk, Fi ∈ R
n×n.

Furthermore, assume that for all χ ∈ E∞
H , τ∞(χ) = ∞. Then, if there exists

Ui = UT
i , Wi =WT

i , and M =MT such that Pi = FT
i MFi satisfies:

AT
i Pi + PiAi + ET

i UiEi < 0 (9.48)

Pi − ET
i WiEi > 0 (9.49)

where Ui,Wi are non-negative, then xe = 0 is asymptotically stable.

170 Chapter 9. Stability of Hybrid Systems

Example 3: Consider the hybrid automaton of Figure 9.10 with

A1 = A3 =

[
−0.1 1
−5 −0.1

]
, A2 = A4 =

[
−0.1 5
−1 −0.1

]
(9.50)

Here, we may choose

x 2x 1 >

x 1 < x 2

x 2x 1
x 1 x 2

<
<

x 2x 1 >

x 1
x 2x 1 x 2

< x 2x 1
>>

q

x 4 3

21
A x x

= x

q4

=

3

= A x A x

q1 q2

= A xx

Figure 9.10. Example 3

E1 = −E3 =

[
−1 1
−1 −1

]
, E2 = −E4 =

[
−1 1
1 1

]
(9.51)

and

Fi =

[
Ei

I

]
∀i ∈ {1, 2, 3, 4} (9.52)

The eigenvalues of Ai are −1/10 ±
√
5i. The evolution of the continuous

state is shown in Figure 9.11. We can use a Lyapunov function given by:

P1 = P3 =

[
5 0
0 1

]
, P2 = P4 =

[
1 0
0 5

]
(9.53)

to prove asymptotic stability of the hybrid automaton.

9.3.3 Linear Matrix Inequalities

LMIs appear in many problems in systems and control theory (for example,
see the reference [?]). For example, in the last Theorem we would like to

9.3. Lyapunov Stability for Piecewise Linear Systems 171

x ’ = ((x − y>=0) (x + y<=0) + (x − y<0) (x + y>0)) (− 0.1 x + y) + ((x − y>=0) (x + y>=0) + (x − y<0) (x + y<0)) (− 0.1 x
y ’ = ((x − y>=0) (x + y<=0) + (x − y<0) (x + y>0)) (− 5 x − 0.1 y) + ((x − y>=0) (x + y>=0) + (x − y<0) (x + y<0)) (− x −

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

Figure 9.11. Example 3

solve

ET
i MEi > 0 (9.54)

AT
i Pi + PiAi + ET

i UiEi < 0 (9.55)

Pi − ET
i WiEi > 0 (9.56)

for the unknowns M , Ui, and Wi. This problem may be cast as an opti-
mization problem, which turns out to be convex, so that it can be efficiently
solved. In MATLAB, there is a toolbox called LMI Control Toolbox:
>> help lmilab

Try the demo:
>> help lmidem

and you’ll see there is a graphical user interface to specify LMIs; you can
enter this directly through:
lmiedit

After specifying an LMI, ie.:

P = PT ≻ 0 (9.57)

ATP + PA ≺ 0 (9.58)

where A is a matrix that you’ve already entered in MATLAB’s workspace
in lmisys, a feasible solution P is found (if it exists) by running the com-
mands:
[tmin, pfeas] = feasp(lmisys)

p = dec2mat(lmisys,pfeas,p)

172 Chapter 9. Stability of Hybrid Systems

The feasibility problem is solved as a convex optimization problem, which
has a global minimum. This means that if the feasibility problem has a
solution, the optimization algorithm will (at least theoretically) always find
it.

This is page 173
Printer: Opaque this

Chapter 10

Automated Highway Systems (John)

This is page 174
Printer: Opaque this

Chapter 11
Air Traffic Management and avionics
(Claire/John)

This is page 175
Printer: Opaque this

Chapter 12

Biochemical networks (Claire/John)

This is page 176
Printer: Opaque this

Chapter 13
Research Directions and New Vistas

This is page 177
Printer: Opaque this

Appendix A
Preliminaries on Continuous and
Discrete Systems

We start by providing a brief overview of some material on purely discrete
and purely continuous systems that will be used in subsequent chapters.
The coverage is by necessity concise. There are however many excellent
textbooks that cover this material very thoroughly and in great detail.
Pointers to some of the best known ones are given in the concluding section
of the chapter.

A.1 Notation

We start by summarizing some fairly standard mathematical notation that
will be used throughout the book.

• R
n denotes the n-dimensional Euclidean space. This is a finite di-

mensional vector space (also known as a linear space). If n = 1, we
will drop the superscript and write just R (the set of real numbers
or “the real line”). R+ will be used to denote the closed half space
R+ = {x ∈ R | x ≥ 0}. We will make no distinction between vectors
and real numbers in the notation (no arrows over the letters, bold
fond, etc.). Both vectors and real numbers will be denoted by lower
case letters.

• |x| =
√
x21 + x22 + . . .+ x2n denotes the standard (Euclidean) norm

in R
n.

• Z denotes the set of integers, . . . ,−2,−1, 0, 1, 2,

178 Appendix A. Preliminaries on Continuous and Discrete Systems

• x ∈ A is a shorthand for “x belongs to a set A”, e.g. x ∈ R
n means

that x is an n-dimensional vector.

• Given a set X, 2X denotes the power set of X, i.e. the set of all sub-
sets of X. In other words, A ∈ 2X means that A ⊆ X. By definition,
X ∈ 2X for all sets X.

• ∅ denotes the empty set (a set containing nothing). By definition
∅ ∈ 2X for all sets X.

Exercise A.1 Consider a set containing only 3 elements, say Q =
{q1, q2, q3}. Write down all the elements of 2Q. There should be 8 of
them. Can you guess why 2X is used to denote the power set of X?

• f(·) : A → B is a shorthand for a function mapping every element
x ∈ A to an element f(x) ∈ B. For example the function sin(·) : R →
R maps a real number x to its sine, sin(x).

• In logic formulas

– ∀ is a shorthand for “for all”, as in “∀x ∈ R, x2 ≥ 0”.
– ∃ is a shorthand for “there exists”, as in “∃x ∈ R such that

sin(x) = 0”.
– ∧ is a shorthand for “and”, ∨ stands for “or”, and ¬ stands for

“not”.
– ⇒ is a shorthand for “implies”.

• Logic expressions can be used to define sets by listing properties of
their elements. For example, the following expression defines a subset
of R2

{x ∈ R
2 | (x21 + x22 = 1) ∧ (x1 ≥ 0) ∧ (x2 ≤ 0)},

namely the part of the unit circle that falls in the 4th quadrant.

• ∞ denotes “infinity”.

• Given two real numbers a ≤ b,

[a, b] = {x ∈ R | a ≤ x ≤ b}
denotes the closed interval from a to b, while

[a, b) = {x ∈ R | a ≤ x < b}
denotes the right-open interval from a to b. Notice that if a = b,
then [a, b] = [a, a] = {a}, whereas [a, b) = [a, a) = ∅. If a < b,
[a, b] = [a, b) = ∅. We also define [a,∞) as the set of all real numbers
greater than or equal to a. Clearly, R+ = [0,∞).

• Given two sets Q and X, Q×X denotes the product of the two sets.
This is the set of all ordered pairs (q, x) with q ∈ Q and x ∈ X, i.e.

Q×X = {(q, x) | q ∈ Q and x ∈ X}.

A.2. Review of Continuous Systems 179

Notice that R2 = R× R and, more generally, Rn = R× R× . . .× R.
Elements of Rn will therefore be denoted interchangably as standard
column vectors

x =




x1
x2
...
xn




or as ordered n−tuples, x = (x1, x2, . . . , xn).

The book assumes some familiarity with the concepts of vector space, state
space, differential equations, etc. A brief review of some of these topics will
be given below.

A.2 Review of Continuous Systems

All the continuous nonlinear systems considered in this book can be reduced
to the standard state space form. It is usual to denote

• the states of the system by xi ∈ R, i = 1, . . . , n,

• the inputs by uj ∈ R, j = 1, . . . ,m, and

• the outputs by yk ∈ R, k = 1, . . . , p.

The number of states, n, is called the dimension (or order) of the system.
The evolution of the states, inputs and outputs is governed by a set of
functions

fi : R
n × R

m × R → R, for i = 1, . . . , n

hj : R
n × R

m × R → R, for j = 1, . . . , p

Roughly speaking, at a given time t ∈ R and for given values of all the
states and inputs these functions determine in what direction the state will
move, and what the output is going to be.

ẋ1 = f1(x1, . . . , xn, u1, . . . , um, t)

...

ẋn = fn(x1, . . . , xn, u1, . . . , um, t)

y1 = h1(x1, . . . , xn, u1, . . . , um, t)

...

yp = hp(x1, . . . , xn, u1, . . . , um, t)

Exercise A.2 What is the dimension of the pendulum example of Sec-
tion 2.2.1? What are the functions fi?

180 Appendix A. Preliminaries on Continuous and Discrete Systems

It is usually convenient to simplify the equations somewhat by introducing
vector notation. Let

x =



x1
...
xn


 ∈ R

n, u =




u1
...
um


 ∈ R

m, y =



y1
...
yp


 ∈ R

p,

and define

f : Rn × R
m × R → R

n

h : Rn × R
m × R → R

p

by

f(x, u, t) =



f1(x1, . . . , xn, u1, . . . , um, t)

...
fn(x1, . . . , xn, u1, . . . , um, t)


 ,

h(x, u, t) =



h1(x1, . . . , xn, u1, . . . , um, t)

...
hp(x1, . . . , xn, u1, . . . , um, t)


 .

Then the system equations simplify to

ẋ = f(x, u, t)
y = h(x, u, t)

}
(A.1)

Equations (A.1) are known as the state space form of the system. The
vector space Rn in which the state of the system takes values is known as the
state space of the system. If the system is of dimension 2, the state space
is also referred to as the phase plane. The function f that determines the
direction in which the state will move is known as the vector field.

Notice that the differential equation for x is first order, i.e. involves ẋ but
no higher derivatives of x. Sometimes the system dynamics are given to us
in the form of higher order differential equations, i.e. equations involving a
variable θ ∈ R and its derivatives with respect to time up to drθ

dtr for some
integer r ≥ 1. Such systems can be easily transformed to state space form

by setting x1 = θ, x2 = θ̇, . . . , xr−1 = dr−1θ
dtr−1 .

Exercise A.3 Consider the system

drθ

dtr
+ g(θ,

dθ

dt
, . . . ,

dr−1θ

dtr−1
) = 0

Write this system in state space form.

It may of course happen in certain examples that there are no inputs or
outputs, or that there is no explicit dependence of the dynamics on time.
Systems of the form

ẋ = f(x)

A.2. Review of Continuous Systems 181

(i.e. without inputs or outputs and with no explicit dependence on time)
are called autonomous systems.

Exercise A.4 Is the pendulum an autonomous system?

Exercise A.5 Consider a non-autonomous system of the form ẋ = f(x, t),
of dimension n. Show that it can be transformed to an autonomous system
of dimension n+ 1.

A.2.1 Existence and Uniqueness of Solutions

Consider an autonomous dynamical system in state space form

ẋ = f(x)

and assume that at time t = 0 the state is equal to x0, i.e.

x(0) = x0

We would like to “solve” the dynamics of the system to determine how the
state will evolve in the future (i.e. for t ≥ 0). More precisely, given some
T > 0 we would like to determine a function

x(·) : [0, T] → R
n

such that

x(0) = x0

ẋ(t) = f(x(t)), ∀t ∈ [0, T].

Such a function x(·) is called a trajectory (or solution) of the system.
Notice that given a candidate trajectory x(·) : [0, T] → R

n one needs to
verify both the differential condition and the initial condition to ensure
that x(·) is indeed a solution of the differential equation.

Exercise A.6 Assume that instead of x(0) = x0 it is required that x(t0) =
x0 for some t0 6= 0. Show how one can construct solutions to the system

x(t0) = x0, ẋ = f(x)

from solutions to

x(0) = x0, ẋ = f(x)

by appropriately redefining t. Could you do this with a non-autonomous
system?

182 Appendix A. Preliminaries on Continuous and Discrete Systems

Without any additional information, it is unclear whether one can find
a function x(·) solving the differential equation. A number of things can go
wrong.

Example (No solutions) Consider the one dimensional system

ẋ = − sgn(x) =

{
−1 if x ≥ 0
1 if x < 0,

with initial condition x(0) = 0. A solution to this differential equation does
not exist for any T ≥ 0.

Exercise A.7 Assume that x(0) = 1. Show that solutions to the system
exist for all T ≤ 1 but not for T > 1.

Incidentally, something similar would happen with the thermostat system
of Section 2.3.2, if the thermostat insisted on switching the radiator on and
off exactly at 20 degrees.

Example (Multiple Solutions) Consider the one dimensional system

ẋ = 3x2/3, x(0) = 0

All functions of the form

x(t) =

{
(t− a)3 t ≥ a
0 t ≤ a

for any a ≥ 0 are solutions of this differential equation.

Exercise A.8 Verify this.

Notice that in this case the solution is not unique. In fact there are infinitely
many solutions, one for each a ≥ 0.

Example (Finite Escape Time) Consider the one dimensional system

ẋ = 1 + x2, x(0) = 0

The function

x(t) = tan(t)

is a solution of this differential equation.

Exercise A.9 Verify this. What happens at t = π/2?

Notice that the solution is defined for T < π/2 but not for T ≥ π/2.

To eliminate such pathological cases we need to impose some assumptions
on f .

A.2. Review of Continuous Systems 183

Definition A.1 (Lipshitz Continuity) A function f : R
n → R

n is
called Lipschitz continuous if there exists λ > 0 such that for all x, x̂ ∈ R

n

‖f(x)− f(x̂)‖ < λ‖x− x̂‖
λ is known as a Lipschitz constant. Notice that if λ is a Lipschitz constant
then any other λ′ > λ is also a Lipschitz constant. A Lipschitz continuous
function is continuous, but not necessarily differentiable. All differentiable
functions with bounded derivatives are Lipschitz continuous.

Exercise A.10 Show that for x ∈ R the function f(x) = |x| that returns
the absolute value of x is Lipschitz continuous. Provide a Lipschitz constant.
Is f continuous? Is it differentiable?

Theorem A.2 (Existence & Uniqueness of Solutions) If f is Lips-
chitz continuous, then the differential equation

ẋ = f(x)

x(0) = x0

has a unique solution x(·) : [0, T] → R
n for all T ≥ 0 and all x0 ∈ R

n.

Exercise A.11 Three examples of dynamical systems that do not have
unique solutions were given above. Why do these systems fail to meet the
conditions of the theorem?

This theorem allows us to check whether the differential equation models
we develop make sense. It also allows us to spot potential problems with
proposed solutions. For example, uniqueness implies that solutions can not
cross.

Exercise A.12 Why does uniqueness imply that solutions can not cross?

A.2.2 Continuity and Simulation

Theorem A.3 (Continuity with Initial State) Assume f is Lipschitz
continuous with Lipschitz constant λ. Let x(·) : [0, T] → R

n and x̂(·) :
[0, T] → R

n be solutions to ẋ = f(x) with x(0) = x0 and x̂(0) = x̂0
respectively. Then for all t ∈ [0, T]

‖x(t)− x̂(t)‖ ≤ ‖x0 − x̂0‖eλt

In other words, solutions that start close to one another remain close to
one another.
This theorem provides another indication that dynamical systems with

Lipschitz continuous vector fields are well behaved. For example, it pro-
vides theoretical justification for simulation algorithms. Most nonlinear
differential equations are impossible to solve by hand. One can however
approximate the solution on a computer, using numerical algorithms for

184 Appendix A. Preliminaries on Continuous and Discrete Systems

computing integrals (Euler, Runge-Kutta, etc.). This is a process known as
simulation.
Powerful computer packages, such as Matlab, make the simulation of

most systems relatively straight forward. For example, the pendulum
trajectories can be generated using a Matlab function

function [xprime] = pendulum(t,x)

xprime=[0; 0];

l = 1;

m=1;

d=1;

g=9.8;

xprime(1) = x(2);

xprime(2) = -sin(x(1))*g/l-x(2)*d/m;

The simulation code is then simply

>> x=[0.75 0];

>> [T,X]=ode45(’pendulum’, [0 10], x’);

>> plot(T,X);

>> grid;

The continuity property ensures that the numerical approximation to the
solution computed by the simulation algorithms and the actual solution
remain close.
When one studies hybrid systems, many of these nice properties un-

fortunately vanish. As the non-deterministic thermostat system suggests,
existence and uniqueness of solutions are much more difficult to guarantee.
Continuity is usually impossible.

A.2.3 Control systems

In subsequent discussion we will also consider continuous state control
systems of the form





ẋ = f(x, u)

x ∈ R
n

u ∈ U ⊆ R
m

f(·, ·) : Rn × U → R
n,

(A.2)

For systems of this type one would also like to characterise the existence
of solutions. In other words, given an initial condition x0, a time horizon
T ≥ 0 and an input function u(·) : [0, T] → U one would like to find a
function x(·) : [0, T] → R

n such that x(0) = x0 and ẋ(t) = f(x(t), u(t)).
Even though this definition of solution is in principle good, in practice

it is often inadequate. The reason is that to be able to find a solution such
that the derivative ẋ exists for all t ∈ [0, T] we need to restrict our attention

A.3. Review of discrete systems (Claire) 185

to input functions which are least continuous. However, in many practical
problems (e.g. many optimal control problems) we would also like to allow
input functions which are discontinuous. In this case the derivative ẋ will
be undefined at the discontinuity points of u(·).
Fortunatelly, it turns out that as long as the function u(·) is not too wild

(e.g. is discintinuous only at a finite number of points in the interval [0, T]),
the solutions of the differential equation can be defined despite this tech-
nical difficulty, by requiring x(·) to meet the condition ẋ(t) = f(x(t), u(t))
for almost every t ∈ [0, T] (instead for all t ∈ [0, T]). The precise meaning of
“almost every” and the precise definition of the class of functions u(·) that
are acceptable in this context can be developed using tools from measure
theory. The “acceptable” functions are known as Lebesgue measurable func-
tions. We will use U[t,t′] to denote the set of Lebesgue measurable functions
from the interval [t, t′] to U .
With the right definitions in place one can show that solutions for the

control system exist and are unique.

Theorem A.4 If f(x, u) is Lipschitz continuous in x and continuous in
u then the control system of equation A.2 admits a unique solution x(·) :
[0, T] → R

n for all initial conditions x0 ∈ R
n, time horizons T ≥ 0 and

measurable control functions u(·) ∈ U[0,T].

Similar extensions of the continuity theorem given above for autonomous
systems are also possible.

A.3 Review of discrete systems (Claire)

A.4 Bibliography and Further Reading

The material on continuous systems is thoroughly covered in any good text-
book on nonlinear dynamical systems, see for example [4, 5, 6, 7]. Discrete
state systems have also been studied for many years, especially in computer
science. Good textbooks include [8, 9, 10]. For a very thorough coverage of
the basics of control systems see [145].

This is page 186
Printer: Opaque this

Appendix B
Review of Optimal Control and Games

B.1 Optimal Control and the Calculus of
Variations

There are numerous excellent books on optimal control. Commonly used
books which we will draw from are Athans and Falb [?], Berkovitz [?],
Bryson and Ho [?], Pontryagin et al [?], Young [?], Kirk [?], Lewis [?] and
Fleming and Rishel[?]. The history of optimal control is quite well rooted
in antiquity, with allusion being made to Dido, the first Queen of Carthage,
who when asked to take as much land as could be covered by an ox-hide,
cut the ox-hide into a tiny strip and proceeded to enclose the entire area of
what came to be know as Carthage in a circle of the appropriate radius1.
The calculus of variations is really the ancient precursor to optimal con-
trol. Iso perimetric problems of the kind that gave Dido her kingdom were
treated in detail by Tonelli and later by Euler. Both Euler and Lagrange
laid the foundations of mechanics in a variational setting culminating in the
Euler Lagrange equations. Newton used variational methods to determine
the shape of a body that minimizes drag, and Bernoulli formulated his
brachistochrone problem in the seventeenth century, which attracted the
attention of Newton and L’Hôpital. This intellectual heritage was revived
and generalized by Bellman [?] in the context of dynamic programming

1The optimal control problem here is to enclose the maximum area using a closed

curve of given length.

B.1. Optimal Control and the Calculus of Variations 187

and by Pontryagin and his school in the so-called Pontryagin principle for
optimal control ([?]).
Consider a nonlinear possibly time varying dynamical system described

by

ẋ = f(x, u, t) (B.1)

with state x(t) ∈ R
n and the control input u ∈ R

ni . Consider the problem
of minimizing the performance index

J = φ(x(tf), tf) +

∫ tf

t0

L(x(t), u(t), t)dt (B.2)

where t0 is the initial time, tf the final time (free), L(x, u, t) is the running
cost, and φ(x(tf), tf) is the cost at the terminal time. The initial time t0 is
assumed to be fixed and tf variable. Problems involving a cost only on the
final and initial state are referred to as Mayer problems, those involving
only the integral or running cost are called Lagrange problems and costs of
the form of equation (B.2) are referred to as Bolza problems. We will also
have a constraint on the final state given by

ψ(x(tf), tf) = 0 (B.3)

where ψ : Rn×R → R
p is a smooth map. To derive necessary conditions

for the optimum, we will perform the calculus of variations on the cost
function of (B.2) subject to the constraints of equations (B.1), (B.3). To
this end, define the modified cost function, using the Lagrange multipliers
λ ∈ R

p, p(t) ∈ R
n,

J̃ = φ(x(tf), tf) + λTψ(x(tf), tf) +

∫ tf

t0

[
L(x, u, t) + pT (f(x, u, t)− ẋ)

]
dt

(B.4)
Defining the Hamiltonian H(x, u, t) using what is referred to as a Legendre
transformation

H(x, p, u, t) = L(x, u, t) + pT f(x, u, t) (B.5)

The variation of (B.4) is given by assuming independent variations in
δu(), δx(), δp(), δλ, and δtf :

δJ̃ = (D1φ+D1ψ
Tλ)δx|tf + (D2φ+D2ψ

Tλ)δt|tf + ψT δλ
+ (H − pT ẋ)δt|tf
+

∫ tf
t0

[
D1Hδx+D3Hδu− pT δẋ+ (D2H

T − ẋ)T δp
]
dt

(B.6)

The notation DiH stands for the derivative of H with respect to the i th
argument. Thus, for example,

D3H(x, p, u, t) =
∂H

∂u
D1H(x, p, u, t) =

∂H

∂x

188 Appendix B. Review of Optimal Control and Games

Integrating by parts for
∫
pT δẋdt yields

δJ̃ = (D1φ+D1ψ
Tλ− pT)δx(tf) + (D2φ+D2ψ

Tλ+H − pT ẋ)δtf + ψT δλ

+
∫ tf
t0

[
(D1H + ṗT)δx+D3Hδu+ (DT

2 H − ẋ)T δp
]
dt

(B.7)
An extremum of J̃ is achieved when δJ̃ = 0 for all independent variations
δλ, δx, δu, δp. These conditions are recorded in the following

Table of necessary conditions for optimality:

Table 1

Description Equation Variation

Final State constraint ψ(x(tf), tf) = 0 δλ

State Equation ẋ = ∂H
∂p

T
= f (x, u, t) δp

Costate equation ṗ = −∂H
∂x

T
δx

Input stationarity ∂H
∂u = 0 δu

Boundary conditions D1φ− pT = −D1ψ
Tλ|tf δx(tf)

H − pT f(x, u, t) +D2φ = −D2ψ
Tλ|tf δtf

The conditions of Table (B.1) and the boundary conditions x(t0) = x0
and the constraint on the final state ψ(x(tf), tf) = 0 constitute the neces-
sary conditions for optimality. The end point constraint equation is referred
to as the transversality condition:

D1φ− pT = −D1ψ
Tλ

H +D2φ = −D2ψ
Tλ

(B.8)

The optimality conditions may be written explicitly as

ẋ = ∂H
∂p

T
(x, u∗, p)

ṗ = −∂H
∂x

T
(x, u∗, p)

(B.9)

with the stationarity condition reading

∂H

∂u
(x, u∗, p) = 0

and the endpoint constraint ψ(x(tf), tf) = 0. The key point to the
derivation of the necessary conditions of optimality is that the Legendre
transformation of the Lagrangian to be minimized into a Hamiltonian con-
verts a functional minimization problem into a static optimization problem
on the function H(x, u, p, t).

B.1. Optimal Control and the Calculus of Variations 189

The question of when these equations also constitute sufficient conditions
for (local) optimality is an important one and needs to be ascertained by
taking the second variation of J̃ . This is an involved procedure but the input
stationarity condition in Table (B.1) hints at the sufficient condition
for local minimality of a given trajectory x∗(·), u∗(·), p∗(·) being a local
minimum as being that the Hessian of the Hamiltonian,

D2
2H(x∗, u∗, p∗, t) (B.10)

being positive definite along the optimal trajectory. A sufficient condition
for this is to ask simply that the ni × ni Hessian matrix

D2
2H(x, u, p, t) (B.11)

be positive definite. As far as conditions for global minimality are con-
cerned, again the stationarity condition hints at a sufficient condition for
global minimality being that

u∗(t) = argmin
{ min over u }

H(x∗(t), u, p∗(t), t) (B.12)

Sufficient conditions for this are, for example, the convexity of the
Hamiltonian H(x, u, p, t) in u.
Finally, there are instances in which the Hamiltonian H(x, u, p, t) is not

a function of u at some values of x, p, t. These cases are referred to as
singular extremals and need to be treated with care, since the value of u is
left unspecified as far as the optimization is concerned.

B.1.1 Fixed Endpoint problems

In the instance that the final time tf is fixed, the equations take on a simpler
form, since there is no variation in δtf . Then, the boundary condition of
equation (B.8) becomes

pT (tf) = D1φ+D1ψ
Tλ|tf (B.13)

Further, if there is no final state constraint the boundary condition
simplifies even further to

p(tf) = D1φ
T |tf (B.14)

B.1.2 Time Invariant Systems

In the instance that f(x, u, t) and the running cost L(x, u, t) are not explic-
itly functions of time, there is no final state constraint and the final time
tf is fixed, the formulas of Table (B.1) can be rewritten as

190 Appendix B. Review of Optimal Control and Games

State Equation ẋ = ∂H
∂p

T
= f(x, u∗)

Costate Equation ṗ = −∂H
∂x

T
= −D1f

T p+D1L
T

Stationarity Condition 0 = ∂H
∂u = D2L

T +D2f
T p

Transversality Conditions D1φ− pT = −D1ψ
Tλ

In addition, it may be verified that

dH∗

dt
=
∂H∗

∂x
(x, p)ẋ+

∂H∗

∂p
ṗ = 0 (B.15)

thereby establishing that H∗(t) ≡ H∗(tf).

B.1.3 Connections with Classical Mechanics

Hamilton’s principle of least action states (under certain conditions 2) that
a conservative system moves so as to minimize the time integral of its
“action”, defined to be the difference between the kinetic and potential
energy. To make this more explicit we define q ∈ R

n to be the vector of
generalized coordinates of the system and denote by U(q) the potential
energy of the system and T (q, q̇) the kinetic energy of the system. Then
Hamilton’s principle of least action asks to solve an optimal control problem
for the system

q̇ = u

with Lagrangian

L(q, u) = T (q, u)− U(q)

The equations (B.9) in this context have H(q, u, p) = L(q, u) + pTu.
u∗ = u∗(p, q) is chosen so as to minimize the Hamiltonian H. A necessary
condition for stationarity is that u∗(p, q) satisfies

0 =
∂H

∂u
=
∂L

∂u
+ pT (B.16)

The form of the equations (B.9) in this context is that of the famil-
iar Hamilton Jacobi equations. The costate p has the interpretation of

2For example, there is no dissipation or no nonholonomic constraints. Holonomic
or integrable constraints are dealt with by adding appropriate Lagrange multipliers. If

nonholonomic constraints are dealt with in the same manner, we get equations of motion,
dubbed vakonomic by Arnold [146] which do not correspond to experimentally observed
motions. On the other hand, if there are only holonomic constraints, the equations of
motion that we derive from Hamilton’s principle of least action is equivalent to Newton’s

laws.

B.2. Optimal Control and Dynamic Programming 191

momentum.

q̇ = ∂H∗

∂p (p, q) = u∗(p, q)

ṗ = −∂H∗

∂q (p, q)
(B.17)

Combining the second of these equations with (B.16) yields the familiar
Euler Lagrange equations

∂L

∂q
− d

dt

(
∂L

∂q̇

)
= 0 (B.18)

B.2 Optimal Control and Dynamic Programming

To begin this discussion, we will embed the optimization problem which we
are solving in a larger class of problems, more specifically we will consider
the original cost function of equation (B.2) from an initial time t ∈ [t0, tf]
by considering the cost function on the interval [t, tf]:

J(x(t), t) = φ(x(tf), tf) +

∫ tf

t

L(x(τ), u(τ), τ)dτ

Bellman’s principle of optimality says that if we have found the optimal tra-
jectory on the interval from [t0, tf] by solving the optimal control problem
on that interval, the resulting trajectory is also optimal on all subintervals
of this interval of the form [t, tf] with t > t0, provided that the initial con-
dition at time t was obtained from running the system forward along the
optimal trajectory from time t0. The optimal value of J(x(t), t) is referred
to as the “cost-to go”. To be able to state the following key theorem of
optimal control we will need to define the “optimal Hamiltonian” to be

H∗(x, p, t) := H(x, u∗, p, t)

Theorem B.1 The Hamilton Jacobi Bellman equation
Consider, the time varying optimal control problem of (B.2) with fixed

endpoint tf and time varying dynamics. If the optimal value function,
i.e. J∗(x(t0), t0) is a smooth function of x, t, then J∗(x, t) satisfies the
Hamilton Jacobi Bellman partial differential equation

∂J∗

∂t
(x, t) = −H∗(x,

∂J∗

∂x
(x, t), t) (B.19)

with boundary conditions given by J∗(x, tf) = φ(x, tf) for all x ∈ {x :
ψ(x, tf) = 0}.
Proof: The proof uses the principle of optimality. This principle says that

if we have found the optimal trajectory on the interval from [t, tf] by solving
the optimal control problem on that interval, the resulting trajectory is also
optimal on all subintervals of this interval of the form [t1, tf] with t1 > t,
provided that the initial condition at time t1 was obtained from running

192 Appendix B. Review of Optimal Control and Games

the system forward along the optimal trajectory from time t. Thus, from
using t1 = t+∆t, it follows that

J∗(x, t) =
min
u(τ)

t ≤ τ ≤ t+∆t

[∫ t+∆t

t

L(x, u, τ)dτ + J∗(x+∆x, t+∆t)

]

(B.20)
Taking infinitesimals and letting ∆t→ 0 yields that

−∂J
∗

∂t
=

min
u(t)

(
L+ (

∂J∗

∂x
)f

)
(B.21)

with the boundary condition being that the terminal cost is

J∗(x, tf) = φ(x, tf)

on the surface ψ(x) = 0. Using the definition of the Hamiltonian in equation
(B.5), it follows from equation (B.21) that the Hamilton Jacobi equation
of equation (B.19) holds.

2

Remarks:

1. The preceding theorem was stated as a necessary condition for ex-
tremal solutions of the optimal control problem. As far as minimal
and global solutions of the optimal control problem, the Hamilton
Jacobi Bellman equations read as in equation (B.21). In this sense,
the form of the Hamilton Jacobi Bellman equation in (B.21) is more
general.

2. The Eulerian conditions of Table (B.1) are easily obtained from the
Hamilton Jacobi Bellman equation by proving that pT (t) := ∂J∗

∂x (x, t)
satisfies the costate equations of that Table. Indeed, consider the
equation (B.21). Since u(t) is unconstrained, it follows that it should
satisfy

∂L

∂u
(x∗, u∗) +

∂f

∂u

T

p = 0 (B.22)

Now differentiating the definition of p(t) above with respect to t yields

dp

dt

T

=
∂2J∗

∂t∂x
(x∗, t) +

∂2J∗

∂x2
f(x∗, u∗, t) (B.23)

Differentiating the Hamilton Jacobi equation (B.21) with respect to
x and using the relation (B.22) for a stationary solution yields

−∂
2J∗

∂t∂x
(x∗, t) =

∂L

∂x
+
∂2J∗

∂x2
f + pT

∂f

∂x
(B.24)

B.2. Optimal Control and Dynamic Programming 193

Using equation (B.24) in equation (B.23) yields

−ṗ = ∂f

∂x

T

p+
∂L

∂x

T

(B.25)

establishing that p is indeed the co-state of Table 1. The bound-
ary conditions on p(t) follow from the boundary conditions on the
Hamilton Jacobi Bellman equation.

B.2.1 Constrained Input Problems

In the instance that there are no constraints on the input, the extremal
solutions of the optimal control problem are found by simply extremiz-
ing the Hamiltonian and deriving the stationarity condition. Thus, if the
specification is that u(t) ∈ U ⊂ R

ni then, the optimality condition is that

H(x∗, u∗, p∗, t) ≤ H(x∗, u, p∗, t) ∀u ∈ U (B.26)

If the Hamiltonian is convex in u and U is a convex set, there are no specific
problems with this condition. In fact, when there is a single input and the
set U is a single closed interval, there are several interesting examples of
Hamiltonians for which the optimal inputs switch between the endpoints
of the interval, resulting in what is referred to as bang bang control.
However, problems can arise when U is either not convex or compact. In
these cases, a concept of a relaxed control taking values in the convex
hull of U needs to be introduced. As far as an implementation of a control
u(t) ∈ convU , but not in U , a probabilistic scheme involving switching
between values of U whose convex combination u is needs to be devised.

B.2.2 Free end time problems

In the instance that the final time tf is free, the transversality conditions
are that

pT (tf) = D1φ+D1ψ
Tλ (B.27)

B.2.3 Minimum time problems

A special class of minimum time problems of especial interest is minimum
time problems, where tf is to be minimized subject to the constraints. This
is accounted for by setting the Lagrangian to be 1, and the terminal state
cost φ ≡ 0, so that the Hamiltonian is H(x, u, p, t) = 1+ pT f(x, u, t). Note
that by differentiating H(x, u, p, t) with respect to time, we get

dH∗

dt
= D1H

∗ẋ+D2H
∗u̇+D3H

∗ṗ+
∂H∗

∂t
(B.28)

194 Appendix B. Review of Optimal Control and Games

Continuing the calculation using the Hamilton Jacobi equation,

dH∗

dt
= (

∂H∗

∂x
+ ṗ)f(x, u∗, t) +

∂H∗

∂t
=
∂H∗

∂t
(B.29)

In particular, if H∗ is not an explicit function of t, it follows that
H∗(x, u, p, t) ≡ H. Thus, for minimum time problems for which f(x, u, t)
and ψ(x, t) are not explicitly functions of t, it follows that H(tf) ≡ H(t).

B.3 Two person Zero Sum Dynamical games

The theory of games also has a long and distinguished, if not as long a
history. Borel encountered saddle points in a matrix in 1915, but it really
took von Neumann to prove his fundamental theorem about the existence
of mixed strategies for achieving a saddle solution in games in 1936. In
a classic book, von Neumann and Morgenstern ([?]) laid out the connec-
tions between static games and economic behavior. Nash, von Stackelberg
and others extended the work to N person non-cooperative games. This
work has continued in many important new directions in economics. Dif-
ferential or dynamical games showed up in the work of Isaacs in 1969 and
rapidly found fertile ground in the control community where it has pro-
gressed. There are several nice books on the subject of dynamical games,
our treatment is drawn heavily from Basar and Olsder ([?]).
Consider a so-called dynamical, two person zero sum, perfect state

information game modeled by

ẋ = f(x, u, d, t) x(t0) = x0 (B.30)

on a fixed duration [t0, tf]. Here x ∈ R
n models the state of the system and

u ∈ R
n1 , d ∈ R

n2 represent the actions of the two players. The game is said
to be zero sum if one player seeks to minimize and the other to maximize
the same cost function taken to be of the form

J = φ(x(tf), tf) +

∫ tf

t0

L(x, u, d, t)dt (B.31)

We will assume that player 1 (u) is trying to minimize J and player 2
(d) is trying to maximize J . For simplicity we have omitted the final state
constraint and also assumed the end time tf to be fixed. These two assump-
tions are made for simplicity but we will discuss the tf free case when we
study pursuit evasion games. The game is said to have perfect information
if both players have access to the full state x(t). The solution of two person
zero sum games proceeds very much along the lines of the optimal control
problem by setting up the Hamiltonian

H(x, u, d, p, t) = L(x, u, d, t) + pT f(x, u, d, t) (B.32)

B.3. Two person Zero Sum Dynamical games 195

Rather than simply minimizing H(x, u, d, p, t) the game is said to have a
saddle point solution if the following analog of the saddle point condition
for two person zero sum static games holds:

min
u

max
d

H(x, u, d, p, t) = max
d

min
u

H(x, u, d, p, t) (B.33)

If the minmax is equal to the maxmin, the resulting optimal Hamiltonian
is denoted H∗(x, p, t) and the optimal inputs u∗, d∗ are determined to be
respectively,

u∗(t) = argmin
u

(
max
d

H(x, u, d, p, t)

)
(B.34)

and

d∗(t) = argmax
d

(
min
u

H(x, u, d, p, t)

)
(B.35)

The equations for the state and costate and the transversality conditions
are given as before by

ẋ = ∂H∗

∂p

T
(x, p)

ṗ = −∂H∗

∂x

T
(x, p)

(B.36)

with boundary conditions x(t0) = x0 and pT (tf) = D1φ(xtf), and the
equation is the familiar Hamilton Jacobi equation. As before, one can in-
troduce the optimal cost to go J∗(x(t), t) and we have the following analog
of Theorem (B.1):

Theorem B.2 The Hamilton Jacobi Isaacs equation
Consider, the two person zero sum differential game problem of (B.31)

with fixed endpoint tf . If the optimal value function, i.e. J∗(x(t0), t0) is
a smooth function of x, t, then J∗(x, t) satisfies the Hamilton Jacobi
Isaacs partial differential equation

∂J∗

∂t
(x, t) = −H∗(x,

∂J∗

∂x
(x, t), t) (B.37)

with boundary conditions given by J∗(x, tf) = φ(x) for all x.

Remarks

1. We have dealt with saddle solutions for unconstrained input signals
u, d thus far in the development. If the inputs are constrained to lie
in sets U,D respectively the saddle solutions can be guaranteed to
exist if

min
u ∈ U

max
d ∈ D

H(x, u, d, p, t) = max
d ∈ D

min
u ∈ U

H(x, u, d, p, t)

(B.38)
Again, if the input sets are not convex, relaxed controls may be needed
to achieve the min-max.

196 Appendix B. Review of Optimal Control and Games

2. The sort of remarks that were made about free endpoint optimal
control problems can also be made of games.

3. In our problem formulation for games, we did not include explicit
terminal state constraints of the form ψ(x(tf), tf) = 0. These can
be easily included, and we will study this situation in greater detail
under the heading of pursuit evasion games.

4. The key point in the theory of dynamical games is that the Legendre
transformation of the Lagrangian cost function into the Hamiltonian
function converts the solution of the “dynamic” game into a “static”
game, where one needs to find a saddle point of the Hamiltonian
function H(x, u, d, p, t). This is very much in the spirit of the calculus
of variations and optimal control.

B.4 N person Dynamical Games

When there are N persons playing a game, many new and interesting
new possibilities arise. There is a scenario in which the N agents are non-
cooperative, and another in which they cooperate in teams. Of course, if
the information available to each of them is different, this makes the solu-
tion even more interesting. In this section, we will assume that each of the
agents has access to the full state of the system. In this section, we will only
discuss non-cooperative solution concepts: first the Nash solution concept
and then briefly the Stackelberg solution concept. Cooperative games with
total cooperation are simply optimal control problems. If there is coopera-
tion among teams, this can be viewed as a noncooperative game between
the teams. When however there are side payments between teams the scope
of the problem increases quite considerably.

B.4.1 Non-cooperative Nash solutions

When there are N players each able to influence the process by controls
ui ∈ R

ni , i = 1, . . . , N , modeled by

ẋ = f(x, u1, . . . , uN , t) (B.39)

and each cost functional (to be minimized) is of the form

Ji(u1(·), . . . , uN (·)) = φi(x(tf), tf) +

∫ tf

t0

Li(x, u1, . . . , uN , t)dt (B.40)

different solution concepts need to be invoked. The simplest non-
cooperative solution strategy is a so-called non-cooperative Nash equilib-
rium. A set of controls u∗i , i = 1, . . . , N is said to be a Nash strategy if for

B.4. N person Dynamical Games 197

each player modifying that strategy, and assuming that the others play their
Nash strategies, results in an increase in his payoff, that is for i = 1, . . . , N

Ji(u
∗
1, . . . , ui, . . . , u

∗
N) ≥ Ji(u

∗
1, . . . , u

∗
i , . . . , u

∗
N) ∀ui(·) (B.41)

It is important to note that Nash equilibria may not be unique. It is also
easy to see that for 2 person zero sum games, a Nash equilibrium is a saddle
solution.
As in the previous section on saddle solutions, we can write Hamilton Ja-

cobi equations for Nash equilibria by defining HamiltoniansHi(x, u1, . . . , uN , p, t)
according to

Hi(x, u1, . . . , uN , p, t) = Li(x, u1, . . . , uN) + pT f(x, u1, . . . , uN , t) (B.42)

The conditions for a Nash equilibrium of equation (B.41) are there exist
u∗i (x, p, t) such that

Hi(x, u
∗
1, . . . , ui, . . . , u

∗
N , p, t) ≥ Hi(x, u

∗
1, . . . , u

∗
i , . . . , u

∗
N , p, t) (B.43)

Then, we have N sets of Hamilton Jacobi equations for the N players sat-
isfying the Hamilton Jacobi equations with H∗

i = H∗
i (x, u

∗
1, . . . , u

∗
N , pi, t).

Note that we have changed the costate variables to pi to account for
different Hamiltonians and boundary conditions.

ẋ =
∂H∗

i

∂pi

T

ṗi = −∂H∗

i

∂x

T (B.44)

with transversality conditions pTi (tf) = −D1φi(x(tf), tf).

B.4.2 Noncooperative Stackelberg Solutions

Stackelberg or hierarchical equilibria refer to noncooperative solutions,
where one or more of the players act as leaders. We will illustrate the
solution concept for a two person game where player 1 is the leader and
player 2 the follower. Once player 1 announces a strategy uo1(·), if player
2 is rational he choose his strategy so as to minimize his cost J2 with the
dynamics

ẋ = f(x, uo1, u2, t) (B.45)

and

J2(u2) = φ2(x(tf), tf) +

∫ tf

t0

L2(x, u
o
1(t), u2, t)dt

Thus, u∗2(u
o
1) is chosen to minimize H2(x, u

o
1, u2, p2, t), where p2 satisfies

the differential equation

ṗ2 = −∂H2

∂x

T

(x, uo1, u2(u
o
1), p, t) p2(tf) = DT

1 φ2(x(tf), tf)

198 Appendix B. Review of Optimal Control and Games

In turn the leader chooses his strategy to be that u∗1 which minimizes J1
subject to the assumption that player 2 will rationally play u∗2(u

∗
1). Thus,

the system of equations that he has to solve to minimize J1 subject to

ẋ = f(x, u1, u2, t) x(t0) = x0

ṗ2 = −∂H2

∂x

T
(x, uo1, u2(u

o
1), p, t) p2(tf) = DT

1 φ2(x(tf), tf)
0 = D3H2(x, u1, u2, p2, t)

(B.46)

The last equation in (B.46) is the stationarity condition for minimizing H2.
The optimization problem of the system in (B.46) is not a standard optimal
control in R

2n because there is an equality to be satisfied. Thus, Lagrange
multipliers (co-states) taking values in R

2n+n2 for t ∈ [t0, tf] are needed.

This is page 199
Printer: Opaque this

Appendix C

Hybrid System Viability (John)

C.1 Reachability with Inputs

In addition to discrete and continuous state variables, many hybrid systems
also contain input variables U , possibly divided into discrete (UD) and
continuous (UC). Depending on the application, inputs may influence

1. Continuous evolution, through the vector field

f(·, ·, ·) : Q×X × U → R
n.

2. When discrete transitions take place, through the domain

Dom(·) : Q→ 2X×U .

3. The destination of discrete transitions, through the reset map

R(·, ·, ·) : E ×X × U → 2X .

One can pause a number of interesting problems for hybrid systems with
inputs, that make no sense for autonomous hybrid systems. For exam-
ple, one can study stabilisation, optimal control, reachability specifications,
etc. As before we will restrict our attention to reachability specifications.
Depending on what the inputs are supposed to represent, reachability
questions for hybrid systems with inputs can take a number of forms:

1. Viability. Roughly speaking, this involves answering the question
“Does there exist a choice for the inputs u such that the executions
of the hybrid system remain in a given set?”. In this case one can think

200 Appendix C. Hybrid System Viability (John)

of the inputs as controls, that can be used to steer the executions of
the system.

2. Invariance. This involves answering the question “Do the executions
of the system remain in a given set for all choices of u?”. In this case
one can think of the inputs as uncontrollable disturbances that can
steer the system outside the desired set.

3. Gaming. In this case some of the input variables play the role of con-
trols, while others play the role of disturbances. The relevant question
in this case is “Does there exist a choice for the controls, such that
despite the action of the disturbances the execution of the system
remain is a given set?”

Working with hybrid systems with inputs is considerably more compli-
cated. Even defining the precise semantics of an execution of the system is
far from straight forward. Additional complications arise when one con-
siders gaming problems, since one has to introduce assumptions about
information exchange among the players, appropriate notions of strategy,
etc. Here we will restrict our attention to a special case of the general prob-
lem for which precise mathematical answers can be formulated for these
questions. In particular, we will study questions of viability and invariance
for a class of hybrid systems known as impulse differential inclusions. The
proofs are rather technical and are included in the notes only for the sake
of completeness. For more details please refer to [45].

C.2 Impulse Differential Inclusions

Definition C.1 (Impulse Differential Inclusion) An impulse differ-
ential inclusion is a collection H = (X,F,R, J), consisting of a finite
dimensional vector space X, a set valued map F : X → 2X , regarded as a
differential inclusion ẋ ∈ F (x), a set valued map R : X → 2X , regarded as
a reset map, and a set J ⊆ X, regarded as a forced transition set.

We call x ∈ X the state of the impulse differential inclusion. Subsequently,
I = X \ J will be used to denote the complement of J . Comparing Defini-
tion C.1 with Definition 3.1, we see that the set I plays a similar role for the
impulse differential inclusion that Dom played for hybrid automata. The
differential inclusion, F (·), plays a similar role to the vector field, f(·, ·).
Finally, the domain of the reset map R plays the same role as the guards G
of a hybrid automaton, and the image of the reset map R plays the same
role as the reset relation (also denoted by R) of the hybrid automaton.
Note that the initial states are not explicitly mentioned, and that there
are no discrete states. Discrete states, q, can be introduced into the model,
by embedding them in R (e.q., q = 1, 2, 3, . . .) and introducing a trivial
differential inclusion q̇ ∈ {0} to capture their continuous evolution. This

C.2. Impulse Differential Inclusions 201

is somewhat cumbersome to do, so we will state the results without this
additional complication.
Impulse differential inclusions are extensions of differential inclusions and

discrete time systems over finite dimensional vector spaces. A differential
inclusion,

ẋ ∈ F (x),

over a finite dimensional vector space X can be thought of as an impulse
differential inclusion, (X,F,R, J), with R(x) = ∅ for all x ∈ X and J = ∅.
Likewise, a discrete time system,

xk+1 ∈ R(xk),

can be thought of as an impulse differential inclusion, H = (X,F,R, J),
with F (x) = {0} for all x ∈ X and J = X. In the control literature, dif-
ferential inclusions and discrete time systems are frequently used to model
continuous and discrete control systems. The continuous control system

ẋ = f(x, u), u ∈ U(x)

with x ∈ R
n, u ∈ R

m, f : Rn×R
m → R

n and U : Rn → 2R
m

can be though
of as a differential inclusion

ẋ ∈ F (x) = {f(x, u) | u ∈ U(x)}.
Likewise, the discrete time control system

xk+1 = r(xk, uk), uk ∈ U(xk)

with xk ∈ R
n, uk ∈ R

m, r : Rn × R
m → R

n and U : Rn → 2R
m

can be
though of as

xk+1 ∈ R(xk) = {r(xk, u) | u ∈ U(xk)}.
Therefore, impulse differential inclusions can be thought of as hybrid con-
trol systems, with controls both on the continuous evolutions and on the
discrete transitions.
Impulse differential inclusions can be used to describe hybrid phenom-

ena. As for the executions of a hybrid automaton, the state of an impulse
differential inclusion evolves over hybrid time sets.

Definition C.2 (Run of an Impulse Differential Inclusion) a run of
an impulse differential inclusion, H = (X, F , R, J), is a hybrid trajectory,
(τ, x), consisting of a hybrid time set τ = {Ii}Ni=0 and a sequence of maps
x = {xi}Ni=0, xi(·) : Ii → X, that satisfies:

• Discrete Evolution: for all i, xi+1(τi+1) ∈ R(xi(τ
′
i))

• Continuous Evolution: if τi < τ ′i , xi(·) is a solution to the differential
inclusion ẋ ∈ F (x) over the interval [τi, τ

′
i] starting at xi(τi), with

xi(t) 6∈ J for all t ∈ [τi, τ
′
i [.

202 Appendix C. Hybrid System Viability (John)

Recall that a solution to the differential inclusion ẋ ∈ F (x) over an interval
[0, T] starting at x0 ∈ X is an absolutely continuous function x : [0, T] →
X, such that x(0) = x0 and almost everywhere ẋ(t) ∈ F (x(t)). As for
hybrid automata, runs of impulse differential inclusions can be classified
into finite, infinite, Zeno, etc. (cf. Definition 3.6).
Definition C.2 dictates that, along a run the state can evolve continuously

according to the differential inclusion ẋ ∈ F (x) until the set J is reached.
Moreover, whenever R(x) 6= ∅, a discrete transition from state x to some
state in R(x) may take place. In other words R enables discrete transitions
(transitions may happen when R(x) 6= ∅ but do not have to), while J forces
discrete transitions (transitions must happen when x ∈ J).

Notice that if at a state x ∈ X a transition must happen (x ∈ J) but is
not able to (R(x) = ∅) the system blocks, in the sense that there does not
exist a run of the impulse differential inclusion starting at x (other than
the trivial run ([0, 0], x)). This is similar to the blocking situations (lack of
runs) that we encountered for hybrid automata. To prevent such behaviour
we introduce the following assumption.

Assumption C.3 An impulse differential inclusion (X,F,R, J) is said to
satisfy Assumption C.3 if J ⊆ R−1(X) and, if J is open (hence I = X \ J
is closed), F (x) ∩ TI(x) 6= ∅, for all x ∈ I \R−1(X).

As an example, consider again the bouncing ball system. The vertical
motion of the ball can be captured by an impulse differential inclusion,
HB = (XB , FB , RB , JB) with two state variables, the height of the ball, x1
and its velocity in the vertical direction, x2. Therefore, XB = R

2 and

FB(x1, x2) =(x2,−g)

RB(x1, x2) =

{
(x1,−cx2) if x1 ≤ 0 and x2 ≤ 0
∅ otherwise

JB ={x ∈ XB | x1 ≤ 0 and x2 ≤ 0},
where g represents the acceleration due to gravity and c2 ∈ [0, 1] the
fraction of energy lost with each bounce.

C.3 Viability and Invariance Definitions

For impulse differential inclusions, reachability questions can be charac-
terised by viability constraints.

Definition C.4 (Viable Run) a run, (τ, x) of an impulse differential in-
clusion, H = (X,F,R, J), is called viable in a set K ⊆ X if x(t) ∈ K for
all Ii ∈ τ and all t ∈ Ii.

Notice that the definition of a viable run requires the state to remain in the
set K throughout, along continuous evolution up until and including the

C.3. Viability and Invariance Definitions 203

state before discrete transitions, as well as after discrete transitions. Based
on the notion of a viable run, one can define two different classes of sets.

Definition C.5 (Viable and Invariant Set) A set K ⊆ X is called vi-
able under an impulse differential inclusion, H = (X,F,R, J), if for all
x0 ∈ K there exists an infinite run starting at x0 that is viable in K. K is
called invariant under the impulse differential inclusion, if for all x0 ∈ K
all runs starting at x0 are viable in K.

In the cases where an impulse differential inclusion fails to satisfy a given
viability or invariance requirement, one would like to establish sets of initial
conditions (if any) for which the requirement will be satisfied. This notion
can be characterised in terms of viability and invariance kernels.

Definition C.6 (Viability and Invariance Kernel) The viability ker-
nel, ViabH(K) of a set K ⊆ X under an impulse differential inclusion
H = (X,F,R, J) is the set of states x0 ∈ X for which there exists an in-
finite run viable in K. The invariance kernel, InvH(K) of K ⊆ X under
H = (X,F,R, J) is the set of states x0 ∈ X for which all runs are viable
in K.

Notice that by definition ViabH(K) ⊆ K and InvH(K) ⊆ K, but in general
the two sets are incomparable.
To state viability and invariance results for impulse differential inclusions

we need to introduce some technical definitions from set valued analysis.
For more details see [114, 147].
For a set valued map R : X → 2Y and a set K ⊆ Y we use R−1(K) to

denote the inverse image of K under R and R⊖1(K) to denote the extended
core of K under R, defined by

R−1(K) = {x ∈ X | R(x) ∩K 6= ∅}, and

R⊖1(K) = {x ∈ X | R(x) ⊆ K} ∪ {x ∈ X | R(x) = ∅}.
Notice that R−1(Y) is the set of x ∈ X such that R(x) 6= ∅. We call the
set R−1(Y) the domain of R and the set {(x, y) ∈ X × Y | y ∈ R(x)} the
graph of R.
A set valued map R : X → 2X is called upper semicontinuous at x ∈ X

if for every ǫ > 0 there exists δ > 0 such that

∀ x′ ∈ B(x, δ), R(x′) ⊆ B(R(x), ǫ).

R is called lower semicontinuous at x ∈ X if for all x′ ∈ R(x) and for all se-
quences xn converging to x, there exists a sequence x′n ∈ R(xn) converging
to x′. R is called upper semicontinuous (respectively lower semicontinu-
ous) if it is upper semicontinuous (respectively lower semicontinuous) at
all x ∈ X. It should be noted that, unlike single valued functions, these
two notions of continuity are not equivalent for set valued maps. It can be
shown that if R is upper semicontinuous with closed domain and K ⊆ X is

204 Appendix C. Hybrid System Viability (John)

a closed set, then R−1(K) is closed, whereas if R is lower semicontinuous
and U ⊆ X is an open set, then R−1(U) is open. Notice that the last state-
ment also implies that if R is lower semicontinuous and K ⊆ X is closed,
R⊖1(K) is closed, since R⊖1(K) = X \R−1(X \K).
For a closed subset, K ⊆ X, of a finite dimensional vector space, and a

point x ∈ K, we use TK(x) to denote the contingent cone to K at x, i.e.
the set of v ∈ X such that there exists a sequence of real numbers hn > 0
converging to 0 and a sequence of vn ∈ X converging to v satisfying

∀ n ≥ 0, x+ hnvn ∈ K.

Notice that, if x is in the interior of K, TK(x) = X.
Subsequently we will be dealing with differential inclusions of the form

ẋ ∈ F (x), where F : X → 2X . To ensure existence of solutions we will
need to impose some standard regularity assumptions on the map F , for
example require F to be Marchaud and/or Lipschitz. We say that a map
F : X → 2X is Marchaud if and only if

1. the graph and the domain of F are nonempty and closed;

2. for all x ∈ X, F (x) is convex, compact and nonempty; and,

3. the growth of F is linear, that is there exists c > 0 such that for all
x ∈ X

sup{‖v‖ | v ∈ F (x)} ≤ c(‖x‖+ 1).

We say F is Lipschitz if and only if there exists a constant λ > 0 (known
as the Lipschitz constant) such that for all x, x′ ∈ X

F (x) ⊆ F (x′) + λ‖x− x′‖B(0, 1).

C.4 Viability Conditions

The viability conditions for impulse differential inclusions involve the notion
of “viability with target”. Viability with target provides conditions under
which solutions of ẋ ∈ F (x) that remain in a set K until they reach a target
set C exist.

Lemma C.7 Consider a Marchaud map F : X → 2X and two closed sets
K ⊆ X and C ⊆ X. For all x0 ∈ K, there exists a solution of ẋ ∈ F (x)
starting at x0 which is either

1. defined over [0,∞[with x(t) ∈ K for all t ≥ 0, or

2. defined over [0, T] for some T ≥ 0, with x(T) ∈ C and x(t) ∈ K for
all t ∈ [0, T],

if and only if for all x ∈ K \ C, F (x) ∩ TK(x) 6= ∅.

C.4. Viability Conditions 205

Proof:
Necessity: Consider x0 ∈ K\C and x(·) a trajectory starting from x0

which stays in K on some interval [0, σ] (and which does not reach C in
this time interval). By application of Proposition 3.4.1 of [114], we obtain

F (x0) ∩ TK(x0) 6= ∅.
Sufficiency: Let x0 ∈ K\C. Because C is closed, some r > 0 exists such

that B(x0, r)∩C 6= ∅. In the set BK(x0, r) := K∩B(x0, r), one can imitate
the proof of Proposition 3.4.2 of [114] and obtain the existence of T > 0
and of a solution to ẋ ∈ F (x) starting at x0 which remains in BK(x0, r) on
[0, T].
Using an argument (Zorn’s Lemma) classical in differential equation the-

ory, it is possible to extend x(·) to a maximal trajectory - again denoted
x(·) - on some [0, T̃] viable in K and such that C ∩ [0, T̂) = ∅. Either
T̂ = +∞ and the proof is complete, or T̂ < +∞ and then x(T̂) ∈ C (if
not one could extend a little the trajectory to a viable one, this would be
a contradiction with the maximality of x(·)).

The conditions characterising viable sets depend on whether the set J is
open or closed. In the case where J is closed we have the following.

Theorem C.8 (Viability Conditions, J Closed) Consider an impulse
differential inclusion H = (X,F,R, J) such that F is Marchaud, R is upper
semicontinuous with closed domain and J is closed. A closed set K ⊆ X is
viable under H if and only if

1. K ∩ J ⊆ R−1(K), and

2. ∀ x ∈ K\R−1(K), F (x) ∩ TK(x) 6= ∅
In words, the conditions of the theorem require that for any state x ∈ K,
whenever a discrete transition has to take place (x ∈ K ∩ J), a transition
back intoK is possible (R(x)∩K 6= ∅), and whenever a discrete transition to
another point inK is not possible (R(x)∩K = ∅) continuous evolution that
remains in K has to be possible (encoded by the local viability condition
F (x) ∩ TK(x) 6= ∅).
Proof: Notice that, since R is upper semicontinuous with closed domain

and K is closed, R−1(K) is also closed.
Necessity: Assume that K is viable under (X,F,R, J) and consider an

arbitrary x0 ∈ K. To show the first condition is necessary assume x0 ∈
K ∩J . Then continuous evolution is impossible at x0. Assume, for the sake
of contradiction, that x0 6∈ R−1(K). Then either R(x) = ∅ (in which case
the system blocks and no infinite runs start at x0) or all runs starting at
x0 leave K through a discrete transition to some x1 ∈ R(x0). In either
case, the assumption that K is viable is contradicted. To show the second
condition is necessary, assume x0 ∈ K \ R−1(K). Since an infinite run
viable in K starts at x0, there exists a solution to the differential inclusion
ẋ ∈ F (x) starting at x0 which is either

206 Appendix C. Hybrid System Viability (John)

1. defined on [0,∞[with x(t) ∈ K \ J for all t ≥ 0; or,

2. defined on [0, t′] with x(t′) ∈ R−1(K) and x(t) ∈ K\J for all t ∈ [0, t′[.

This implies, in particular, that there is a solution to the differential
inclusion ẋ ∈ F (x) starting at x0 which is either

1. defined on [0,∞[with x(t) ∈ K for all t ≥ 0; or,

2. defined on [0, t′] with x(t′) ∈ R−1(K) and x(t) ∈ K for all t ∈ [0, t′].

By the necessary part of Lemma C.7, this implies that for all x0 ∈ K \
R−1(K), F (x) ∩ TK(x) 6= ∅.
Sufficiency: Assume the conditions of the theorem are satisfied and con-

sider an arbitrary x0 ∈ K. We construct an infinite run of (X,F,R, J)
starting at x0 and viable in K by induction. We distinguish two cases,
x0 ∈ K \ R−1(K) and x0 ∈ K ∩ R−1(K). In the first case, by the suffi-
cient part of Lemma C.7, there exists a solution to the differential inclusion
ẋ ∈ F (x) starting at x0 which is either

1. defined on [0,∞[with x(t) ∈ K for all t ≥ 0; or,

2. defined on [0, t′] with x(t′) ∈ R−1(K) and x(t) ∈ K for all t ∈ [0, t′].

Notice that, since by the first assumption of the theorem, K∩J ⊆ R−1(K)
there must also be a solution to the differential inclusion ẋ ∈ F (x) starting
at x0 which is either

1. defined on [0,∞[with x(t) ∈ K \ J for all t ≥ 0; or,

2. defined on [0, t′] with x(t′) ∈ R−1(K) and x(t) ∈ K\J for all t ∈ [0, t′[

(i.e. either the solution stays in K forever and never reaches J , or the
solution stays in K and reaches R−1(K) by the time it reaches J). In the
former case, consider the infinite run ([0,∞[, x); this is clearly a run of
(X,F,R, J), viable in K. In the latter case, let τ0 = 0, τ ′0 = t′, and τ1 = τ ′0.
Since x(τ ′0) ∈ R−1(K), x(τ1) can be chosen such that x(τ1) ∈ K. Notice
that this argument also covers the case where x0 ∈ K∩R−1(K), with x(τ ′0)
playing the role of x0. An infinite run viable in K can now be constructed
inductively, by substituting x0 by x(τ1) and repeating the process.

Similar conditions characterise viability when the set J is open, or, in
other words, the set I = X \ J is closed.

Theorem C.9 (Viability Conditions, J Open) Consider an impulse
differential inclusion H = (X,F,R, J) such that F is Marchaud, R is upper
semicontinuous with closed domain and J is open. A closed set K ⊆ X is
viable under H if and only if

1. K ∩ J ⊆ R−1(K), and

2. ∀ x ∈ (K ∩ I)\R−1(K), F (x) ∩ TK∩I(x) 6= ∅

C.5. Invariance Conditions 207

R−1(K)

F (x)

F (x)

F (x)

F (x)

TK(x)

TK(x)

TK(x)

TK(x)

X

J

K

Figure C.1. K viable under H = (X,F,R, J)

Figure C.1 suggests how the conditions of Theorems C.8 and C.9 can be
interpreted pictorially.
Notice that Assumption C.3 does not need to be added explicitly to

Theorems C.8 and C.9, since the part of it that is essential to guarantee the
existence of a run viable in K is implied by the conditions of the theorems.
Conditions that guarantee the existence of runs for impulse differential
inclusions can be deduced as a corollary of Theorems C.8 and C.9.

Corollary C.10 Consider an impulse differential inclusion H = (X,F,R, J)
such that F is Marchaud, and R is upper semicontinuous with closed do-
main and J is either open or closed. Every finite run of H can be extended
to an infinite run if and only if H satisfies Assumption C.3.

C.5 Invariance Conditions

The conditions for invariance make use of the notion of “invariance with
target” for continuous differential inclusions. Invariance with target involves
conditions ensuring that all solutions of ẋ ∈ F (x) remain in a set K until
they reach a target set, C.

Lemma C.11 Consider a Marchaud and Lipschitz map F : X → 2X and
two closed sets K and C. All solutions of ẋ ∈ F (x) starting at some x0 ∈ K
are either

1. defined over [0,∞[with x(t) ∈ K for all t ≥ 0, or

2. defined over [0, T] with x(T) ∈ C and x(t) ∈ K for all t ∈ [0, T],

if and only if for all x ∈ K \ C, F (x) ⊆ TK(x).

208 Appendix C. Hybrid System Viability (John)

Proof:
Necessity: Assume that all solutions starting in K stay in K until they

reach C. Consider x0 ∈ K \C and v0 ∈ F (x0). Then (see for example [114]
Corollary 5.3.2) there exists a trajectory x(·) of ẋ ∈ F (x) starting at x0
such that d

dtx(0) = v0. Since x is a solution to ẋ ∈ F (x) it remains in
K until it reaches C. But x0 ∈ K \ C and C is closed, therefore, there
exists α > 0 such that x(t) ∈ K for all t ∈ [0, α]. Since x is absolutely
continuous, for all t ∈ [0, α[where d

dtx(t) is defined,
d
dtx(t) ∈ TK(x(t)) (see

for example [114]). In particular, for t = 0, v0 = d
dtx(0) ∈ TK(x0). Hence,

for all x0 ∈ K \ C and for all v0 ∈ F (x0), v0 ∈ TK(x0), or, in other words,
F (x0) ⊆ TK(x0).
Sufficiency: Let λ be the Lipschitz constant of F . Consider x0 ∈ K and

a solution x(·) of ẋ ∈ F (x) starting at x0, and show that x remains in K
until it reaches C. If x0 ∈ C then there is nothing to prove. If x0 ∈ K \ C
consider

θ = sup{t | ∀ t′ ∈ [0, t[, x(t′) ∈ K \ C}.

If θ = ∞ or x(θ) ∈ C we are done. We show that x(θ) ∈ K \ C leads
to a contradiction. Indeed, consider α > 0 such that B(x(θ), α) ∩ C = ∅
(which exists since x(θ) 6∈ C and C is closed), and θ′ > θ, such that for
all t ∈ [θ, θ′], x(t) ∈ B(x(θ), α) (which exists since x is continuous). For
t ∈ [θ, θ′], let ΠK(x(t)) denote a point of B(x(θ), α) ∩K such that

d(x(t),K) = d(x(t),ΠK(x(t)))

(a projection of x(t) onto K). Then (see for example [114], Lemma 5.1.2)
for almost every t ∈ [θ, θ′],

d

dt
d(x(t),K) ≤d

(
d

dt
x(t), TK(ΠK(x(t)))

)

≤d
(
d

dt
x(t), F (ΠK(x(t)))

)

≤d
(
d

dt
x(t), F (x(t))

)
+ λd(x(t),ΠK(x(t)))

≤0 + d(x(t),K)

since x is a solution to ẋ ∈ F (x) and by definition of Π. By the Gronwall
lemma, d(x(t),K) = 0 for all t ∈ [θ, θ′], which contradicts the definition
of θ. Summarising, if F (x) ⊆ TK(x) for all x ∈ K \ C, then all solutions
starting in K either stay for ever in K \C or reach C before they leave K.

Lemma C.11 allows us to prove the following invariance theorem for
impulse differential inclusions.

C.5. Invariance Conditions 209

R−1(X)

R⊖(K) ∩R−1(X)

F (x)

F (x)

F (x)

F (x)

X
J

K

Figure C.2. K invariant under (X,F,R, J)

Theorem C.12 (Invariance Conditions) Consider an impulse differ-
ential inclusion H = (X,F,R, J) such that F is Marchaud and Lipschitz
and J is closed. A closed set K ⊆ X is invariant under H if and only if

1. R(K) ⊆ K, and

2. ∀ x ∈ K \ J, F (x) ⊆ TK(x).

In words, the conditions of the theorem require that for all x ∈ K, if
a discrete transition is possible (x ∈ R−1(X)), then all states after the
transition are also in K (R(x) ⊆ K), whereas if continuous evolution is
possible (x 6∈ J) then all possible solutions of the differential inclusion
ẋ ∈ F (x) remain in K (characterised here by the invariance condition
F (x) ⊆ TK(x)). Figure C.2 suggests how the conditions of Theorem C.12
can be interpreted pictorially.
Proof:
Necessity: Assume that K is invariant under (X,F,R, J). If the first

condition is violated, then there exists x0 ∈ K and x1 ∈ R(x0) with x1 6∈
K. Therefore, there exists a run starting at x0 that leaves K through a
discrete transition to some x1 and the assumption that K is invariant is
contradicted. To show the second condition is necessary, notice that since
all runs of (X,F,R, J) starting in K are viable in K, then all solutions to
ẋ ∈ F (x) starting in K are either

1. defined on [0,∞[with x(t) ∈ K \ J for all t ≥ 0; or,

2. defined on [0, t′] with x(t′) ∈ J and x(t) ∈ K for all t ∈ [0, t′].

Otherwise, there would exist a solution of ẋ ∈ F (x) which leaves K before
reaching J . This solution would be a run of (X,F,R, J) that is not viable
in K, which would contradict the assumption that K is invariant. By the

210 Appendix C. Hybrid System Viability (John)

necessary part of Lemma C.11, 1 and 2 imply that for all x0 ∈ K \ J ,
F (x) ⊆ TK(x).
Sufficiency: Assume the conditions of the theorem are satisfied and con-

sider an arbitrary x0 ∈ K and an arbitrary run, (τ, x), of (X,F,R, J)
starting at x0. Notice that x(τ0) = x0 ∈ K by assumption. Assume
x(τi) ∈ K and show x(t) ∈ K until τi+1; the claim then follows by in-
duction. If t = τi we are done. If τi ≺ t � τ ′i , then x(τi) ∈ K \ J since
continuous evolution is possible from x(τi). By the second condition of
the theorem and the sufficient part of Lemma C.11, all solutions to the
differential inclusion ẋ ∈ F (x) starting at x(τi) are either

1. defined on [0,∞[with x(t) ∈ K for all t ≥ 0; or,

2. defined on [0, t′] with x(t′) ∈ J and x(t) ∈ K for all t ∈ [0, t′].

In the first case, the run is viable in K and we are done. In the second
case, τ ′i � t′ and therefore for all t ∈ [τi, τ

′
i], x(t) ∈ K. If x(τ ′i) ∈ R−1(K),

x(τi+1) ∈ R(x(τi)) ⊆ K by the first condition of the theorem. If, on the
other hand, x(τ ′i) ∈ J , but R(x(τ ′i)) = ∅, then the execution blocks at τi,
and therefore is viable in K.

Notice that no assumptions need to be imposed on R. Strictly speaking,
Theorem C.12 remains true even without Assumption C.3; if the impulse
differential inclusion has no runs for certain initial conditions in K, then,
vacuously, all runs that start at these initial conditions are viable in K.
In practice, it may be prudent to impose Assumption C.3, to ensure the
results are meaningful.

C.6 Viability Kernels

If K is not viable under an impulse differential inclusion H, one would
like to characterise the largest subset of K which is viable under H. This
set turns out to be the viability kernel of K under the impulse differential
inclusion. The viability kernel of an impulse differential inclusion can be
characterised in terms of the notion of the viability kernel with target for a
continuous differential inclusion. For a differential inclusion ẋ ∈ F (x), the
viability kernel of a set K with target C, ViabF (K,C), is defined as the
set of states for which there exists a solution to the differential inclusion
that remains in K either forever, or until it reaches C.

Lemma C.13 Consider a Marchaud map F : X → 2X and two closed
subsets of X, K and C. ViabF (K,C) is the largest closed subset of K
satisfying the conditions of Lemma C.7.

Proof: Let D ⊆ K a closed set satisfying assumptions of Lemma C.7.
Clearly D ⊆ ViabF (K,C).

C.6. Viability Kernels 211

We claim that ViabF (K,C) is closed. Consider a sequence xn ∈
ViabF (K,C) converging to some x ∈ X. Since K is closed, x ∈ K. We
show that x ∈ ViabF (K,C). If x ∈ C, the proof is done. Else, there ex-
ists an r > 0 with K ∩ B(x, r) 6= ∅. For n large enough xn ∈ B(x, r2).
For any such n, consider xn(·) a solution to the differential inclusion start-
ing from xn, viable in K until it reaches C. Such a solution exists, since
xn ∈ ViabF (K,C).
The graph of the solution map of the differential inclusion restricted to

the compact set

{x} ∪ {xn, n > 0}.

is compact (Theorem 3.5.2 in [114]). Hence, there exists a subsequence to
xn(·) - again denoted xn(·) - converging to a solution x(·) of the differential
inclusion starting at x uniformly on compact intervals.
Let σ > 0 such that x[0, σ) ∩ C = ∅. Such a σ exists since x 6∈ C,

C is closed, and x(·) is continuous. Fix 0 ≤ t < σ. For n large enough,
xn[0, t] ∩ C = ∅ because C is closed and xn(·) converges uniformly to x(·)
on [0, t]. Since xn[0, t] is contained in K so is x[0, t]. Because σ and t are
arbitrary, we can deduce that x(·) is viable in K until it reaches C. So
x ∈ ViabF (K,C), and therefore ViabF (K,C) is closed.
It remains to prove that ViabF (K,C) satisfies conditions of Lemma C.7

(i.e., that it is itself viable with target C). Let x0 ∈ ViabF (K,C). By the
very definition of the viability kernel some trajectory x(·) starting from x
exists which is viable inK until it reaches C. Suppose by contradiction that
some s > 0 exists such x(s) /∈ ViabF (K,C) and x[0, s] ∩ C = ∅. Then any
trajectory starting from x(s) leaves K before reaching C. But t 7→ x(s+ t)
is such a trajectory which is viable in K until it reaches C, a contradiction.

Exercise C.1 Show that K ∩ C ⊆ ViabF (K,C) ⊆ K.

Using this notion, one can give an alternative characterisation of the
sets that are viable under an impulse differential inclusion, as fixed points
of an appropriate operator. For an impulse differential inclusion H =
(X,F,R, J), consider the operator Pre∃H : 2X → 2X defined by

Pre∃H(K) = ViabF (K ∩ I,R−1(K)) ∪ (K ∩R−1(K))

Recall that I = X \ J .

Lemma C.14 Consider an impulse differential inclusion H = (X,F,R, J)
such that F is Marchaud, R is upper semicontinuous with closed domain,
and J is open. A closed set K ⊆ X is viable under H if and only if it is a
fixed point of the operator Pre∃H .

Proof:

212 Appendix C. Hybrid System Viability (John)

x0

R−1(X)R−1(K)

Case 1
Case 2

Case 3

K

X

I

Figure C.3. Three possible evolutions for
x0 6∈ ViabF (K ∩ I,R−1(K)) ∪ (K ∩R−1(K)).

Necessity: We first show that for every closed set K viable under

H = (X,F,R, J), Pre∃H(K) = K. Pre∃H(K) is clearly a subset of K,
since ViabF (K ∩ I,R−1(K)) ⊆ K ∩ I ⊆ K. Conversely, consider an
arbitrary x0 ∈ K. Assume, for the sake of contradiction, that x0 6∈
ViabF (K ∩ I,R−1(K)) ∪ (K ∩ R−1(K)). Consider an arbitrary infinite
run (τ, x) viable in K and starting at x0. Then x(τ0) 6∈ R−1(K) and
x(τ0) 6∈ ViabF (K ∩ I,R−1(K)). If τ0 = τ ′0, x starts by a discrete tran-
sition to some x(τ1) ∈ R(x(τ0)). Since x(τ0) 6∈ R−1(K), x(τ1) 6∈ K, which
contradicts the assumption that (τ, x) is viable in K. If τ0 < τ ′0, then (τ, x)
starts by continuous evolution. Since x0 = x(τ0) 6∈ ViabF (K ∩ I,R−1(K)),
the run either

1. leaves K (at time t ≺ τ ′0) before it reaches R−1(K), or

2. leaves I (at time τ ′0) before it reaches R−1(K), or

3. takes a transition from some x(τ ′0) ∈ K ∩ I \R−1(K)

(see Figure C.3). The first case contradicts the assumption that (τ, x) is
viable in K. In the remaining cases, x(τ ′0) 6∈ R−1(K) and since x(τ1) ∈
R(x(τ ′0)), we have x(τ1) 6∈ K. This also contradicts the assumption that
(τ, x) is viable in K.
Sufficiency: Next, we show that every closed set K such that K =

Pre∃H(K) is viable. Consider an arbitrary x0 ∈ K; we construct by in-
duction an infinite run, (τ, x) that starts at x0 and is viable in K.
By assumption x0 = x(τ0) ∈ K. Assume that we have constructed a
run viable in K defined over a finite sequence [τ0, τ

′
0], [τ1, τ

′
1], . . . , [τi, τi].

Since K is a fixed point of Pre∃H and the run is viable in K, x(τi) ∈
ViabF (K ∩ I,R−1(K))∪ (K ∩R−1(K)). If x(τi) ∈ K ∩R−1(K), let τ ′i = τi

C.6. Viability Kernels 213

Algorithm 5 (Viability Kernel Approximation)

initialization: K0 = K, i = 0
repeat

Ki+1 = Pre∃H(Ki)
i = i+ 1

until Ki = Ki−1

Table C.1. Viability kernel approximation algorithm

and chose x(τi+1) ∈ R(x(τ ′i)) ∩K. If x(τi) ∈ ViabF (K ∩ I,R−1(K)), then
there exists a solution to the differential inclusion ẋ ∈ F (x) which is either:

1. defined over [0,∞[with x(t) ∈ K ∩ I for all t ≥ 0; or,

2. defined over [0, t′] with x(t′) ∈ R−1(K) and x(t) ∈ K ∩ I for all
t ∈ [0, t′].

In the former case, set τ ′i = ∞ and the construction of the infinite run is
complete. In the latter case, let τ ′i = τi+ t

′ and choose x(τi+1) ∈ R(x(τ ′i))∩
K. The claim follows by induction.

Theorem C.15 (Viability Kernel) Consider an impulse differential in-
clusion H = (X,F,R, J) such that F is Marchaud, R is upper semicontin-
uous with closed domain and compact images, and J is open. The viability
kernel of a closed set K ⊆ X under H is the largest closed subset of K
viable under H, that is, the largest closed fixed point of Pre∃H contained in
K.

The proof of Theorem C.15 makes use of the sequnce of sets generated by
the algorithm given in Table C.1. The algorithm generates a sequence of
nested, closed sets Ki that “converge” to the viability kernel. In addition to
being useful in the proof of the theorem, the algorithm can therefore also be
used to provide progressively better estimates of the viability kernel. This
is, of course, provided one can compute Pre∃(Ki) at each step. Numerical
algorithms for approximating this computation have been developed see,
for example, [148].
Proof: Let K∞ =

⋂∞

i=0Ki. We show that:

1. For every viable set L ⊆ K, L ⊆ ViabH(K).

2. K∞ is closed.

3. ViabH(K) ⊆ K∞.

4. K∞ ⊆ ViabH(K).

5. ViabH(K) is viable.

214 Appendix C. Hybrid System Viability (John)

Step 1: Every set L ⊆ K which viable under H = (X,F,R, J) must be
contained in ViabH(K), since for all x0 ∈ L there exists an infinite run
starting at x0 that stays in L, and therefore in K.
Step 2: Since ViabF (Ki ∩ I,R−1(Ki)) ⊆ Ki ∩ I ⊆ Ki, Ki+1 ⊆ Ki

for all i. Since K is closed, K0 is closed. Moreover, if Ki is closed, then
R−1(Ki) is closed (since R is upper semicontinuous with closed domain),
and ViabF (Ki∩I,R−1(Ki)) is closed (by Lemma C.13, since I and R−1(Ki)
are closed), and, therefore,Ki+1 is closed. By induction,Ki form a sequence
of nested closed sets, and therefore K∞ is closed (possibly the empty set).
Step 3: Consider a point x0 ∈ ViabH(K) and show that x0 ∈ K∞.

Assume, for the sake of contradiction, that x0 6∈ K∞. Then there exists
N ≥ 0 such that x0 6∈ KN . If N = 0, then x0 6∈ K0 = K, therefore all
runs starting at x0 that are not viable in K (trivially). This contradicts the
assumption that x0 ∈ ViabH(K). IfN > 0, we show that for all infinite runs
(τ, x) starting at x0 (which exist since x0 ∈ ViabH(K)), there exists a t � τ1
such that1 x(t) 6∈ KN−1. The claim then follows by induction. Indeed, since
x0 6∈ KN we must have have x0 6∈ ViabF (KN−1∩I,R−1(KN−1))∪(KN−1∩
R−1(KN−1)). If τ0 < τ ′0, then (τ, x) starts by continuous evolution. Since
x0 = x(τ0) 6∈ ViabF (KN−1∩I,R−1(KN−1)), then all solutions to ẋ ∈ F (x)
either

1. leave KN−1 (at some t � τ ′0) before they reach R−1(KN−1), or

2. leave I (at time τ ′0) before they reach R−1(KN−1), or

3. take a transition from some x(τ ′0) ∈ (KN−1 ∩ I) \R−1(KN−1).

(refer to Figure C.3). In the first case we are done. In the remaining cases,
x(τ ′0) 6∈ R−1(KN−1) and since x(τ1) ∈ R(x(τ ′0)), we have x(τ1) 6∈ KN−1.
The last argument also subsumes the case τ0 = τ ′0, since x0 6∈ KN−1 ∩
R−1(KN−1).
Step 4: Consider an arbitrary x0 ∈ K∞. To show that x0 ∈ ViabH(K),

we construct an infinite run (τ, x) ∈ R∞
H (x0) viable in K. More specifically,

since x0 ∈ Kk for all k, there exists a sequence of runs (τ (k), x(k)) ∈ RH(x0),
which remain in K for at least k jumps. We will show that the sequence
(τ (k), x(k)) has a cluster point (τ̄ , x̄) ∈ R∞

H (x0), which is an infinite run of
(X,F,R, J), starting at x0, viable in K.

Let [τ
(k)
i , τ

(k)′

i] (or [τ
(k)
i , τ

(k)′

i [if i is the last interval) denote the sequence
of intervals τ (k). Recall that, without loss of generality, we can assume that

τ
(k)
0 = 0 for all k. Let τ̄0 = 0 and define

τ̄ ′0 = lim inf
k→∞

τ
(k)′

0 .

1If τ = [τ0,∞), t � τ1 is replaced by t ≺ τ ′0 = ∞.

C.6. Viability Kernels 215

Then there exists a subsequence of τ
(k)′

0 , denoted by τ
σ(k)′

0 , such that

lim
k→∞

τ
σ(k)′

0 = τ̄ ′0.

We distinguish three cases:

1. τ̄ ′0 = +∞;

2. τ̄ ′0 ∈]0,+∞[; and,

3. τ̄ ′0 = 0.

Case 1 will lead to a run (τ̄ , x̄) ∈ R∞
H (x0) that is viable in K and makes

no jumps. Case 2 will lead to a run (τ̄ , x̄) ∈ R∞
H (x0) that is viable in K,

whose first jump comes after an interval of continuous evolution. Finally,
Case 3 will lead a run (τ̄ , x̄) ∈ R∞

H (x0) viable in K, that takes its first jump
immediately.
Case 1: Consider a sequence yσ(k)(·) of solutions to the differential

inclusion

ẋ ∈ F (x), x(0) = x0, (C.1)

that coincide with xσ(k) on [0, τ
σ(k)′

0 [. Because the set of solutions of (C.1)
is compact (see Theorem 3.5.2 of [114]), there exists a subsequence yφ(k)(·)
of the sequence yσ(k)(·) that converges to a solution ȳ(·) of (C.1). Moreover,

since limk→∞ τ
σ(k)′

0 = +∞, the sequence yφ(k)(·) (and hence the sequence
xφ(k)(·)) converges to ȳ(·) uniformly over [0, T], for all T > 0.
Now, (τφ(k), xφ(k)) is a run of (X,F,R, J) viable in K for at least k

jumps. Therefore, xφ(k)(t) ∈ K ∩ I for all t ∈ [0, τ
φ(k)′

0 [, and hence, for
sufficiently large k, xφ(k)(t) ∈ K ∩ I for all t ∈ [0, T]. Since K ∩ I is closed,
ȳ(t) ∈ K ∩ I for all t ∈ [0, T]. Since T is arbitrary, ([0,∞[, ȳ) is an infinite
run of (X,F,R, J) (with no jumps) starting at x0 and viable in K. The
proof is complete.
Case 2: We can restrict attention to k ≥ 1. As for case 1, define the

sequence yσ(k)(·) of solutions of (C.1) that coincide with xσ(k) on [0, τ
σ(k)′

0 [
and the subsequence yφ(k)(·) converging (uniformly over compact intervals)
to a solution ȳ(·) of (C.1). As before, (τφ(k), xφ(k)) is a run of (X,F,R, J)
viable in K for at least k > 0 jumps. Therefore, xφ(k)(t) ∈ K ∩ I for all

t ∈ [0, τ
φ(k)′

0 [. Since K∩I is closed, ȳ(t) ∈ K∩I for all t ∈ [0, τ̄ ′0]. Therefore,
([τ̄0, τ̄

′
0], ȳ) is a finite run of (X,F,R, J) (with no jumps) starting at x0 and

viable in K.
Since yφ(k)(·) converges to ȳ(·) and τ

φ(k)′

0 converges to τ̄ ′0, x
φ(k)(τ

φ(k)′

0)
converges to ȳ(τ̄ ′0). Recall that (τ

φ(k), xφ(k)) is a run of (X,F,R, J) viable

in K for at least k > 0 jumps, therefore xφ(k)(τ
φ(k)
1) ∈ R(xφ(k)(τ

φ(k)′

0))∩K.
Since R is upper semicontinuous with closed domain and compact images,

there exists a subsequence of xφ(k)(τ
φ(k)
1) converging to some point ȳ1 ∈

R(ȳ(τ̄ ′0))∩K. Therefore, ([0, τ̄ ′0][τ̄1, τ̄
′
1], ȳ) with τ̄1 = τ̄ ′1 = τ̄ ′0 and ȳ(τ̄1) = ȳ1

216 Appendix C. Hybrid System Viability (John)

defined as above is a finite run of (X,F,R, J) (with one jump) starting at
x0 and viable in K.
Case 3: The second part of the argument for Case 2 shows that, since

xφ(k)(τ
σ(k)′

0) converge to x0, there exists ȳ1 ∈ R(x0) ∩ K. Therefore,
([0, τ̄ ′0][τ̄1, τ̄

′
1], ȳ) with τ̄ ′0 = τ̄1 = τ̄ ′1 = 0, ȳ(τ ′0) = x0 and ȳ(τ̄1) = ȳ1 is a

finite run of (X,F,R, J) (with one instantaneous jump) starting at x0 and
viable in K.
To complete the proof for Cases 2 and 3, we repeat the argument start-

ing at ȳ(τ̄1) (discarding the initial part of the sequences accordingly). We

generate τ̄ ′1 = lim infk→∞ τ
(k)′

1 and construct a run of (X,F,R, J) viable in
K, defined either over [0, τ̄ ′0][τ̄1, τ̄

′
1[(if τ̄

′
1 = +∞, in which case the proof is

complete) or over [0, τ̄ ′0][τ̄1, τ̄
′
1][τ̄2, τ̄

′
2] with τ̄2 = τ̄ ′2 = τ̄ ′1 (if τ̄ ′1 is finite). The

claim follows by induction.
Step 5: Finally, we show ViabH(K) is viable by showing that it is a

fixed point of Pre∃H . Recall that Pre∃H(ViabH(K)) ⊆ ViabH(K). Consider
an arbitrary x0 ∈ ViabH(K) and assume, for the sake of contradiction, that
x0 6∈ Pre∃H(ViabH(K)). Consider an arbitrary infinite run (τ, x) viable inK
and starting at x0 (which exists since x0 ∈ ViabH(K)). If τ0 = τ ′0, x starts
by a discrete transition to some x(τ1) ∈ R(x0). Since x0 6∈ R−1(ViabH(K)),
x(τ1) 6∈ ViabH(K). If τ0 < τ ′0, then (τ, x) starts by continuous evolution.
Since x0 6∈ ViabF (ViabH(K) ∩ I,R−1(ViabH(K))), the execution either

1. leaves ViabH(K) (at time t ≺ τ ′0) before it reaches R−1(ViabH(K));
or,

2. leaves I (at time τ ′0) before it reaches R−1(ViabH(K)); or,

3. takes a transition from some x(τ ′0) ∈ ViabH(K)∩I \R−1(ViabH(K))

(see Figure C.3). In all cases, (τ, x) either blocks or leaves ViabH(K) at
some t ∈ τ with t � τ1. But if x(t) 6∈ ViabH(K) there is no infinite run
of H = (X,F,R, J) starting at x(t) and viable in K. Therefore, (τ, x)
either blocks or is not viable in K. This contradicts the assumption that
x0 ∈ ViabH(K).

It should be stressed that the conditions of Theorem C.15 ensure that
for all initial conditions in the viability kernel infinite runs of the impulse
differential inclusion exist, but do not ensure that these runs will extend
over an infinite time horizon; all runs starting at certain initial conditions
in the viability kernel may turn out to be Zeno.

C.7 Invariance Kernels

If K is not invariant under an impulse differential inclusion H, one would
like to characterise the largest subset of K which is invariant under H. This
turns out to be the invariance kernel of K under the impulse differential

C.7. Invariance Kernels 217

inclusion. The invariance kernel can be characterised using the notion of
the invariance kernel with target for continuous differential inclusions. For
a differential inclusion ẋ ∈ F (x), the invariance kernel of a set K with
target C, InvF (K,C) is defined as the set of states for which all solutions
to the differential inclusion remain in K either for ever, of until they reach
C.

Lemma C.16 Consider a Marchaud and Lipschitz map F : X → 2X and
two closed subsets of X, K and C. InvF (K,C) is the largest closed subset
of K satisfying the conditions of Lemma C.11.

Proof: By definition, InvF (K,C) is the set of x0 ∈ K such that for all
solutions x(·) of ẋ ∈ F (x) starting at x0 either

1. x(t) ∈ K for all t ≥ 0, or,

2. there exists t′ ≥ 0 such that x(t′) ∈ C and x(t) ∈ K for all t ∈ [0, t′].

Therefore, InvF (K,C) satisfies the conditions of Lemma C.11. Moreover,
every subset L ⊆ K which satisfies the conditions of Lemma C.11 must
be contained in InvF (K,C), since all runs starting in L stay in L (and
therefore in K) until they reach C.
It remains to show that InvF (K,C) is closed. Consider a sequence xn ∈

InvF (K,C) converging to x0 and show that x0 ∈ InvF (K,C). Since by
definition InvF (K,C) ⊆ K and K is assumed to be closed, x0 ∈ K. If x0 ∈
K ∩ C there is nothing to prove, since by definition K ∩ C ⊆ InvF (K,C).
If x0 ∈ K \ C, let x(·) be any solution of ẋ ∈ F (x) starting at x0. Let

θ = sup{t | ∀ t′ ∈ [0, t[, x(t′) ∈ K \ C}.
If θ = ∞ or if x(θ) ∈ C, then x0 ∈ InvF (K,C), and the proof is complete.
Let λ be the Lipschitz constant of F , and assume, for the sake of con-

tradiction, that θ < ∞ and x(θ) ∈ K \ C. Then, by the definition of θ
and the assumption that K and C are closed, there exists θ′ > θ such that
x(θ′) 6∈ K and for all t ∈ [θ, θ′], x(t) 6∈ C. Choose ǫ such that

d(x(θ′),K) > ǫeλθ
′

(C.2)

(possible since K is closed and x(θ′) 6∈ K) and for all t ∈ [0, θ′]
{
x(t) + ǫB(0, 1)eλt

}
∩ C = ∅ (C.3)

(possible since C is closed and for all t ∈ [0, θ′], x(t) 6∈ C).
Since xn → x0 there exists n large enough such that ‖xn − x0‖ < ǫ.

By Filippovs theorem (see for example [114], Theorem 5.3.1) there exists a
solution xn(·) of ẋ ∈ F (x) starting at xn such that for all t ∈ [0, θ′]

‖xn(t)− x(t)‖ ≤ ‖xn − x0‖eλt,
or, in other words, for all t ∈ [0, θ′]

xn(t) ∈ B(x(t), ‖xn − x0‖eλt) ⊆ B(x(t), ǫeλt).

218 Appendix C. Hybrid System Viability (John)

Therefore, by equation (C.3), for all t ∈ [0, θ′], xn(t) 6∈ C, while, by equation
(C.2) xn(θ

′) 6∈ K. This contradicts the assumption that xn ∈ InvF (K,C).
Hence, every converging sequence has its limit in InvF (K,C), and therefore
InvF (K,C) is closed.

Exercise C.2 Show that K ∩ C ⊆ InvF (K,C) ⊆ K.

Using the notion of invariance kernel with target, one can give an al-
ternative characterisation of the sets that are invariant under an impulse
differential inclusion, as fixed points of an operator. Given an impulse dif-
ferential inclusionH = (X,F,R, J), consider the operator Pre∀H : 2X → 2X

defined by

Pre∀H(K) = InvF (K,J) ∩R⊖1(K)

Lemma C.17 Consider an impulse differential inclusion H = (X,F,R, J)
such that F is Marchaud and Lipschitz, R is lower semicontinuous, and J
is closed. A closed set K ⊆ X is invariant under H if and only if it is a
fixed point of the operator Pre∀H .

Proof:
Necessity: We first show that for every closed, invariant set K, K =

Pre∀H(K). Clearly Pre∀H(K) ⊆ K, since InvF (K,J) ⊆ K. Conversely, con-
sider an arbitrary point x0 ∈ K and show that x0 ∈ InvF (K,J)∩R⊖1(K).
Assume, for the sake of contradiction that this is not the case. Then, either
x0 6∈ InvF (K,J), or x0 6∈ R⊖1(K). If x0 6∈ R⊖1(K), there exists x1 ∈ R(x0)
such that x1 6∈ K; in other words, there exists a run of the impulse dif-
ferential inclusion starting at x0 that leaves K by a discrete transition.
This contradicts the assumption that K is invariant. If, on the other hand,
x0 6∈ InvF (K,J) then, in particular, x0 6∈ J∩K (since J∩K ⊆ InvF (K,J));
but x0 ∈ K, so we must have x0 6∈ J , and therefore continuous evolution
starting at x0 is possible. Since x0 6∈ InvF (K,J), there exists a solution
to ẋ ∈ F (x) starting at x0 that leaves K before reaching J . This solution
is a run (X,F,R, J) that starts in K but is not viable in K. This also
contradicts the assumption that K is invariant.

Sufficiency: Next, we show that every closed set K such that K =

Pre∀H(K) is invariant. Consider an arbitrary run (τ, x) starting at some
x0 ∈ K. We show that (τ, x) is viable in K by induction. Assume that
we have shown that x(t) ∈ K for all t ∈ [τ0, τ

′
0], [τ1, τ

′
1], . . . , [τi, τi]. Then,

since K = Pre∀H(K), x(τi) ∈ InvF (K,J) ∩ R⊖1(K). If τi = τ ′i the sys-
tem takes a discrete transition to some x(τi+1) ∈ R(x(τ ′i)) ⊆ K, since
x(τ ′i) = x(τi) ∈ R⊖1(K). If τi < τ ′i the run progresses by continuous
evolution. Since x(τi) ∈ InvF (K,J), then either

1. τ ′i = ∞ and x(t) ∈ K for all t ≥ τi; or,

2. τ ′i <∞, x(τ ′i) ∈ J and x(t) ∈ K for all t ∈ [τi, τ
′
i].

C.7. Invariance Kernels 219

Algorithm 6 (Invariance Kernel Approximation)

initialisation: K0 = K, i = 0
repeat

Ki+1 = Pre∀H(Ki)
i = i+ 1

until Ki = Ki−1

Table C.2. Invariance kernel approximation algorithm

Notice that x(τ ′i) ∈ K = Pre∀H(K), and, in particular, x(τ ′i) ∈ R⊖1(K).
Therefore, x(τi+1) ∈ R(x(τ ′i)) ⊆ K. The claim follows by induction.

Notice that in the last argument R(x(τ ′i)) may, in fact, be empty. In this
case the run “blocks”, in the sense that there exist no infinite runs starting
at x(τ ′i). The conclusion that all runs starting at x0 are viable in K is still
true however. To preclude this somewhat unrealistic situation, one can add
Assumption C.3 to the lemma and subsequent Theorem C.18.

Theorem C.18 (Invariance Kernel) Consider an impulse differential
inclusion H = (X, F , R, J) such that F is Marchaud and Lipschitz, R
is lower semicontinuous and J is closed. The invariance kernel of a closed
set K ⊆ X under H is the largest closed subset of K invariant under H,
that is, the largest, closed fixed point of Pre∀H contained in K.

Again the proof makes use of the sequence of sets generated by the algo-
rithm given in Table C.2. At each step, the algorithm computes the set of
states for which all solution of the differential inclusion ẋ ∈ F (x) stay in
the Ki until they reach J . Ki+1 is then the subset of those states for which
if a transition is possible, the state after the transition is also in Ki.
Proof: Let K∞ =

⋂∞

i=0Ki. We show that

1. For every invariant set L ⊆ K, L ⊆ InvH(K).

2. K∞ is closed.

3. InvH(K) ⊆ K∞.

4. K∞ = Pre∀H(K∞).

Step 2, step 4 and Lemma C.17 imply that K∞ is invariant. Therefore, by
step 1, K∞ ⊆ InvH(K), and, by step 3, K∞ = InvH(K).

Step 1: Every set L ⊆ K which invariant under (X,F,R, J) must be
contained in InvH(K), since all runs starting in L stay in L, and therefore
in K.
Step 2: Clearly, for all i, Ki+1 ⊆ InvF (Ki, J) ⊆ Ki. Since K is closed,

K0 is closed. Moreover, if Ki is closed, then InvF (Ki, J) is closed (by
Lemma C.16, since J is closed), R⊖1(Ki) is closed (since R is lower semi-
continuous), and, therefore, Ki+1 is closed. By induction, the Ki form a

220 Appendix C. Hybrid System Viability (John)

sequence of nested closed sets, and therefore K∞ is closed (or the empty
set).
Step 3: Consider a point x0 ∈ InvH(K) and show that x0 ∈ K∞. As-

sume, for the sake of contradiction, that x0 6∈ K∞. Then there exists N ≥ 0
such that x 6∈ KN . If N = 0, then x0 6∈ K0 = K, therefore there exists
a (trivial) run starting at x0 that is not viable in K. This contradicts
the assumption that x0 ∈ InvH(K). If N > 0, we show that there ex-
ists a run stating at x0 that after at most one discrete transition finds
itself outside KN−1. The claim then follows by induction. Indeed, since
x0 6∈ KN we must either have x0 6∈ InvF (KN−1, J), or x0 6∈ R⊖1(KN−1).
If x0 6∈ R⊖1(KN−1), there exists x1 ∈ R(x0) such that x1 6∈ KN−1, i.e.,
there exists a run starting at x0 that transitions outside KN−1. If, on the
other hand, x0 6∈ InvF (KN−1, J), then x0 6∈ J ∩ KN−1. Therefore either
x0 6∈ KN−1 (and the proof is complete), or x0 6∈ J and continuous evolution
is possible. In the latter case, since x0 6∈ InvF (KN−1, J), by Lemma C.16
there exists a solution to ẋ ∈ F (x) starting at x0 that leaves KN−1 before
reaching J . This solution is a run of (X,F,R, J) that leaves KN−1.
Step 4: Recall that Pre∀H(K∞) ⊆ K∞. Consider an arbitrary x0 ∈ K∞

and show that x0 ∈ Pre∀H(K∞). Assume, for the sake of contradiction, that
x0 6∈ InvF (K∞, J)∩R⊖1(K∞). Then there exists a run (τ, x) starting at x0
and a t � τ1 such that2 x(t) 6∈ K∞, or, in other words, there exists a run
(τ, x), a t � τ1 and a N ≥ 0 such that x(t) 6∈ KN . To see this notice that
either x(τ0) 6∈ R⊖1(K∞) (in which case we can take τ ′0 = τ0, x(τ1) 6∈ K∞

and t = τ1) or x(τ0) 6∈ InvF (K∞, J) (in which case there exists a solution to
ẋ ∈ F (x) that leaves K before reaching J). The same argument, however,
also shows that x(τ0) = x0 6∈ KN+1, which contradicts the assumption that
x0 ∈ K∞.

C.8 The Bouncing Ball Example

It is easy to check that FB is both Marchaud and Lipschitz and that
RB is upper and lower semicontinuous and has closed domain. Moreover,
HB also satisfies Assumption C.3, since R−1(X) = J . Therefore, we can
immediately draw the following conclusion.

Proposition C.19 Infinite runs exist for all x0 ∈ XT .

The proposition suggests that the impulse differential inclusion HB does
not deadlock. However, it is easy to show that for all x0 ∈ XT all infinite
runs are Zeno.

2If τ = [τ0, τ ′0] or τ = [τ0, τ ′0[, t � τ1 should be replaced by t � τ0 or, respectively,

t ≺ τ0.

C.9. Bibliography and Further Reading 221

Despite the Zeno behaviour, HB is in many ways a reasonable model of
the bouncing ball system. For example, one can show that the ball never
falls below the surface on which it bounces, and that the system dissipates
energy.

Proposition C.20 The set K = {x ∈ XT | x1 ≥ 0} is viable and in-
variant. For all C > 0 the set L = {x ∈ XT | gx1 + x22/2 ≤ C} is
invariant.

For the first part, notice that K ∩ JB = {x ∈ XT | x1 = 0 and x2 ≤ 0}.
Since RB does not affect x1, K ∩JB ⊆ R−1(K) and R(K) ⊆ K. Moreover,
K \ JB = {x ∈ XT | x1 > 0 or x1 = 0 and x2 > 0}. For x such that
x1 > 0, FB(x) ⊆ TK(x) = XB . For x such that x1 = 0 and x2 > 0,
FB(x) ⊆ {v ∈ X | v1 > 0} = TK(x). Therefore,K is viable by Theorem C.8
and invariant by Theorem C.12.
For the second part, R leaves x1 unchanged and maps x2 to αx2.

Therefore R(L) ⊆ L since α ∈ [0, 1]. Moreover

L \ J ={x ∈ XT | x1 > 0 or x2 > 0}
∩ {x ∈ XT | gx1 + x22/2 ≤ C}

For x ∈ L \ J such that gx1 + x22/2 < C, FB(x) ⊆ TK(x) = XB . For
x ∈ L \ J such that gx1 + x22/2 = C,

TK(x) = {v ∈ XB | v1g + v2x2 ≤ 0}
⊇ {v ∈ XB | v1g + v2x2 = 0} ⊇ FB(x)

The claim follows by Theorem C.12.

C.9 Bibliography and Further Reading

Reachability with inputs has also been studied in the context of optimal
control and differential games [110, 105] and using ellipsoidal calculus [149,
150].
Other classes of control problems that have been studied for hy-

brid systems include supervisory control [151, 100, 152] and optimal
control [46, 153].
Because the analytical study of the resulting equations is rarely possi-

ble computational tools have been developed to approximate the solutions
numerically [21, 22, 154, 155, 138, 156, 139, 148].

C.10 problems

Problem C.1 A thermostat system can be more accurately modelled by an
impulse differential inclusion, HT = (XT , FT , RT , JT) with two state vari-

222 Appendix C. Hybrid System Viability (John)

ables, x = (x1, x2): the current room temperature x1 and the steady state
toward which the temperature is converging x2 (which of course depends on
whether the heater is on or off). Let XT = R

2, and

FT (x1, x2) =([a(x1 − x2), b(x1 − x2)], 0)

RT (x1, x2) =





(x1, 30− x2)
if (x1 ≥ 21 and x2 ≥ 20)
or (x1 ≤ 19 and x2 ≤ 20)

∅ otherwise

JT ={x ∈ XT | (x1 ≥ 22 and x2 ≥ 20)

or (x1 ≤ 18 and x2 ≤ 20)},
with a ≤ b < 0. Show that

1. Infinite executions exist for all x0 ∈ XT .

2. The set K = {x ∈ XT | x2 ∈ {0, 30}} is invariant.

3. The set L = {x ∈ XT | x1 ∈ [19, 21]} is viable. Is L invariant?

4. The set M = {x ∈ XT | x1 ∈ [18, 22]} is invariant.

This is page 223
Printer: Opaque this

References

[1] P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE
Transactions on Automatic Control, vol. AC-38, no. 2, pp. 195–207, 1993.

[2] J. Lygeros, D.N. Godbole, and S.S. Sastry, “Verified hybrid controllers for
automated vehicles,” IEEE Transactions on Automatic Control, vol. 43,
no. 4, pp. 522–539, April 1998.

[3] C.J. Tomlin, G.J. Pappas, and S.S. Sastry, “Conflict resolution for air
traffic management: A case study in multi-agent hybrid systems,” IEEE
Transactions on Automatic Control, vol. 43, no. 4, pp. 509–521, 1998.

[4] M. Vidyasagar, Nonlinear Systems Analysis, Prentice Hall, second edition,
1992.

[5] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and
Chaos, Springer-Verlag, third edition, 1997.

[6] H.B. Khalil, Nonlinear Systems, Prentice Hall, third edition, 2001.

[7] S.S. Sastry, Nonlinear Systems: Analysis, Stability and Control, Springer-
Verlag, New York, 1999.

[8] J.E. Hopcroft, R. Motwani, and J.D. Ullman, Introduction to automata
theory, languages and computation, Addison-Wesley Publishing, second
edition, 2000.

[9] H.R. Lewis and C. Papadimitriou, Elements of the Theory of Computation,
Prentice Hall, second edition, 1997.

[10] C.G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems,
Kluwer Academic Publishers, 1999.

[11] R. Alur and D. Dill, “A theory of timed automata,” Theoretical Computer
Science, vol. 126, pp. 183–235, 1994.

224 References

[12] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, “Hybrid au-
tomaton: An algorithmic approach to the specification and verification of
hybrid systems,” in Hybrid Systems, Robert L. Grossman, Anil Nerode, An-
ders P. Ravn, and Hans Rischel, Eds., number 736 in LNCS, pp. 209–229.
Springer-Verlag, Berlin, 1993.

[13] N. Lynch, R. Segala, F. Vaandrager, and H.B. Weinberg, “Hybrid I/O
automata,” in Hybrid Systems III, number 1066 in LNCS, pp. 496–510.
Springer-Verlag, Berlin, 1996.

[14] O. Maler, A. Pnueli, and J. Sifakis, “On the synthesis of discrete controllers
for timed systems,” in Theoretical Aspects of Computer Science, Berlin,
1995, number 900 in LNCS, pp. 229–242, Springer-Verlag.

[15] H. Wong-Toi, “The synthesis of controllers for linear hybrid automata,”
in IEEE Conference on Decision and Control, San Diego, California,
December 10–12 1997, pp. 4607–4613.

[16] T. A. Henzinger, P. H. Ho, and H. Wong Toi, “A user guide to HYTECH,”
in TACAS 95: Tools and Algorithms for the Construction and Analysis
of Systems, E. Brinksma, W. Cleaveland, K. Larsen, T. Margaria, and
B. Steffen, Eds., Berlin, 1995, number 1019 in LNCS, pp. 41–71, Springer-
Verlag.

[17] R.W. Brockett, “Hybrid models for motion control systems,” in Perspec-
tives in Control, H.L. Trentelman and J.C. Willems, Eds., Boston, MA,
1993, Birkhäuser.

[18] A. Nerode and W. Kohn, “Models for hybrid systems: Automata, topolo-
gies, controllability, observability,” in Hybrid Systems, Robert L. Grossman,
Anil Nerode, Anders P. Ravn, and Hans Rischel, Eds., number 736 in LNCS,
pp. 317–356. Springer-Verlag, Berlin, 1993.

[19] M. Lemmon, J. A. Stiver, and P. J. Antsaklis, “Event identification and
intelligent hybrid control,” in Hybrid Systems, Robert L. Grossman, Anil
Nerode, Anders P. Ravn, and Hans Rischel, Eds., number 736 in LNCS,
pp. 268–296. Springer-Verlag, Berlin, 1993.

[20] M. Heymann, F. Lin, and G. Meyer, “Control synthesis for a class of hybrid
systems subject to configuration-based safety constraints,” in Hybrid and
Real Time Systems, number 1201 in LNCS, pp. 376–391. Springer-Verlag,
Berlin, 1997.

[21] T. Dang and O. Maler, “Reachability analysis via face lifting,” in Hybrid
Systems: Computation and Control, S. Sastry and T.A. Henzinger, Eds.,
number 1386 in LNCS, pp. 96–109. Springer-Verlag, Berlin, 1998.

[22] M.R. Greenstreet and I. Mitchell, “Integrating projections,” in Hybrid
Systems: Computation and Control, S. Sastry and T.A. Henzinger, Eds.,
number 1386 in LNCS, pp. 159–174. Springer-Verlag, Berlin, 1998.

[23] A.S. Matveev and A.V. Savkin, Qualitative theory of hybrid dynamical
systems, Birkhauser, Boston, MA, 2000.

[24] A.J. van der Schaft and H. Schumacher, An Introduction to Hybrid Dy-
namical Systems, Number 251 in Lecture Notes in Control and Information
Sciences. Springer-Verlag, 1999.

References 225

[25] A. Pnueli and J. Sifakis Editors, “Hybrid systems,” Theoretical Computer
Science, vol. 138, no. 1, 1995.

[26] P.J. Antsaklis and A. Nerode, Editors, “Special issue on hybrid control
systems,” IEEE Transactions on Automatic Control, vol. 43, no. 4, April
1998.

[27] J.M. Schumacher, A.S. Morse, C.C. Pandelides, and S. Sastry, Editors,
“Special issue on hybrid systems,” Automatica, vol. 35, no. 3, March 1999.

[28] A. Savkin, Editor, “Special issue on hybrid systems,” Systems and Control
Letters, vol. 38, no. 3, October 1999.

[29] P.J. Antsaklis, Editor, “Special issue on hybrid systems: Theory and
applications,” Proceedings of the IEEE, vol. 88, no. 7, July 2000.

[30] A. Balluchi, L. Benvenuti, M.D. Di Benedetto, C. Pinello, and A.L.
Sangiovanni-Vincentelli, “Automotive engine control and hybrid systems:
Challenges and opportunities,” Proceedings of the IEEE, vol. 88, no. 7, pp.
888–912, July 2000.

[31] B. Lennartsson, M. Tittus, B. Egardt, and S. Pettersson, “Hybrid systems
in process control,” Control Systems Magazine, vol. 16, no. 5, pp. 45–56,
1996.

[32] S. Engell, S. Kowalewski, C. Schulz, and O. Stursberg, “Continuous-discrete
interactions in chemical processing plants,” Proceedings of the IEEE, vol.
88, no. 7, pp. 1050–1068, July 2000.

[33] R. Horowitz and P. Varaiya, “Control design of an automated highway
system,” Proceedings of the IEEE, vol. 88, no. 7, pp. 913–925, July 2000.

[34] D.L. Pepyne and C.G. Cassandras, “Optimal control of hybrid systems in
manufacturing,” Proceedings of the IEEE, vol. 88, no. 7, pp. 1108–1123,
July 2000.

[35] R. May, Stability and Complexity of Model Ecosystems, Princeton Univer-
sity Press, Princeton, NJ, 1973.

[36] C.J. Tomlin, J. Lygeros, and S.S. Sastry, “Synthesizing controllers for
nonlinear hybrid systems,” in Hybrid Systems: Computation and Control,
S. Sastry and T.A. Henzinger, Eds., number 1386 in LNCS, pp. 360–373.
Springer-Verlag, Berlin, 1998.

[37] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, and P.R. Wolenski, Nonsmooth
analysis and control theory, Springer-Verlag, New York, 1998.

[38] J. Lygeros, K.H. Johansson, S.N. Simić, J. Zhang, and S.S. Sastry, “Dy-
namical properties of hybrid automata,” IEEE Transactions on Automatic
Control, vol. 48, no. 1, pp. 2–17, January 2003.

[39] K.H. Johansson, M. Egerstedt, J. Lygeros, and S.S. Sastry, “On the regu-
larization of Zeno hybrid automata,” Systems and Control Letters, vol. 38,
no. 3, pp. 141–150, 1999.

[40] A.S. Morse, “Control using logic based switching,” in Trends in Control,
A. Isidori, Ed., pp. 69–114. Springer Verlag, 1995.

[41] A.J. van der Schaft and H. Schumacher, “Complementarity modeling of
hybrid systems,” IEEE Transactions on Automatic Control, vol. 43, no. 4,
pp. 483–490, 1998.

226 References

[42] W. P. M. Heemels, B. De Schutter, and A. Bemporad, “Equivalence of
hybrid dynamical models,” Automatica, vol. 37, no. 7, pp. 1085–1091, 2001.

[43] M. Johansson, Piecewise linear control systems, Ph.D. thesis, Department
of Automatic Control, Lund Institute of Technology, Sweden, March 1999.

[44] R. Alur, T.A. Henzinger, G. Lafferriere, and G.J. Pappas, “Discrete ab-
stractions of hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7, pp.
971–984, July 2000.

[45] J.-P. Aubin, J. Lygeros, M. Quincampoix, S.S. Sastry, and N. Seube, “Im-
pulse differential inclusions: A viability approach to hybrid systems,” IEEE
Transactions on Automatic Control, vol. 47, no. 1, pp. 2–20, January 2002.

[46] M.S. Branicky, V.S. Borkar, and S.K. Mitter, “A unified framework for
hybrid control: Model and optimal control theory,” IEEE Transactions on
Automatic Control, vol. 43, no. 1, pp. 31–45, 1998.

[47] M. Andersson, Object-Oriented Modeling and Simulation of Hybrid Sys-
tems, Ph.D. thesis, Lund Institute of Technology, Lund, Sweden, December
1994.

[48] S. E. Mattsson, M. Otter, and H. Elmqvist, “Modelica hybrid modeling
and efficient simulation,” in IEEE Conference on Decision and Control,
Phoenix, AZ, 1999.

[49] S. E. Mattsson, M. Andersson, and K. J. Åström, “Object-oriented mod-
elling and simulation,” in CAD for Control Systems, D. A. Linkens, Ed.,
chapter 2, pp. 31–69. Marcel Dekker Inc., New York, 1993.

[50] M. Anderson, D. Bruck, S. E. Mattsson, and T. Schonthal, “Omsim- an
integrated interactive environment for object-oriented modeling and simu-
lation,” in IEEE/IFAC joint symposium on computer aided control system
design, 1994, pp. 285–290.

[51] A. Deshpande, A. Gollu, and L. Semenzato, “The SHIFT programming
language for dynamic networks of hybrid automata,” IEEE Transactions
on Automatic Control, vol. 43, no. 4, pp. 584–587, Apr. 1998.

[52] J. Imura and A. J. van der Schaft, “Characterization of well-posedness of
piecewise linear systems,” IEEE Transactions on Automatic Control, vol.
45, no. 9, pp. 1600–1619, September 2000.

[53] M. Lemmon, “On the existence of solutions to controlled hybrid automata,”
in Hybrid Systems: Computation and Control, Nancy Lynch and Bruce H.
Krogh, Eds., number 1790 in LNCS, pp. 229–242. Springer-Verlag, Berlin,
2000.

[54] M. Heemels, Linear Complementarity Systems: a Study in Hybrid Dynam-
ics, Ph.D. thesis, Technische Universiteit Eindhoven, 1999.

[55] J. Lygeros, K.H. Johansson, S.S. Sastry, and M. Egerstedt, “On the exis-
tence of executions of hybrid automata,” in IEEE Conference on Decision
and Control, Phoenix, Arizona, December 7–10, 1999, pp. 2249–2254.

[56] L. Tavernini, “Differential automata and their simulators,” Nonlinear
Analysis, Theory, Methods and Applications, vol. 11(6), pp. 665–683, 1987.

[57] M. Broucke, “Regularity of solutions and homotopy equivalence for hybrid
systems,” in IEEE Conference on Decision and Control, Tampa, FL, 1998.

References 227

[58] V.S. Borkar, Probability theory: an advanced course, Springer-Verlag, New
York, 1995.

[59] R. Alur and D. L. Dill, “Automata for modeling real-time systems,” in
Proceedings of ICALP ’90, vol. 443 of Lecture Notes in Computer Science,
pp. 322–335. Springer-Verlag, Berlin, 1990.

[60] B. Bérard, P. Gastin, and A. Petit, “On the power of non observable actions
in timed automata,” in Actes du STACS ’96, Lecture Notes in Computer
Science 1046, pp. 257–268. Springer-Verlag, Berlin, 1996.

[61] R. Alur and T.A. Henzinger, “Modularity for timed and hybrid systems,” in
Proceedings of the Eighth International Conference on Concurrency Theory
(CONCUR 1997), Berlin, 1997, number 1243 in LNCS, pp. 74–88, Springer-
Verlag.

[62] K.H. Johansson, J. Lygeros, S.S. Sastry, and M. Egerstedt, “Simulation
of Zeno hybrid automata,” in IEEE Conference on Decision and Control,
Phoenix, Arizona, December 7–10, 1999, pp. 3538–3543.

[63] M. Heemels, H. Schumacher, and S. Weiland, “Well-posedness of linear
complementarity systems,” in Proc. 38th IEEE Conference on Decision
and Control, Phoenix, AZ, 1999.

[64] S. Simic, K.H. Johansson, S.S. Sastry, and J. Lygeros, “Towards a geometric
theory of hybrid systems,” in Hybrid Systems: Computation and Control,
Nancy Lynch and Bruce H. Krogh, Eds., number 1790 in LNCS, pp. 421–
436. Springer-Verlag, Berlin, 2000.

[65] J. Zhang, K.H. Johansson, J. Lygeros, and S.S. Sastry, “Zeno hybrid sys-
tems,” International Journal of Robust and Nonlinear Control, vol. 11, pp.
435–451, 2001.

[66] S. E. Mattsson, “On object-oriented modeling of relays and sliding mode
behaviour,” in Proc. 13th IFAC World Congress, San Francisco, CA, 1996,
vol. F, pp. 259–264.

[67] A. F. Filippov, Differential equations with discontinuous right-hand sides,
Kluwer Academic Publishers, 1988.

[68] V. I. Utkin, Sliding Modes in Control and Optimization, Springer-Verlag,
Berlin, 1992.

[69] S.J. Hogan, “On the dynamics of a rigid-block motion under harmonic
forcing,” Proceedings of the Royal Society, A, vol. 425, pp. 441–476, 1989.

[70] H. Ye, A. Michel, and L. Hou, “Stability theory for hybrid dynamical
systems,” IEEE Transactions on Automatic Control, vol. 43, no. 4, pp.
461–474, 1998.

[71] M.S. Branicky, “Multiple Lyapunov functions and other analysis tools for
switched and hybrid systems,” IEEE Transactions on Automatic Control,
vol. 43, no. 4, pp. 475–482, 1998.

[72] A.N. Michel and B. Hu, “Towards a stability theory for hybrid dynamical
systems,” Automatica, vol. 35, pp. 371–384, 1999.

[73] M. Johansson and A. Rantzer, “Computation of piecewise quadratic lya-
punov functions for hybrid systems,” IEEE Transactions on Automatic
Control, vol. 43, no. 4, pp. 555–559, 1998.

228 References

[74] J. Hespanha, “Uniform stability of switched linear systems: Extensions of
lasalle’s invariance principle,” IEEE Transactions on Automatic Control,
vol. 49, no. 4, pp. 470–482, April 2004.

[75] B. Hu, X. Xu, P.J. Antsaklis, and A.N. Michel, “Robust stabilizing control
laws for a class of second order switched systems,” Systems & Control
Letters, vol. 38, no. 3, pp. 197–207, 1999.

[76] X. Xu and P.J. Antsaklis, “Stabilization of second order LTI switched sys-
tems,” International Journal of Control, vol. 73, no. 14, pp. 1261–1279,
September 2000.

[77] R. De Carlo, M. Branicky, S. Pettersson, and B. Lennarston, “Perspec-
tives and results on the stability and stabilizability of hybrid systems,”
Proceedings of the IEEE, vol. 88, no. 7, pp. 1069–1082, July 2000.

[78] M. Wicks, P. Peleties, and R. De Carlo, “Switched controller synthesis for
the quadratic stabilization of a pair of unstable linear systems,” European
Journal of Control, vol. 4, pp. 140–147, 1998.

[79] D. Liberzon and A.S. Morse, “Basic problems in stability and design of
switched systems,” IEEE Control Systems Magazine, vol. 19, pp. 59–70,
October 1999.

[80] D. Liberzon, J.P. Hespanha, and A.S. Morse, “Stability of switched systems:
A Lie algebraic approach,” Systems and Control Letters, vol. 37, no. 3, pp.
117–122, 1999.

[81] A. V. Savkin, E. Skafidas, and R.J. Evans, “Robust output feedback sta-
bilizability via controller switching,” Automatica, vol. 35, no. 1, pp. 69–74,
1999.

[82] D. Liberzon, Switching in Systems and Control, Birkhauser, Boston, 2003.

[83] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent
Systems: Specification, Springer-Verlag, Berlin, 1992.

[84] Z. Manna and A. Pnueli, Temporal Verification of Reactive Systems: Safety,
Springer-Verlag, New York, 1995.

[85] N. Lynch, Distributed Algorithms, Morgan Kaufmann, 1996.

[86] M.S. Branicky, E. Dolginova, and N. Lynch, “A toolbox for proving
and maintaining hybrid specifications,” in Hybrid Systems IV, A. Nerode
P. Antsaklis, W. Kohn and S. Sastry, Eds., number 1273 in LNCS, pp.
18–30. Springer-Verlag, Berlin, 1997.

[87] Zohar Manna and Henny Sipma, “Deductive verification of hybrid systems
using STeP,” in Hybrid Systems: Computation and Control, S. Sastry and
T.A. Henzinger, Eds., number 1386 in LNCS, pp. 305–318. Springer-Verlag,
Berlin, 1998.

[88] C. Heitmeyer and N. Lynch, “The generalized railroad crossing: A case
study in formal verification of real-time systems,” in Proc. ICCC Real-Time
Systems Symposium, San Juan, Puerto Rico, 1994.

[89] H.B. Weinberg, Nancy Lynch, and Norman Delisle, “Verification of auto-
mated vehicle protection systems,” in Hybrid Systems III, number 1066 in
LNCS, pp. 101–113. Springer-Verlag, Berlin, 1996.

References 229

[90] E. Dolginova and N. Lynch, “Safety verification for automated platoon
maneuvers: a case study,” in Proceedings of HART97, Oded Maler, Ed.,
number 1201 in LNCS, pp. 154–170. Springer-Verlag, Berlin, 1997.

[91] J. Lygeros and N. Lynch, “Strings of vehicles: Modeling and safety condi-
tions,” in Hybrid Systems: Computation and Control, S. Sastry and T.A.
Henzinger, Eds., number 1386 in LNCS, pp. 273–288. Springer-Verlag,
Berlin, 1998.

[92] C. Livadas and N. Lynch, “Formal verification of safety-critical hybrid sys-
tems,” in Hybrid Systems: Computation and Control, S. Sastry and T.A.
Henzinger, Eds., number 1386 in LNCS, pp. 253–272. Springer-Verlag,
Berlin, 1998.

[93] C. Livadas, J. Lygeros, and N.A. Lynch, “High-level modeling and analysis
of the traffic alert and collision avoidance system (TCAS),” Proceedings of
the IEEE, vol. 88, no. 7, pp. 926–948, July 2000.

[94] Zohar Manna and the STeP group, “STeP: The Stanford Temporal Prover,”
Tech. Rep. STAN-CS-TR-94-1518, Computer Science Department, Stan-
ford University, July 1994.

[95] R. Alur, C. Courcoubetis, N. Halbawachs, T. A. Henzinger, P. H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic analysis
of hybrid systems,” Theoretical Computer Science, vol. 138, pp. 3–34, 1995.

[96] T. Henzinger, P. Kopke, A. Puri, and P. Varaiya, “What’s decidable about
hybrid automata,” in 27th Annual Symposium on the Theory of Computing,
STOC’95. 1995, pp. 373–382, ACM Press.

[97] G. Lafferriere, G.J. Pappas, and S.S. Sastry, “O-minimal hybrid systems,”
Mathematics of Control, Signals, and Systems, vol. 13, no. 1, pp. 1–21,
March 2000.

[98] A. Puri, P. Varaiya, and V. Borkar, “ǫ-approximation of differential inclu-
sions,” in IEEE Conference on Decision and Control, New Orleans, LA,
1995, pp. 2892–2897.

[99] M. Heymann, F. Lin, and G. Meyer, “Synthesis and viability of minimally
interventive legal controllers for hybrid systems,” Discrete Event Dynamic
Systems: Theory and Applications, vol. 8, no. 2, pp. 105–135, June 1998.

[100] E. Asarin, O. Bournez, T. Dang, O. Maler, and A. Pnueli, “Effective syn-
thesis of switching controllers for linear systems,” Proceedings of the IEEE,
vol. 88, no. 7, pp. 1011–1025, July 2000.

[101] R. Alur and R.P. Kurshan, “Timing analysis in COSPAN,” in Hybrid Sys-
tems III, number 1066 in LNCS, pp. 220–231. Springer-Verlag, Berlin,
1996.

[102] C. Daws, A. Olivero, S. Trypakis, and S. Yovine, “The tool KRONOS,” in
Hybrid Systems III, R. Alur, T. Henzinger, and E. Sontag, Eds., number
1066 in LNCS, pp. 208–219. Springer-Verlag, Berlin, 1996.

[103] J. Bengtsson, K.G. Larsen, F. Larsson, P. Petterson, and W. Yi, “UP-
AAL: A tool suit for automatic verification of real-time systems,” in Hybrid
Systems III, number 1066 in LNCS, pp. 232–243. Springer-Verlag, Berlin,
1996.

230 References

[104] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar,
I. Lee, P. Mishra, G. Pappas, and O. Sokolsky, “Hierarchical hybrid mod-
eling of embedded systems,” in First Workshop on Embedded Software,
T.A. Henzinger and C.M. Kirsch, Eds., number 2211 in LNCS, pp. 14–31.
Springer-Verlag, Berlin, 2001.

[105] C.J. Tomlin, J. Lygeros, and S.S. Sastry, “A game theoretic approach to
controller design for hybrid systems,” Proceedings of the IEEE, vol. 88, no.
7, pp. 949–969, July 2000.

[106] A. Church, “Logic, arithmetic, and automata,” in Proceedings of the
International Congress of Mathematicians, pp. 23–35. 1962.

[107] J.R. Büchi and L.H. Landweber, “Solving sequential conditions by finite-
state operators,” in Proceedings of the American Mathematical Society,
1969, pp. 295–311.

[108] M. O. Rabin, “Automata on infinite objects and Church’s problem,” in
Regional Conference Series in Mathematics, 1972.

[109] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proceedings of the IEEE, vol. Vol.77, no. 1, pp. 81–98, 1989.

[110] J. Lygeros, C.J. Tomlin, and S.S. Sastry, “Controllers for reachability spec-
ifications for hybrid systems,” Automatica, vol. 35, no. 3, pp. 349–370,
March 1999.

[111] A.E. Bryson and Y.-C. Ho, Applied Optimal Control, Hemisphere Publish-
ing Corporation, 1975.

[112] L. C. Young, Optimal Control Theory, Chelsea, second edition, 1980.

[113] T. Başar and G. J. Olsder, Dynamic Non-cooperative Game Theory,
Academic Press, second edition, 1995.

[114] J.-P. Aubin, Viability Theory, Birkhäuser, Boston, MA, 1991.

[115] M.G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton–Jacobi
equations,” Transactions of the American Mathematical Society, vol. 277,
no. 1, pp. 1–42, May 1983.

[116] L.C. Evans, Partial differential equations, American Mathematical Society,
Providence, R.I., 1998.

[117] John Lygeros, “On reachability and minimum cost optimal control,”
Automatica, vol. 40, no. 6, pp. 917–927, 2004.

[118] I. Mitchell, A.M. Bayen, and C.J. Tomlin, “Computing reachable sets for
continuous dynamic games using level set methods,” Preprint.

[119] E.N. Barron and H. Ishii, “The Bellman equation for minimizing the max-
imum cost,” Nonlinear Analysis: Theory, Methods & Applications, vol. 13,
no. 9, pp. 1067–1090, 1989.

[120] I.J. Fialho and T.T. Georgiou, “Worst case analysis of nonlinear systems,”
IEEE Transactions on Automatic Control, vol. 44, no. 6, pp. 1180–1197,
June 1999.

[121] M. Quincampoix and O.-S. Serea, “A viability approach for optimal control
with infimum cost,” 2002, Preprint.

[122] W.H. Flemming and H.M. Soner, Controlled Markov Processes and
Viscosity Solutions, Springer-Verlag, New York, 1993.

References 231

[123] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions
of Hamilton–Jacobi–Bellman Equations, Birkhäuser, Boston, MA, 1997.

[124] P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre, “Pursuit differential
games with state constraints,” SIAM Journal of Control and Optimization,
vol. 39, no. 5, pp. 1615–1632, 2001.

[125] E.N. Barron, “Differential games with maximum cost,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 14, no. 11, pp. 971–989, 1990.

[126] L.C. Evans and P.E. Souganidis, “Differential games and representa-
tion formulas for solutions of hamilton–jacobi–isaacs equations,” Indiana
University Mathematics Journal, vol. 33, no. 5, pp. 773–797, 1984.

[127] S.C. Di Marco and R.L.V. Gonzalez, “Supersolution and subsolutions tech-
niques in a minimax optimal control problem with infinite horizon,” Indian
Journal of Pure and Applied Mathematics, vol. 29, no. 10, pp. 1083–1098,
October 1998.

[128] S.C. Di Marco and R.L.V. Gonzalez, “Relaxation of minimax optimal con-
trol problem with infinite horizon,” Journal of Optimization Theory and
Applications, vol. 101, no. 2, pp. 285–306, May 1999.

[129] J.-P. Aubin and H. Frankowska, “The viability kernel algorithm for com-
puting value functions of infinite horizon optimal control probolems,” J.
Math. Anal. Appl., vol. 201, pp. 555–576, 1996.

[130] P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre, “Numerical schemes
for discontinuous value functions of optimal control,” Set Valued Analysis,
vol. 8, pp. 111–126, 2000.

[131] J.-R. Abrial, E. Börger, and H. Langmaack, “The steam-boiler case
study project, an introduction,” in Formal Methods for Industrial Ap-
plications: Specifying and Programming the Steam Boiler Control, J.-R.
Abrial, E. Börger, and H. Langmaack, Eds., number 1165 in LNCS.
Springer-Verlag, Berlin, 1996.

[132] J.-R. Abrial, “The steam-boiler control specification problem,” in Formal
Methods for Industrial Applications: Specifying and Programming the Steam
Boiler Control, J.-R. Abrial, E. Börger, and H. Langmaack, Eds., number
1165 in LNCS. Springer-Verlag, Berlin, 1996.

[133] Tomas A. Henzinger and HowardWong-Toi, “Using HYTECH to synthesize
control parameters for a steam boiler,” in Formal Methods for Industrial
Applications: Specifying and Programming the Steam Boiler Control, J.-R.
Abrial, E. Börger, and H. Langmaack, Eds., number 1165 in LNCS, pp.
265–282. Springer-Verlag, Berlin, 1996.

[134] A. Puri, Theory of Hybrid Systems and Discrete Event Systems, Ph.D.
thesis, Department of Electrical Engineering, University of California,
Berkeley, 1995.

[135] J. Lygeros, C.J. Tomlin, and S.S. Sastry, “Multi-objective hybrid controller
synthesis,” Tech. Rep. UCB/ERLM96/59, Electronic Research Laboratory,
University of California Berkeley, 1997.

[136] A. Nuic, “User manual for the base of aircraft data (BADA) revision
3.3,” Tech. Rep. EEC Note no. 20/00, Eurocontrol Experimental Centre,
December 2000.

232 References

[137] C.J. Tomlin, J. Lygeros, and S.S. Sastry, “Aerodynamic envelope protec-
tion using hybrid control,” in American Control Conference, Philadelphia,
Pennsylvania, June 24–26, 1998, pp. 1793–1796.

[138] I. Mitchell and C.J. Tomlin, “Level set methods for computation in hybrid
systems,” in Hybrid Systems: Computation and Control, Nancy Lynch and
Bruce H. Krogh, Eds., number 1790 in LNCS, pp. 310–323. Springer-Verlag,
Berlin, 2000.

[139] I. Mitchell, A.M. Bayen, and C.J. Tomlin, “Validating a Hamilton–Jacobi
approximation to hybrid system reachable sets,” in Hybrid Systems: Com-
putation and Control, M. Di Benedetto and A. Sangiovanni-Vincentelli,
Eds., number 2034 in LNCS, pp. 418–432. Springer-Verlag, Berlin, 2001.

[140] S. Osher and J.A. Sethian, “Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton–Jacobi formulations,” Journal of
Computational Physics, vol. 79, pp. 12–49, 1988.

[141] J. A. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid
Mechanics, Computer Vision, and Materials Science, Cambridge University
Press, New York, 1996.

[142] M. Oishi and C. Tomlin, “Switched nonlinear control of a VSTOL aircraft,”
in IEEE Conference on Decision and Control, Phoenix, Arizona, December
7–10, 1999, pp. –.

[143] M. Oishi, C. Tomlin, V. Gopal, and D. Godbole, “Addressing multiobjec-
tive control: Safety and performance through constrained optimization,”
in Hybrid Systems: Computation and Control, M. Di Benedetto and
A. Sangiovanni-Vincentelli, Eds., number 2034 in LNCS, pp. 459–472.
Springer-Verlag, Berlin, 2001.

[144] M.S. Branicky, Studies in Hybrid Systems: Modeling, Analysis, and Control,
Ph.D. thesis, Massachusetts Institute of Technology, 1995.

[145] E.D. Sontag, Mathematical Control Theory, Springer-Verlag, New York,
1990.

[146] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-
Verlag, second edition, 1989.

[147] J.-P. Aubin and H. Frankowska, Set Valued Analysis, Birkhäuser, Boston,
MA, 1990.

[148] P. Saint-Pierre, “Approximation of viability kernels and capture basins for
hybrid systems,” in European Control Conference, Porto, September 4-7,
2001, pp. 2776–2783.

[149] A.B. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability
analysis,” in Hybrid Systems: Computation and Control, Nancy Lynch and
Bruce H. Krogh, Eds., number 1790 in LNCS, pp. 202–214. Springer-Verlag,
Berlin, 2000.

[150] A. B. Kurzhanski and P. Varaiya, “On reachability under uncertainty,”
SIAM Journal of Control and Optimization, vol. 41, no. 1, pp. 181–216,
2002.

[151] X.D. Koutsoukos, P.J. Antsaklis, J.A. Stiver, and M.D. Lemmon, “Super-
visory control of hybrid systems,” Proceedings of the IEEE, vol. 88, no. 7,
pp. 1026–1049, July 2000.

References 233

[152] J.M. Davoren and A. Nerode, “Logics for hybrid systems,” Proceedings of
the IEEE, vol. 88, no. 7, pp. 985–1010, July 2000.

[153] G. Grammel, “Maximum principle for a hybrid system via singular pertru-
bations,” SIAM Journal of Control and Optimization, vol. 37, no. 4, pp.
1162–1175, 1999.

[154] A. Chutinam and B. Krogh, “Verification of polyhedral-invariant hybrid
automata using polygonal flow pipe approximations,” in Hybrid Systems:
Computation and Control, Frits W. Vaandrager and Jan H. van Schuppen,
Eds., number 1569 in LNCS, pp. 76–90. Springer-Verlag, Berlin, 1999.

[155] O. Botchkarev and S. Tripakis, “Verification of hybrid systems with linear
differential inclusions using ellipsoidal approximations,” in Hybrid Systems:
Computation and Control, Nancy Lynch and Bruce H. Krogh, Eds., number
1790 in LNCS, pp. 73–88. Springer-Verlag, Berlin, 2000.

[156] E. Asarin, O. Bournez, T. Dang, and O. Maler, “Approximate reachability
analysis of piecewise-linear dynamical systems,” in Hybrid Systems: Com-
putation and Control, Nancy Lynch and Bruce H. Krogh, Eds., number
1790 in LNCS. Springer-Verlag, Berlin, 2000.

