[|SGrwARE

Getting Started and
Create Applications

with pVision2 and 166/ST10
Microcontroller Development Tools

User’'s Guide 03.99

Keil Software

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure agreement
and may be used or copied only in accordance with the terms of the agreement. It
is against the law to copy the software on any medium except as specifically
allowed in the license or nondisclosure agreement. The purchaser may make one
copy of the software for backup purposes. No part of this manual may be
reproduced or transmitted in any form or by any means, dectronic or mechanical,
including photocopying, recording, or information storage and retrieval systems,
for any purpose other than for the purchaser’s personal use, without written
permission.

Copyright © 1997-1999 Keil Elektronik GmbH and Keil Software, Inc.
All rights reserved.

Kell C166™ and puVision™ are trademarks of Keil Elektronik GmbH.
Microsoft®, and Windows™ are trademarks or registered trademarks of Microsoft
Corporation.

PC® is aregistered trademark of International Business Machines Corporation.

NOTE
This manual assumes that you are familiar with Microsoft Windows and the
hardware and instruction set of the 166 and ST10 microcontrollers.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started

Preface

This manual is an introduction to the Kell Software development tools for the
Siemens 166 and ST Microdectronics ST10 family of microcontrollers. It
introduces new users and interested readers to our product line. With nothing
more than this book, you should be able to successfully run and use our tools.
This user’ s guide contains the following chapters.

“Chapter 1. Introduction” gives an overview of this user’s guide and discusses the
different products that we offer for the 166 and ST 10 microcontroller family.

“Chapter 2. Installation” describes how to install the software and how to setup
an operating environment for the toals.

“Chapter 3. Development Tools” describes the major features of the uVision2
IDE with integrated debugger, the C compiler, assembler, and utilities.

“Chapter 4. Creating Applications’ describes how to create projects, edit source
files, compile and fix syntax errors, and generate executeable code.

“Chapter 5. Testing Programs” describes how you use the pVision2 debugger to
simulate and test your entire application.

“Chapter 6. pVision2 Debug Functions” discusses built-in, user, and signal
functions that extended the debug capabilities or generate |/O signals.

“Chapter 7. Sample Programs’ shows how to use the Keil 166 development toals.

“Chapter 8. Using on-chip Peripherals’ shows how to access the on-chip
166/ST10 peripherals within the C166 compiler.

“Chapter 10. CPU and C Startup Code’ provides information on setting up the
166/ST10 CPU for your application.

“Chapter 11. Using Monitor-166" discusses how to initialize the monitor and
install it on your target hardware.

“Chapter 12. Command Reference’ briefly describes the commands and controls
availablein the Keil 166 development tools.

Preface

Document Conventions

This document uses the following conventions:

SEIJES Description

README.TXT Bold capital text is used for the names of executable programs, data files,
source files, environment variables, and commands you enter at the command
prompt. This text usually represents commands that you must type in literally.
For example:

CLS DIR L166.EXE

Note that you are not required to enter these commands using all capital
letters.

Couri er Text in this typeface is used to represent information that displays on screen
or prints at the printer.

This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents information that you must provide. For example,
projectfile in a syntax string means that you must supply the actual project file
name.

Occasionally, italics are also used to emphasize words in the text.
Elements that repeat... Ellipses (...) are used to indicate an item that may be repeated.

Omitted code Vertical ellipses are used in source code listings to indicate that a fragment of
: the program is omitted. For example:

Void main (void) {

while (1);
Optional arguments in command lines and optional fields are indicated by

|[Optional Items]| double brackets. For example:

C166 TEST.C PRINT [(filenane) |

{ optl | opt2 } Text contained within braces, separated by a vertical bar represents a group
of items from which one must be chosen. The braces enclose all of the
choices and the vertical bars separate the choices. One item in the list must

be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard. For
example, “Press Enter to continue.”

Point Move the mouse until the mouse pointer rests on the item desired.

Click Quickly press and release a mouse button while pointing at the item to be
selected.

Drag Press the left mouse button while on a selected item. Then, hold the button

down while moving the mouse. When the item to be selected is at the desired
position, release the button.

Double-Click Click the mouse button twice in rapid succession.

Getting Started

Contents
Chapter 1. INtrOdUCLIONc.veveiiieccie et 1
166/ST10 Microcontroller Familyc.ccocvriiiriiiee e 2
=T U oo = SRS 3
Changes to the DOCUMENLALION........c.eeiceeeriee e e e s 3
Evaluation Kits and Production KitS..........cccccueiiiieiiiesiie e s e see e 4
TYPES OF USEIS...niiiiiii ettt ettt s e st e et e et e et e e snee e snteesnaeeeneeenneeenneeennes 4
REQUESLING ASSISLANCE.......eeiveeiieeesieectee st e e e st e see e ste e s ae e e e e e saee e sreeesnneesreeennneens 5
PrOTUCE OVENVIEW......eeee ettt st e st e et e e s e e s e e e snneeeraeenneens 8
Chapter 2. INSallation........ccceiiiiiiiieciie e 11
SYSLEM REQUITEIMENEScuvie e ceeee sttt e stee e e s e e e e st e e saee e sate e sreeenneeennneennns 11
INStallation DELAIIS.......ccueeiiiecee e 11
FOIAEr SLIUCLUNE ..ot s e et e et e e e e snreeenneas 12
Chapter 3. Development TOOIS.........cciiieeiiieicie e 13
pnVision2 Integrated Development ENVIFONMENtcccceeevieevieesieesee e 13
C166 Optimizing C Cross COMPIIEScccieeeiieecie e 20
AL66 MACrO ASSEMDIENeii e et sneeeenneas 28
G I 2= 7/ 0o o SR 30
LIBL166 Library Manager........ccccueeieeerueesiteesiieeeseeeseeesseesaeesneesnsneesseeesnseesnnessnnnas 34
OH166 ObJECt-HEX CONVEIESoooiiieeciie e ee e s e sne e 34
Chapter 4. Creating AppliCationSc.ceciiiiiiiic e 35
(0= (T 1 (0 T v 35
Project Targets and File GrOUPSceevveeiiie e see e st e e s e snre e 42
Overview of Configuration DialOgS........ceeirerrieriiieeeireesieessee e seeesreeeeeeenaee e 43
TNV A1 o] 0722 U 11 (1= S 44
WIriting OptimuUM COE.........eeieieiiie e e e e snaeesnneas 48
Applications without external RAM DEVICES........ccccceviieeeriie e 55
LI T ST o I I e 56
Chapter 5. TeSting Programs...........ccocieeiiieiiieecieeecreeestneesieeeste e sraeesnee e 67
[UAYA IS0l V2 DT o N T o = S 67
DebUg COMMANGS.......cccuieiiieiieeeseeese st e e e e e e e s e e saeeeteeesseeesseeesnneesnneesnneas 80
EXPIESSIONS......oiiiiieeciee e tee ettt e e e et e e st e e sas e e saeeeenneeebeeenteeenaneennneeenneas 82
Chapter 6. pVision2 Debug FUNCLIONS.........cocviiiiir e 97
Creating FUNCHIONS........cciiieiiec sttt s e s e e st e e saae e ste e snnaeennaeennneennns 97
INVOKING FUNCLIONS ..ottt e e 99
FUNCLION ClASSESeiviie ettt et e st e e ae e e nre e e snneesnneesnneas 99
Differences Between Debug Functionsand Ccccceeveeevieevciee e 110
Chapter 7. Sample ProgramsS.........ceocuee e ciee st siee e stee st e 111
HELLO: Your First 166 C Program.........cccccceeeceeeieeeseeeseeeseeeseesseeeseeesneee e 112

MEASURE: A Remote Measurement SYyStemMcccvevveeeeeviieee e eeee e 117

Vi

Contents

Chapter 8. Using on-chip Peripherals.........ccccooiiiiiiiiiiee e, 127
D e = o1 = £ TS 129
1= 0 o 131
Peripheral Event CONLIrOIENcccvviiiie e 134
Parallel PO 1/O.... ittt 138
General PUMPOSE TIMES....ccciiieiieecieeseeeee e see e ste e ste e s e e et e e s e e saaeesnneeereeenneens 140
SETAl INEEITACEe et 142
LVATEz 0T (oo N I 2111 S 145
Pulse Width MOAUIBLIONcoviiiiiieieieeeeeeeeeee e 146
F LD 001V = ST 149
Power ReJUCION MOGES..........ooiiiiiiiieiee e 150

Chapter 10. CPU and C Startup Code........cceeevveeiieeeiiee e ciee e 153
Selecting the Memory MOGEcoee e 153
Configuring the Startup COOE.........ueeiiee e 153

Chapter 11. USiNg M ONItOr-166............ccoeeviuieeiieeiiee e csieeeciee s 155
[VAYATS [0l 0722 1Y, Ko g T] (o B 4 1Y/~ SR 157
Target Options when Using Monitor-166...........ccccccveiieeeieeesieeesieesee e 159
MONitor-166 ConfigUIation...........ccceeiueeiieeiiriecee e see e e 160
QLI 018 o] 1= 0o 11 o [160

Chapter 12. Command ReEfEreNnCe.........ccoceevieeiiiie e 163
pHVision 2 Command Line INVOCALION..........ceeieeeiieeiieecee e esee s e eee e 163
A166 Macro AsSembBler DIrECHIVES........c.oouiiiiiiieiece e 164
C166 Optimizing C Cross Compiler DIreCtiVES.......cccoevieeiiee e e scee e 166
L166 Linker/LoCator DIFECLIVEScc.eeiuieiieiieieeieeeeee e 168
LIB166 Library Manager COmMMAaNGS..........cccververerereiereseeesreesieseneeesaneesseeesnns 170
OH166 Object-HEX Converter Commands..........cccveveeereeesieeesiee e eseeeseee s 171

Getting Started 1

Chapter 1. Introduction

Thank you for allowing Keil Software to provide you with software devel opment
tools for the 166 and ST 10 family of microprocessors. With the Keil tools, you
can generate embedded applications for the C161, C163, C164, C165, 8xC166,
C167 and ST10 microcontrollers as well as future derivatives.

NOTE
Throughout this manual we refer to these tools as the 166 devel opment tools.
However, they are not limited to just the 8xC166 devices.

The Keil Software 166 development tools listed below are the programs you use to
compile your C code, assemble your assembler source files, link your program
together, create HEX files, and debug your target program. Each of these
programs is described in more detail in “ Chapter 3. Development Tools” on

page 13.

¢ pVision2 for Windows™ Integrated Development Environment: combines
Project Management, Source Code Editing, and Program Debugging in one
powerful environment.

¢ C166 ANSI Optimizing C Cross Compiler: creates relocatable object modules
from your C source code,

¢ A166 Macro Assembler: creates relocatable object modules from your 8xC166
or C167 assembler source code,

¢+ L166 Linker/Locator: combines relocatable object modules created by the
compiler and assembler into the final absolute object module,

¢+ LIB166 Library Manager: combines object modules into a library which may
be used by thelinker,

¢ OH166 Object-HEX Converter: creates Inted HEX files from absolute object
modules,

¢ RTX-166 real-time operating system: simplifies the design of complex, time-
critical software projects.

Thetools are combined into the kits described in “ Product Overview” on page 8.
They are designed for the professional software developer, but any leved of
programmer can use them to get the most out of the 166 hardware.

2 Chapter 1. Introduction

166/ST10 Microcontroller Family

The 166/ST10 family of microcontrollers has been available since the early
1990's. With awide variety of outstanding features and peripherals, the 166 CPU
core is destined to see service wdl into the next century. Many derivatives are
available and several are available from multiple sources (Siemens and

ST Microdectronics). As a 16-hit, high-performance embedded processor, the
166 family has no equal.

A typical 166/ST 10 family member contains the 8xC166 or C167 CPU core, data
memory, code memory, and some versatile peripheral functions. A flexible
memory interface lets you expand the capabilities of the 166 using standard
peripherals and memory devices in either 8-bit or 16-bit configurations.

Overview of various 166 and ST 10 derivatives

The 166/ST 10 family covers today 30+ different CPU variants with extensive on-
chip peripheral and I/0. Many variants offer A/D converters, CAN interface,
Flash memory, and arich set of timers, interrupts and I/O pins. Also included are
power management features, watchdogs and clock drivers. The memory interface
allows a mixture of 8/ 16-hit multiplexed / non-multiplex bus systems including
chip sdlect pins on up to five memory areas. Thefollowing list provides only a
brief overview.

Basic Device max. CPU Description
Code Clock

C161 16 MHz low-cost controller. Variants with on-chip Flash memory and CAN

(several Variants) interface are available.

C163 25 MHz down-grade of the C165 CPU, less on-chip RAM.

C164 20 MHz with special capture/compare unit for high-speed signal generation
and event capturing. variants with on-chip OTP memory available.

C165 25 MHz down-grade of the C167 CPU, no A/D converter, less 1/O.

8xC166 20 MHz The original 166 CPU; no extended instruction set and limited to
256 KB memory space. Variants with Flash memory available.

C167 25 MHz The high-end 166 CPU with extensive peripherals and 1/0

(several Variants) capabilities. Some variants have on-chip Flash program and data
memory.

ST10-272 50 MHz version with high speed CPU and on-chip MAC (DSP) co-
processor unit.

This list represents the devices available in January 1999. The 166/ST10 microcontroller family
constantly grows. Announcements for 1999: several new devices and improving of the CPU
speed.

Getting Started 3

Manual Topics

This manual discusses a number of topics including how to:

¢+ Sdect the best tool kit for your application (see“Product Overview” on page
8),

¢ Install the software on your system (see “Chapter 2. Installation” on page 11),

¢+ Overview and features of the 166 devel opment tools (see “ Chapter 3.
Devedopment Tools” on page 13),

¢+ Create full applications using the uVision2 integrated devel opment
environment (see “Chapter 4. Creating Applications’ on page 35),

¢+ Debug programs and simulate target hardware using the pVision2 debugger
(see“ Chapter 5. Testing Programs’ on page 67),

¢+ Access the on-chip peripherals and special features of the 166 variants using
the C166 compiler (see“ Chapter 8. Using on-chip Peripherals’ on page 127),

¢+ Run theincluded sample programs (see“ Chapter 7. Sample Programs’ on
page 111).

NOTE

If you want to get started immediately, you may do so by installing the software
(refer to “ Chapter 2. Installation” on page 11) and running the sample
programs (refer to “ Chapter 7. Sample Programs’ on page 111).

Changes to the Documentation

Last minute changes and corrections to the software and manuals are listed in the
RELEASE.TXT files. Thesefilesarelocated in the folders UV2 and
C166\HLP. Takethetimeto read this fileto determineif there are any changes
that may impact your installation.

4 Chapter 1. Introduction

Evaluation Kits and Production Kits

Keil Software provides two types of kitsin which our tools are ddivered.

The EK 166 Evaluation Kit includes evaluation versions of our 166 tools along
with thisuser’s guide. Thetoolsin the evaluation kit let you generate applications
up to 4 Kbytesin size. You may use this kit to evaluate the effectiveness of our
166 tools and to generate small target applications.

The 166 Production Kits (discussed in “Product Overview” on page 8) include
the unlimited versions of our 166 tools along with this user’s guide and the full
manual set. The production kits also include 1 year of freetechnical support and
product updates. Updates are available on world wide web www.keil.com under
the update section.

Types of Users

This manual addresses threetypes of users: evaluation users, new users, and
experienced users.

Evaluation User s are those users who have not yet purchased the software but
have requested the evaluation package to get a better fed for what the tools do and
how they perform. The evaluation package includes evaluation tools that are
limited to 4 Kbytes along with several sample programs that provide real-world
applications created for the 166/ST 10 microcontroller family. Even if you are
only an evaluation user, take the timeto read this manual. It explains how to
install the software, provides you with an overview of the development toals, and
introduces the sample programs.

New User s are those users who are purchasing 166 development tools for the first
time. Theincluded software provides you with the latest development tool
technology, manuals, and sample programs. |If you are new to the 166 or the
tools, take the timeto review the sample programs described in this manual. They
provide a quick tutorial and help new or inexperienced users quickly get started.

Experienced User s are those users who have previously used the Keil 166
development tools and are now upgrading to the latest version. The software
included with a product upgrade contains the latest development tools and sample
programs.

Getting Started 5

Requesting Assistance

At Keil Software, we are dedicated to providing you with the best embedded
development tools and documentation available. If you have suggestions or
comments regarding any of the printed manuals accompanying this product, please
contact us. If you think you have discovered a problem with the software, do the
following before calling technical support.

1. Read the sections in this manual that pertains to the job or task you are trying
to accomplish.

2. Make sure you are using the most current version of the software and utilities.
Check out the update section on www.keil.com to make sure that you have the
latest software version.

3. Isolate the problem to determineif it is a problem with the assembler, compiler,
linker, library manager, or another development tool.

4. Further isolate software problems by reducing your codeto afew lines.

If, after following these steps, you are still experiencing problems, report them to
our technical support group. Please include your product serial number and
version number. We prefer that you send the problem via email. If you contact us
by fax, be sure to include your name and telephone numbers (voice and fax) where
we can reach you.

Try to be as detailed as possible when describing the problem you are having. The
more descriptive your example, the faster we can find a solution. If you have a
one-page code example demonstrating the problem, please email it to us. If
possible, make sure that your problem can be duplicated with the pVision2
simulator. Pleasetry to avoid sending complete applications or long listings as
this slows down our response to you.

NOTE
You can always get technical support, product updates, application notes, and
sample programs from our world wide web site www.keil.com.

6 Chapter 1. Introduction

Software Development Cycle

When you use the Keil Software tools, the project development cycleis roughly
the same asit isfor any other software development project.

1. Createaproject to seect the 166/ST10 uVision2 IDE with Editor & Make
device and the tool settings.

Y Y
2. Create sourcefilesin C or assembly. C166 | A166 |

ANSI C Compiler Macro Assembler

3. Build your application with the project

manager. =S

4. Correct errorsin sourcefiles. ANSI C LIB166 RTX166

) . . Stgndard Library Real-Time
5. Test linked application. HeEyy Manager el
The development cycle described above may be Y Y Y
best illustrated by a block diagram of the | L166 Linker/Locater |
complete 166 tool set. + Y

AR |

HVision2 IDE wvision2 Debugger | erou programmer
The pVision2 IDE combines project - h* - Y Advaneed GDI
management, a rich-featured editor with P et Monitor-166 | merace or
interactive error correction, option setup, make UL S9SPHIETR et Debuggers

facility, and on-line help.

You use puVision2 to create your source files and organize them into a project that
defines your target application. pVision2 automatically compiles, assembles, and
links your embedded application and provides a single focal point for you

devel opment efforts.

166 Compiler & Assembler

Sourcefiles are created by the uVision2 IDE and are passed to the C166 compiler
or A166 assembler. The compiler and assembler process source files and creates
relocatable object files. The Kell C166 compiler isafull ANSI implementation of
the C programming language. All standard features of the C language are
supported. In addition, numerous features for direct support of the 166
environment have been added. The Kell A166 macro assembler supports the
complete instruction sets of the 8xC166, C167 and ST 10 derivatives.

Getting Started 7

LIB166 Library Manager

Object files created by the compiler and assembler may be used by the LIB166
library manager to create object libraries which are specially formatted, ordered
program collections of object modules that the linker may process at a later time.
When the linker processes a library, only those object modules in the library that
are necessary to create the program are used.

L166 Linker/Locator

Object files and library files are processed by the linker into an absolute object
module. An absolute object file or module contains no relocatable code. All the
codein an absolute object fileresides at fixed memory locations. The absolute
object file may be used to program EPROM or other memory devices. The
absolute object module may also be used with the pVision2 Debugger or with an
in-circuit emulator for the program test.

uVision2 Debugger

The puVision2 symbolic, source-level debugger isideally suited for fast, reliable
program debugging. The debugger contains a high-speed simulator that let you
simulate an entire 166 system including on-chip peripherals and external
hardware. Via the integrated device database you can configure the pVision2
debugger to the attributes and peripherals of 166/ST 10 device you are using.

For testing the softwarein a real hardware, you may connect the pVision2
Debugger with Monitor-166 or you can use the Advanced GDI interface to attach
the debugger front-end to a target system.

Monitor-166

The puVision2 Debugger supports target debugging using Monitor-166. The
monitor program is a program that resides in the memory of your target hardware
and communicates with pVision2 using the serial port of the 166 and a COM port
of your PC. With Monitor-166, pVision2 lets you perform source-leve, symbolic
debugging on your target hardware.

RTX166 Real-Time Operating System

The RTX 166 real-time operating system is a multitasking kernd for the 166
family. The RTX166 real-time kernd simplifies the system design, programming,

8 Chapter 1. Introduction

and debugging of complex applications where fast reaction to time critical events
isessential. Thekernd isfully integrated into the C166 compiler and is easy to
use. Task description tables and operating system consistency are automatically
controlled by the L 166 linker/locator.

Product Overview

Keil Software provides the premier development tools for the Siemens 166 and

ST Microdectronics ST10 microcontrollers. We bundle our software
development tools into different packages or tool kits. The“ Comparison Chart” on
page 9 shows the full extent of the Keil Software 166 development tools. Each kit
and its contents are described below.

PK166 Professional Developer’s Kit

The PK 166 Professional Developer’ s Kit includes everything the professional
devel oper needs to create and debug sophisticated embedded applications for the
Siemens C161, C163, C164, C165, 8xC166, and C167 as well as the

ST Microdectronics ST 10 series of microcontrollers. The professional
developer’ s kit can be configured for all 166/ST10 derivatives.

PK161 Professional Developer’s Kit

The PK161 Professional Developer’ s Kit is a reduced version of PK166 and can
be used only for the Siemens C161 derivatives. Other 166/ST 10 family members
are not supported.

CA166 Compiler Kit

The CA166 Compiler Kit is the best choice for devel opers who need a C compiler
but not a debugging system. The CA166 package contains only the pVision IDE.
The puVision2 Debugger features are not availablein CA166. The kit includes
everything you need to create embedded applications and can be configured for all
166/ST10 derivatives.

A166 Assembler Kit

The A166 Assembler Kit includes an assembler and all the utilities you need to
create embedded applications. It can be configured for all 166/ST 10 derivatives.

Getting Started 9

RTX166 Real-Time Operating System (FR166)

The RTX166 Real-Time Operating Systems is a real-time kerne for the 166
family of microcontrollers. RTX166 Full provides a superset of the features
found in RTX166 Tiny and includes CAN communication protocol interface
routines.

Comparison Chart

The following table provides a check list of the features found in each package.
Tools arelisted along the top and part numbers for specific kits are listed along
theside. Usethis cross referenceto sdect the kit that best suits your needs.

Support PK166 CA166 A166 PK161" FR166
v v v 7

A166 Assembler v v v v

C166 Compiler v v v

L166 Linker/Locator v v v v

LIB166 Library Manager v v v v

pVision2 Debugger/Simulator v v

RTX166 Tiny v v v

RTX166 Full v

Tt PK161 supports only C161 derivatives; it does not include support for other 166/ST 10 devices.

10 Chapter 1. Introduction

Getting Started 11

Chapter 2. Installation

This chapter explains how to setup an operating environment and how to install
the software on your hard disk. Before starting the installation program, you must
do the following:

¢ Verify that your computer system meets the minimum requirements.

¢« Makeacopy of theinstallation diskette for backup purposes.

System Req uirements
There are minimum hardware and software requirements that must be satisfied to
ensure that the compiler and utilities function properly.

For our Windows-based tools, you must have the following:

¢ PC with Pentium, Pentium+-I1 or compatible processor,

¢ Windows 95, Windows-98, Windows NT 4.0, or higher
¢ 16 MB RAM minimum,

¢ 20 MB free disk space.

Installation Details

All of our products come with an installation program that allows easy installation
of our software. Toinstall the 166 development tools:

¢ Insert the Keil Development Tools CD-ROM.

¢ Sdect Ingtall Software from the Keill CD Viewer menu and follow the
instructions displayed by the setup program.

NOTE

Your PC should automatically launch the CD Viewer when you insert the CD. If
not, run the program KEIL\SETUP\SETUP.EXE from the CD to install the
software.

12 Chapter 2. Installation

Folder Structure

The setup program copies the development tools into sub-folders of the base
folder. Thedefault basefolder is: C:\ KElI L. Thefollowing table lists the
structure of a complete installation that includes the entire line of 166 development
tools. Your installation may vary depending on the products you purchased.

2

Folder Description

C:\KEIL\C166\ASM Assembler SFR definition files and template source file.
C:\KEIL\C166\BIN Executable files of the 166 toolchain.

C:\KEIL\C166\CAN RTX166 Full CAN example programs.
C:\KEIL\C166\EXAMPLES Sample applications.

C:\KEIL\C166\RT X166 RTX166 Full files.

C:\KEIL\C166\RTX_TINY RTX166 Tiny files.

C:\KEIL\C166\INC C compiler include files.

C:\KEIL\C166\L1B C compiler library files, startup code, and source of 1/O routines.
C:\KEIL\C166\MONITOR Target Monitor files and Monitor configuration for user hardware.
C:\KEIL\UV2 Generic pVision2 files.

Within this users guide we refer to the default folder structure. If you haveinstalled your
software on a different folder, you have to adjust the pathnames to match with your installation.

Getting Started 13

Chapter 3. Development Tools

This chapter discusses the features and advantages of the 166 development tools
available from Keil Software. We have designed our toals to help you quickly and
successfully complete your job. They are easy to use and are guaranteed to help
you achieve your design goals.

uVision2 Integrated Development Environment

uVision2 is a standard Windows application. pVision2 is an integrated software
development platform that combines a robust editor, project manager, and make
facility. pVision2 supports all of the Kell tools for the 166 including the C
compiler, macro assembler, linker/locator, and object-HEX converter. pVision2
hel ps expedite the devel opment process of your embedded applications by
providing the following:

¢ Full-featured source code editor,
¢+ Device Database for pre-configuring the development tool setting,
¢+ Project manager for creating and maintaining your projects,

¢+ Integrated make facility for assembling, compiling, and linking your embedded
applications,

¢« Dialogsfor all development tool settings,

¢ Trueintegrated source-level Debugger with high-speed CPU and peripheral
simulator.

¢+ Advanced GDI interface for software debugging in the target hardware and for
connection to Monitor-166.

¢+ Linksto development tools manuals, device datasheets & user’s guides.

NOTE
The pVision2 debugging features are only available in the PK166 and PK161
tool kits.

14 Chapter 3. Development Tools

About the Environment

The pVision2 screen provides you with a menu bar for command entry, atool bar
where you can rapidly seect command buttons, and windows for source files,
dialog boxes, and information displays. pVision2 lets you simultaneously open
and view multiple sourcefiles.

% Measure - pVision2 5]
|| e Edi view Broiect Debug windem Help |

B & % 9 % A
Project 15 000209DC OGFO0OOD a0 Work-
break; B
rojec al|l -12 oooZ0sE0 cROO space
Window s 53:
case 'D': -13 000D203F6 08D1 ADD
printf ("\nDisplay current Measurement -12 00D203F8 FO4D MOV
do 1 ~11 000203FA 4984 CMPB RL4.#4
while (1 SORIR) -10 o nngznsrc 3DDE JMPR CC_NZ, 0x0203BC
mdisplay = 1; -9 D0D203FE FCED R13
while (mdisplay); -8 00020400 CBOO
measure display (current): 7 0002032E D6FO1000 RO, #0x0010
} =
} while (C =
printf ("\n\n"); -5 00020310 1FOP 0xFD00. 1 —
break; E while (ldlsplay),
-4 00020312 BAOOFELD 0xFD0D. 1.0x020;
. s whi Is c-mspl.:y),
Peripheral .- case 'S': -3 000203 0xFDOD. 1, 02020;
2 - 1] printf ("\nStart Measurement Recording bl Watch/
Dialog g startflag = 1; = 0xEDOD. 1. 0x020: atcl
B-sys N 252:
@ 02 bzeak: -1 - Call
0dcd) y
er nonm | B TimeriCounor 1 J 000294 02020312 Stack
dppl 00001 Timer/Counterl Recording\] ¢ (current):
dpp? D010 -
dpp3 0x0003 »
PC§ 0x00020312 2
steles 3551311 gt Frescaler = 64 = Serial #1 [l
s BESEISH | Quit 1o | quit measurement regording 1 =
& -flags i | Start |8 | start measurement g#fecording 1
Ti: [00375 TR
Command: 4 Memory
THCON, [Ban Wind
o Display current Measurements: (ESC to Abort) ndow
TIREL:
Output d Time: 12104135456 B2iAd44 AND:1.46yfAN1:2. 44V AN2:3.91V AN3:1. =
Window g A
le: curreral | HNere RETS | Addiess: [save_record / EI
e . }/* end 0? 1f 004100A: FF 00 00 0040 00 00 00 00
©:\MERSURE.. current.por: e 0043010 0041013: 00 00 00 0gf00 00 00 FF 00
e :\MEASURE. current.ar 004101¢: 00 00 0 00 00 00 00 0O
e :\MEASURE . 4 printf « 0041025: 00 00 0 00 FF 00 00 00
e :\MEASURE.C (2539 mea: 00410ZE: 00 00 00 00 00 00 00 00 00
& : \MCOMMAND . C (3: : extern struct mr 0041037: 00 00 00 FF 00 00 00 00 00
N B 0041040: 00 00 00 00 00 00 00 00 00
&2 \MCOMMAND.. G177} ¢ CREREILY 51’“ 0041049: 00 FF 00 00 00 00 00 00 00
0A21052. 80 AN A0 AA_A0_0n 00 00
| [0 01 B ornmand Find in Files » I [T [0 Locats Awaich i} Waich #2 . Gal Stack Jl| IR PﬂM:mamMM

Lesacar | [NUM I

Menu Commands, Toolbars and Shortcuts

The menu bar provides you with menus for editor operations, project maintenance,
development tool option settings, program debugging, window seection and
manipulation, and on-line help. With the toolbar buttons you can rapidly execute
operations. Several commands can be reached also with keyboard shortcuts. The
following tables give you an overview of the pVision2 commands.

File Menu and File Commands

Toolbar File Menu Shortcut Description

§E New Ctrl+N Create a new source or text file

Getting Started 15

Toolbar File Menu Shortcut Description

= Open Ctrl+O Open an existing file
Close Close the active file
= Save Ctrl+S Create a new source or text file
=] Save all open source and text files
Save as... Save and rename the active file
Device Database Maintain the pVision2 device database
Print Setup... Setup the printer
=] Print Ctrl+P Print the active file
Print Preview Display pages in print view
1.9 Open the most recent used source or text files
Exit Quit pVision2 and prompt for saving files

Edit Menu and Editor Commands

Toolbar Edit Menu Shortcut Description

Home Move cursor to beginning of line

End Move cursor to end of line
Ctrl+Home Move cursor to beginning of file
Ctrl+End Move cursor to end of file
Ctrl+€ Move cursor one word left
Ctrl+=» Move cursor one word rigth
Ctrl+A Select all text in the current file

L Undo Ctrl+Z Undo last operation
- Redo Ctrl+Shift+Z Redo last undo command
h Cut Ctrl+X Cut selected text to clipboard
Ctrl+Y Cut text in the current line to clipboard
Copy Ctrl+C Copy selected text to clipboard
B Paste Ctrl+V Paste text from clipboard
- Find Ctrl+F Search text in the active file

F3 Repeat search text forward
Shift+F3 Repeat search text backward
Ctrl+F3 Search word under cursor
Ctrl+] Find matching brace, parenthesis, or bracket
Find in Files... Search text in several files

¥

Replace Ctrl+H Replace specific text
Indent selected text right one tab stop

Indent selected text left one tab stop
Ctrl+F2 Toggle bookmark at current line
F2 Move cursor to next bookmark

P
2

Shift+F2 Move cursor to previous bookmark

16 Chapter 3. Development Tools

Toolbar Edit Menu

Shortcut Description

% Clear all bookmarks in active file

Select Text Commands

In uVision2 you can select text by holding down Shift and pressing the key that
moves the cursor. For example, Ctrl+=» moves the cursor to the next word, and
Ctrl+Shift+=» sdects the text from the current cursor position to the beginning of

the next word. With the mouse you can sdlect text as follows:

A word

Select Text

Any amount of text

A line of text
Multiple lines of text

A vertical block of text

With the Mouse

Drag over the text

Double-click the word

Move the pointer to the left of the line until it changes to a right-pointing

arrow, and then click

Move the pointer to the left of the lines until it changes to a right-pointing

arrow, and then drag up or down

Hold down the ALT key, and then drag

View Menu

Toolbar View Menu

Shortcut Description

Status Bar Show or hide the status bar
File Toolbar Show or hide the File toolbar
Build Toolbar Show or hide the Build toolbar
Debug Toolbar Show or hide the Debug toolbar
= Project Window Show or hide the Project window
F3 Output Window Show or hide the Output window
(1 Source Browser Open the Source Browser window
= Disassembly Window Show or hide the Disassembly window
F Watch & Call Stack Window Show or hide the Watch & Call Stack window
Memory Window Show or hide the Memory window
B Code Coverage Window Show or hide the Code Coverage window
E Performance Analyzer Window Show or hide the Performance Analyzer window
Symbol Window Show or hide the Symbol window
= Serial Window #1 Show or hide the Serial window #1
Serial Window #2 Show or hide the Serial window #2
Toolbox Show or hide the Toolbox
Periodic Window Update Updates debug windows while running the program
W orkbook Mode Show workbook frame with windows tabs
Options... Select Colors & Fonts and Editor options

Getting Started

17

Project Menu and Project Commands

Toolbar Project Menu Shortcut Description

;f{:
MCB167 |+

New Project ...

Open Project ...

Close Project...

Targets, Groups, Files

Select Device for Target
Options... Alt+F7

File Extensions

Build Target F7
Rebuild Target

Translate... Ctrl+F7
Stop Build

1.9

Create a new project

Open an existing project

Close current project

Maintain Targets, File Groups and Files of a proejct
Select a CPU from the Device Database
Change tool options for Target, Group or File
Change options for current Target

Select current Target

Select file extensions for different file types
Translate modified files and build application
Re-translate all source files and build application
Translate current file

Stop current build process

Open the most recent used project files

Debug Menu and Debug Commands

Toolbar Debug Menu Shortcut Description

Start/Stop Debugging Ctrl+F5
Reset CPU

Go F5
Step F11
Step over F10

Step out of current Ctrl+F11
function

Stop Running ESC
Enable/Disable Trace Recording
View Trace Records
Breakpoints...

Memory Map...
Performance Analyzer...
Inline Assembly...
Function Editor...

Start or stop pVision2 Debug Mode

Set CPU to reset state

Run (execute) until the next active breakpoint
Execute a single-step into a function

Execute a single-step over a function
Execute a step out of the current function

Stop program execution

Enable trace recording for instruction review
Review previous executed instructions

Open Breakpoint dialog

Toggle breakpoint on current line

Kill all breakpoints in the program
Enable/disable breakpoint on the current line
Disable all breakpoints in the program

Show next executeable statement/instruction
Open memory map dialog

Open setup dialog for the Performance Analyzer
Stop current build process

Edit debug functions and debug INI file

18 Chapter 3. Development Tools

Toolbar Debug Menu Shortcut Description

[Interrupt ... Watchdog] Open dialogs for on-chip peripherals, these dialogs
depend on the CPU selected from the device database

Tools Menu

Thetools menu allows you to run custom programs. The menu is extended once
you have added customer programs with the option Customize Tools Menu...

Toolbar Tools Menu Shortcut Description
Target Environment Configure compiler and linker paths
PC-Lint Options Configure PC-Lint from Gimpel Software
Lint Run PC-Lint current editor file
Lint all C Source Files Run PC-Lint across the C source files of your project
Customize Tools Menu... Add user programs to the Tools Menu

Window Menu

Toolbar Window Menu Shortcut Description

Cascade Arrange Windows so they overlap
Tile Horizontally Arrange Windows so they no overlap
Tile Vertically Arrange Windows so they no overlap
Arrange Icons Arrange Icons at the bottom of the window
Split Split the active window into panes
1.9 Activate the selected window

Help Menu

Toolbar Help Menu Shortcut Description

Help topics Open on-line help
About pVision Display version numbers and license information

Getting Started 19

uVision2 has two operating modes:

¢« Build Mode: allows you to translate all the application files and to generate
executable programs. The features of the Build Mode are described in
"Chapter 4. Creating Applications’ on page 35.

¢« Debug Mode: provides you with a powerful debugger for testing your
application. The Debug Modeis described in “ Chapter 5. Testing Programs”
on page 67.

In both operating modes you can use the source editor of puVision2 to modify your
source code. 3

20 Chapter 3. Development Tools

C166 Optimizing C Cross Compiler

For 166/ST 10 microcontroller applications, the Kell C166 Cross Compiler offers
away to program in C which truly matches assembly programming in terms of
code efficiency and speed. The Keil C166 is not a universal C compiler adapted
for the 166. It is adedicated C compiler that generates extremely fast and
compact code. The Keill C166 Compiler implements the ANSI standard for the C
language.

Use of a high-leve language such as C has many advantages over assembly
language programming:

¢+ Knowledge of the processor instruction set is not required, rudimentary
knowledge of the memory structure of the 166/ST10 CPU is desirable (but not
necessary).

¢« Deails likeregister allocation and addressing of the various memory types and
data types is managed by the compiler.

¢+ Programs get aformal structure and can be divided into separate functions.
This leads to better program structure.

¢+ Theability to combine variable sdection with specific operations improves
program readability.

¢+ Keywords and operational functions can be used that more nearly resemble the
human thought process.

¢+ Programming and program test time is drastically reduced which increases
your efficiency.

¢ TheC run-timelibrary contains many standard routines such as: formatted
output, numeric conversions and floating point arithmetic.

¢+ Existing program parts can be more easily included into new programs,
because of the comfortable modular program construction techniques.

¢+ Thelanguage C is a very portable language (based on the ANSI standard) that
enjoys wide popular support, and can be easily obtained for most systems. This
means that existing program investments can be quickly adapted to other
processors as needed.

C166 Language Extensions

The C166 compiler isan ANSI compliant C compiler and includes all aspects of
the C programming language that are specified by the ANSI standard. A number

Getting Started 21

of extensions to the C programming language are provided to support the facilities
of the 166 microprocessor. The C166 compiler includes extensions for:

¢ DataTypes,

¢ Memory Types,

¢ Memory Modds,

¢ Pointers,

¢ Reentrant Functions,

¢ Interrupt Functions,

¢ Real-Time Operating Systems.

The following sections briefly describe these extensions.

Data Types

The C166 compiler supports the data types listed in the following table. In
addition to these scalar types, variables can be combined into structures, unions,
and arrays.

Data Type Size Range of values

bit 1 bit Oor1l

signed char 1 byte -128 to +127

unsigned char 1 byte 0 to 255

signed int 2 bytes -32768 to +32767
unsigned int 2 bytes 0 to 65535

signed long 4 bytes -2147483648 to +2147483647
unsigned long 4 bytes 0 to 4294967295

float 4 bytes +1,176E-38 to +3,40E+38
double 8 bytes +1,7E-308 to +1,7E+308
pointer 2/ 4 bytes Address of objects

Data Types for SFR access:

shit 1 bit Oor1l

sfr 2 bytes 0 to 65535

The shit and sfr data types are included to allow access to the special function
registers that are available on the 166. For example, the declaration; sfr P2 =
OxFFCO; declaresthevariable P2 and assigns it the special function register
address of 0xFFCo. Thisisthe address of PORT 2 on the C167.

22 Chapter 3. Development Tools

Memory Types

The C166 compiler explicitly supports the architecture of all 166/ST10
derivatives completely. It has full accessto all hardware components of the 166
system. Each variable can be explicitly assigned to various memory types.
Accessing the integrated RAM (on-chip RAM = idata) is considerably faster than
accessing off-chip (near, far, huge, or xhuge) memory. Thereforeit is useful to
place often-used variables into on-chip memory, and to locate larger and less often
accessed data e ements into the far or huge memory.

Memory Type 166/ST10 Address Space

near 16 bit pointer; 16 bit address calculation allows access to:
¢ 16 KB for variables in NDATA group,
¢ 16 KB for constants in NCONST group,
¢ 16 KB for system area in SDATA group.

Together with the L166 directive DPPUSE you can have even up to 64KB
NDATA/NCONST group.

If near is applied to a function a CALLA or CALLR (16 bit call) is generated
to this function.

idata on-chip RAM of the 166; fastest access to variables.

bdata bit-addressable on-chip RAM of the 166; supports mixed bit and byte
accesses (limited to 256 bytes).

sdata SYSTEM area (address space 0C000h-OFFFFh); this can be used for the
definition of PEC addressable objects.

far 32 bit pointer; 16 bit address calculation allows full access to the whole

address space. The size of a single object (array or structure) is limited to
16 KB. If far is applied to a function a CALLS (segmented call) instruction is
generated to this function. far is the optimum memory type on the 80C166
CPU for accessing the 256KB address space of this CPU.

huge 32 bit pointer; 16 bit address calculation supports objects which size up to 64
KB. huge is the optimum memory type on the newer 166 derivatives like the
C167 for accessing the 16MB address space

xhuge 32 it pointer; 32 bit address calculation supports objects with unlimited size.

Examples of Variable Declarations with Memory Type:

The following examples illustrate the use of the memory type within variable
declarations:

char idata varl;

static unsigned long far array [100];
extern float near x, y, z;

extern unsigned int xhuge vector[50][100];
unsi gned char sdata pec_buffer [100];

char bdata fl ags;
sbit flag0 = flags”O0;

Getting Started 23

If the memory type is omitted in a variable declaration, the default or implicit
memory typeis selected. The default memory type depends on the memory modd.
For instance if a definition is made as char var 1]10], the default memory modd
SMALL, would definevarl to exist in near memory. If the HLARGE memory
mode is sdected the var 1 would have been placed into huge memory.

Memory Models

C166 supports seven memory models. With the exception of the TINY modd, the
166/ST10 operates always in the SEGMENTED mode. The memory model
determines the default memory typeto be used for variable or function
declarations without explicit memory type. With an explicit memory typethe
limits of the memory mode in used can be by-passed. In the same way the access
to variables can be speed-up, if for example the memory type near is used in the
LARGE memory modd.

Default Memory Type For...

Memory Model Variables Functions

TINY near near (up to 64KB code size)
SMALL near near (up to 64KB code size)
COMPACT far near (up to 64KB code size)
HCOMPACT (not for 8xC166 CPU) huge near (up to 64KB code size)
MEDIUM near far (unlimited code size)
LARGE far far (unlimited code size)
HLARGE (not for 8xC166 CPU) huge far (unlimited code size)
Pointer

The memory type near, far, huge and xhuge can also be applied to pointers. A
near pointer allows the accessing of all objects which are user stack based or
defined in the near, sdata, idata or bdata area. A far pointer can access all
objects in the 16M B address space, whereby the size of a single object is limited to
16KB. The memory type huge allows to access objects up to 64KB size. With
xhuge very large objects with unlimited size can be accessed.

Note

Pointer arithmetic on huge pointers modifies only the 16-hit offset of the pointer.
If you want to use a pointer to access the whole 16MB address space you must
define a xhuge pointer.

24 Chapter 3. Development Tools

Examplesfor using the memory type together with Pointers:

Variable Declaration Pointer Size Declaration of the Pointer

char c; 16/32 bit char *ptr; (Pointer size depends from the
memory model in use.)

int near nc; 16 bit int near *np;

unsigned long far I; 32 bit long far *Ip;

char huge hc; 32 bit char huge *hc_ptr;

float xhuge xf; 32 bit char xhuge *xf_ptr;

void near funcl (void); 16 bit void (near *fpl) (void);

int far func2 (void); 32 bit int (far *fp2) (void);

Registerbanks

C166 supports up to 128 logical register banks. Register banks can be used for
examplein connection with interrupt procedures. The code generated by C166
including all library functionsis fully reentrant and independent from the register
bank currently selected. This allows that the main program and one or more
interrupt service routines can call simultaneously the same function.

Interrupt Functions

The C166 compiler gives you complete control over all aspects of interrupt and
register bank usage. Such support allows the system programmer to create
efficient effective interrupt procedures. The user need only be concerned with the
interrupt and necessary register bank switch over operation, in a general and high
level manner. The C166 compiler generates only the code necessary to effect the
most expedient handling. Refer to “Interrupt” on page 131 for example of an
interrupt function.

PEC Support

The Peripheral Event Controller (PEC) can be directly programmed in the C166
source. Areas for PEC data can be define with the memory type sdata or must be
explicitly located to SEGMENT 0 of the 166/ST10 memory. Refer to “ Peripheral
Event Controller” on page 134 for an example of using the PEC.

Getting Started 25

Parameter Passing

Up to five parameters can be passed via CPU registers. This yields an efficient
parameter passing which compares to assembler programming. I all five registers
are used for parameters, the user stack is used for parameters. The user stack
holds also automatic variables and is accessed via the RO register (user stack
pointer).

Thereturn of function values takes placein fixed CPU registers, as listed in the
table bdow. In this way the interface to assembler subroutinesis very easy.

Return value Register Description

bit R4.0

(unsigned) char RL4

(unsigned) int R4

(unsigned) long R4, R5 LSB in R4, MSB in R5

float R4, R5 32 bit IEEE format, exponent and sign in R5
double R4 to R7 64 bit IEEE format, exponent and sign in R7
near * R4

far * or huge * R4, R5 Offset in R4, Selector in RS

Code Optimizing

C166 optimizes the generated code with modern optimization techniques. The
user has the choice of eight OPTIMIZE levels. In addition the type of code
generation can be influenced with OPTIMIZE (SIZE) and OPTIMIZE
(SPEED). All optimizations executed by C166 are summarized below:

General Optimizations

Constant Folding

Jump Optimizing

Dead Code Elimination

Register Variables

Parameter Passing Via Registers

Global And Local Common Sub-expression Elimination
Strength Reduction

Loop Rotation

Dead Code Elimination

Common Tail Merging

e o6 o o6 o e o e o o

26

Chapter 3. Development Tools

166/ST10 Specific Optimizations

¢+ Peephole Optimization
¢ NOP and DPP Load Optimization
¢+ Case/Switch Optimization

Program Invocation

Typically, the C166 compiler will be called from the uVision2 IDE when you
build your project. However, you may invoke the compiler also within a DOS box
by typing C166 on the command line. Additionally the name of the C sourcefile
to compileis specified on the invocation line as wel as any optional control
parameters to affect the way the compiler functions.

Example
>C166 MODULE. C COVPACT PRINT (E: M LST) DEBUG SYMBOLS
C166 COWPI LER V4. 00

C166 COVPI LATI ON COVPLETE. 0 WARNING(S), 0 ERROR(S)

Contral directives can also be entered via the #pragma directive, at the beginning
of the C sourcefile. For alist of available C166 directives refer to “ C166
Optimizing C Craoss Compiler Directives’ on page 166.

Sample Program

The following example shows some functional capabilities of C166. The C166
compiler produces object filesin OMF-166 format, in response to the various C
language statements and other directives.

Additionally and optionally, the compiler can emit all the necessary information
such as; variable names, function names, line numbers, and so on to allow detailed
program debugging and analysis with the pVision2 Debugger or emulators.

The compilation phase also produces a listing file that contains source code,
directive information, an assembly listing, and a symbol table. An examplefor a
listing file created by the C166 compiler is shown on the next page.

Getting Started

27

Cl66 COWPILER V4.00, SAWMPLE 12/01/99 10:31:08 PAGE 1
C166 COWPI LER V4.00, COWPILATI ON OF MODULE SAMPLE
OBJECT MODULE PLACED I N SAMPLE. GBJ

COWPI LER | NVOKED BY: C:\KEI L\ C166\ Bl N\ C166. EXE SAMPLE. C CODE DEBUG

stnt |evel sour ce
1 #i ncl ude <regl66. h> /* register definitions for 80166 CPU */
2 #i ncl ude <stdio. h> /* standard i/o definitions */
3
4 /* Convert to Upper Character */
5 unsi gned char toupper (unsigned char c) {
6 1 if (c<'a || c>‘2") return ©
7 1 el se return (¢ & ~0x20);
8 1 }
9
10 shit p310 = P3710; /* Port 3.10 output latch */
11 shit dp310 = DP3710; /* Port 3.10 direction control register */
12 shit dp311 = DP3711; /* Port 3.11 direction control register */
13
14 /* Initialize the Serial Interface 0 */
15 void init_serial (void) {
16 1 p310 = 1; /* set Port 3.10 output |atch (TxD) */
17 1 dp310 = 1; /* set Port 3.10 direction control (TxD output) */
18 1 dp311 = 0; /* reset Port 3.11 direction control (RxD input) */
19 1 SOTIC = 0x80; /* set transmit interrupt flag */
20 1 SORIC = 0x00; /* delete receive interrupt flag */
21 1 SOBG = 0x40; /* set baudrate to 9600 baud
22 1 SOCON = 0x8011; /* set serial node */
23 1}
24
25 /* Echo Upper Characters */
26 main () {
27 1 unsi gned char c, buf[10];
28 1
29 1 init_serial ();
30 1
31 1 while (1) {
32 2 PO = P2; /* output hardware switch fromPort2 */
33 2
34 2 gets (buf, sizeof (buf)); /* get input line */
35 2 for (c = 0; buf[c] !'=0; c++) {
36 3 buf[c] = toupper (buf[c]); /* convert to capital */
37 3 }
38 2 printf (“%\n”, buf); /* echo input line */
39 2 PO = O; /* clear Qutput Port to signal ready */
40 2 }
41 1}

ASSEMBLY LI STI NG OF GENERATED OBJECT CCDE

; FUNCTI ON t oupper (BEG N RMASK = @x0030)
; SOURCE LINE # 5

;---- Variable ‘c’ assigned to Register ‘R8 ---
; SOURCE LINE # 6
0000 F048 MoV R4, R8
R5, RL4

0002 C085 MOVBZ

MODULE | NFORVATI ON:
CODE SI ZE
NEAR- CONST SI ZE
FAR- CONST S| ZE
NEAR- DATA S| ZE
FAR- DATA S| ZE
| DATA- DATA SI ZE
SDATA- DATA SI ZE
BDATA- DATA SI ZE
BI T SI ZE
INT' L SIZE =
END OF MODULE | NFORNVATI ON.

I'NITIALI ZED UNI NI TI ALI ZED

C166 produces a
listing file with line
numbers as well as
the time and date of
the compilation.

Information about
compiler invocation
and the object file
generated is printed.

The listing contains
a line number before
each source line and
the instruction
nesting { } level.

3

If errors or possible
sources of errors
exist an error or
warning message is
displayed.

Enable under
uVision2 Options
for Target — Listing
- Assembly Code
the C166 CODE
directive. This gives
you an assembly
listing file with
embedded source
line numbers.

A memory overview
provides information
about the occupied
166/ST10 memory
areas.

The number of errors
and warnings in the

28 Chapter 3. Development Tools

program are
C166 COWPI LATION COVPLETE. 0 WARNING(S), 0 ERROR(S) included at the end

A166 Macro Assembler |

A166 is a macro assembler for the 166/ST10 microcontroller family. A166
tranglates symbolic assembler language mnemonics into executable machine code.
A166 allows you to define each instruction in a 166/ST 10 program and is used
where utmost speed, small code size and exact hardware control is essential. The
A166 macro facility saves development and maintenance time, since common
sequences need only be developed once.

Source-Level Debugging

A166 generates complete symbol and type information; this allows an exact
display of program variables. Even line numbers of the sourcefile are available to
enable source leve debugging for assembler programs with the uVision2
Debugger or emulators.

Functional Overview

A166 translates an assembler sourcefile into a relocatable object module. A166
generates a listing file, optionally with symbal table and cross reference. A166
contains two macro processors:

¢ Standard Macros are simple to use and enable you to define and to use
macros in your 166/ST 10 assembly programs. The standard macros are used
in many assemblers.

¢« TheMacro Processing Language (MPL) is a string replacement facility. Itis
fully compatible with Intel ASM86 and has several predefined macro processor
functions. These MPL processor functions perform many useful operations,
like string manipulation or number processing.

Another powerful feature of A166 macro assembler is conditional assembly
depending on command line directives or assembler symbols. Conditional
assembly of sections of code can help you to achieve the most compact code
possible or to generate different applications out of one assembly sourcefile.

Listing File

On the following page is an example listing file generated by the assembler.

Getting Started 29

A166 MACRO ASSEMBLER SAMPLE 24/ 01/ 99 15:44:45 PAGE 1 A166 produces a
listing file with line
numbers as well as
the time and date of
the translation.

A166 MACRO ASSEMBLER V4. 00
OBJECT MODULE PLACED I N SAMPLE. GBJ
I N\VOKED BY: C:\KEI L\ C166\ Bl N\ A166. EXE SAMPLE. A66 SET(SMALL) XREF DEBUG

LOC OBJ LI NE SQURCE
Information about
1 $SEGVENTED assembler
2 invocation and the
3 ﬁlbgeINED' E:V'Tm LA'REER object file generated
$ELSE is printed.
6 Model LIT ' NEAR
7 $ENDI F
8
9 PUBLIC SERINIT, tinerstop, tinerstart
10 ASSUVE DPP3: SYSTEM
11
12 ?PR?SERI NI T section code
13
14 SERINI T proc NEAR
12 AR R AR AR KRR KA KRR AR AR AR A166 is procedure
17 ;*** |NIT SERI AL | NTERFACE 0 *** oriented. AllCPU
18 3K K KK KR KKK Kk K K KKK KK Kk K instructions need to
e be placed with
0000 AFE2 20 BSET P3.10 ; OUTPUT LATCH (TXD) PROC / ENDP
0002 AFE3 21 BSET DP3. 10 ; DIR-CONTROL (TXD QUTPUT) statements.
0004 BEE3 22 BCLR DP3.11 ; DI R- CONTROL (RXD | NPUT)
0006 E7B68000 23 MOVB SOTI C, #080H ; TRANSM T | NTERRUPT FLAG e .
000A E7B70000 24 MOVB SORI C, #000H ; RECEI VE | NTERRUPT FLAG The listing contains
000E E65A4000 25 MoV SOBG , #0040H ; 9600 BAUD a source line number
0012 E6D81180 26 MoV SOCON, #8011H ; SET SERI AL MODE and the object code
0016 CBOO 27 RET generated by each
28 SERINIT endp source line.
29
30
o (0 e S e proc NS If errors or possible
0018 E6A00000 32 MOV T2CON, #0
001C E6A10000 33 MOV T3CON, #0 sources of errors
0020 E6200000 34 MOV T2, #0 exist an error or
0024 E6210000 35 MOV T3, #0 warning message is
0028 E6A14000 36 MOV T3CON, #0040H displayed.
002C E6A04F00 37 MOV T2CON, #004FH
0030 CBOO 38 RET
39 timerstart endp
40
41
42 timerstop proc NEAR
0032 E6A00000 43 MOV T2CON, #0
0036 E6A10000 44 MOV T3CON, #0
003A F2F442FE 45 MoV R4, T3
003E F2F540FE 46 MoV R5, T2
0042 CB0OO 47 RET
48 timerstop endp
49
50 ?PR?SERI NI T ends
51
52 end
A166 MACRO ASSEMBLER SAMPLE 24/ 01/ 99 15: 44: 45 PAGE 2

Enable under
HVision2 Options
for Target — Listing

XREF SYMBOL TABLE LI STI NG

NAME TYPE VALUE | ATTR BUTES — Cross Reference
to get a detailed

?PRPSERINIT. . . . ---- SECTION 12# 50 listing of all symbols

DP3. WRD FFCBH A SFR 21 22 used in the

DPP3 WRD FEO6H A SFR 10 assembler source

NFJDEL. a5 b o a o o L!T "NEAR' ; 6# file.

30 Chapter 3. Development Tools

The number of errors
and warnings in the
program are
included at the end
of the listing..

ASSEMBLY COVPLETE. 0 WARNING(S), O ERROR(S)

L166 Linker/Locator

The L166 linker/locator combines several program modules into one executable
166/167 program. In doing so the external and public references are resolved and
the relocatable program parts are assigned to absolute addresses. The modulesto
be combined may have been written in C or assembler. L166 automatically sdects
the appropriate run-time libraries and links only the library modules that are
required.

Address Management

The C166 compiler assigns each code and data section to a specific class name.
The class namerefers to the different memory areas. for example the class
NCODE contains code which must be directed to ROM space; the class NDATA
contains variable sections which must be directed to RAM space.

During the link/locate process all sections with the same class name are located to
a specific memory area. The pVision2 IDE ddivers the correct settings for L 166
CLASSES directive from the selected CPU and specifications under Options —
Target for external memory and on-chip memory components.

CLASSES (FCODE (0x10000 — OX1FFFF, 0x40000 — OX5FFFF))

Aboveis an examplefor an L166 CLASSES directive. Thisinstructs L166 to use
the address spaces 0x10000 - Ox1FFFF and 0x40000 — Ox5FFFF for the FCODE
class (= far code). L166 locates all sections with the class name FCODE to this
memory region, which is usually ROM space. You can enter address ranges for
user defined memory classes under Options — L166 Locate — Users Classes.

Exact placing of a section is also possible; enter in pVision2 dialog Options —
L 166 L ocate — User Sections the address specification for individual sections.
For example, ?XD?MYPROG% XDATA (0x20000) in this dialog field will
insert the L166 SECTIONS directive which locates the section with the name
?XD?MYPROG and the memory class XDATA to address 0x20000:

SECTI ONS (?XD?MYPROGXDATA (0x20000))

Getting Started 31

Map File
On the following page is an example listing file generated by L 166.

32

Chapter 3. Development Tools

L166 LI NKER/ LOCATER V4. 00 22/01/99 10:32:02 PAGE 1
L166 LI NKER/ LOCATER V4. 00, | NVOKED BY:
C:\ KEI L\ C166\ BI N\ L166. EXE SAMPLE. OBJ

CPU TYPE: Cl166
CPU MODE: SEGVENTED
MEMORY MODEL: SMALL

I NPUT MODULES | NCLUDED:
SAMPLE. 0BJ (SAMVPLE)
COMVENT TYPE 128: C166 V4. 00
C:\ KEI L\ C166\ LI B\ C166S. LI B (?C_STARTUP)
COMVENT TYPE 128: A166 V4.00
C:\ KEI L\ C166\ LI B\ C166S. LI B (PRI NTF)
COMVENT TYPE 128: A166 V4.00

| NTERRUPT PROCEDURES OF MODULE: SAMPLE (SAMPLE)

I NTERRUPT PROCEDURE I NT | NTERRUPT NAME

C_STARTUP 0 RESET

MEMORY MAP OF MODULE: SAMPLE (SAMPLE)

START STOP LENGHT TYPE ALIGN TGR GRP COVB CLASS SECTI ON NAME

00000H 00003H 00004H * | NTVECTOR TABLE *

00004H 00085H 00082H CODE WORD --- 1 PUBL NCODE ?PR?SAMPLE

00086H 0044FH 003CAH CODE WORD --- 1 PRIV NCODE ?PR?printf

00450H 004BDH 0006EH CODE WORD --- 1 PUBL NCODE ?PR?GETS

GROUP LI ST OF MODULE: SAMPLE (SAMPLE)

GROUP NAVE TYPE TGR GRP CLASS SECTI ON NAVE

NCCDE CODE - -- 1 NCCDE ?PR?SAVPLE
NCODE ?PR?print f
NCCDE ?PR?GETS

PUBLI C SYMBOLS OF MODULE: SAMPLE (SAMPLE)

VALUE PUBLI C SYMBOL NANMVE REP TGR CLASS SECTI ON NAME

00608H ?C_CLRVEMSECSTART VAR .- .- --

00606H ?C_| Nl TSECSTART VAR .- .- --

00000H ?C_PAGEDPP1 CONST - -- .- --

00001H ?C_PAGEDPP2 CONST - -- .- --

SYMBOL TABLE OF MODULE: SAMPLE (SAMPLE)

VALUE TYPE REP LENGTH TGR SYMBOL NAME

0003AH GLOBAL LABEL .- .- nmai n

00022H PUBLI C LABEL .- .- init_serial

00004H PUBLI C LABEL .- .- t oupper

00004H BLOCK LVL=0 001EH --- t oupper

00008H SYMBOL REG .- .- €

00004H LI NE #5

00004H LI NE #6

00018H LI NE #7

00020H LI NE #8

BLOCKEND LVL=0 --- -

L166 produces a
MAP file (extension
.M66) with date and
time of the link/locate
run.

L166 displays the
invocation line,
memory model, CPU
type, and CPU
mode.

Each input module
and the library
modules included in
the application are
listed.

All interrupt
procedures with
assigned trap
numbers are listed.

The memory map
contains the usage
of the physical
80C166 memory.

The Group list
shows the group,
class and section
names used in the
application program.

All public symbols
together with their
values are listed.

A complete list of all
debug symbols is
printed.

Warning messages
and error messages
are listed at the end
of the MAP file.
These may point to

Getting Started

33

L166 RUN COWPLETE.

0 WARNI NG S),

0 ERRCR(S)

possible problems
encountered during
the link/locate run.

34 Chapter 3. Development Tools

LIB166 Library Manager

The LIB166 library manager lets you create and maintain library files. A library
fileis aformatted collection of object modules (created by the C compiler and
assembler). Library files provide a convenient method of combining and
referencing a large number of object modules which may be accessed by the L166
linker/locator.

To build alibrary with the uVision2 project manager enable Options for Target
— Output — Create Library. You may also call LIB166 froma DOS box. Refer
to “L1B166 Library Manager Commands’ on page 170 for command list.

There are a number of benefitsto using a library. Security, speed, and minimized
disk space are only afew of the reasons to use alibrary. Additionally, libraries
provide a good vehicle for distributing a large number of useful functions and
routines without the need to distribute source code. For example, the ANSI C
library is provided as a set of library files.

It is easy to build your own library of useful routines like serial 1/0, CAN, and
FLASH memory utilities that you may use over and over again. Oncethese
routines are written and debugged, you may mergetheminto alibrary. Sincethe
library contains only the object modules, the build timeis shortened since these
modules do not require re-compilation for each project.

Libraries are used by the L166 linker when linking and locating the final
application. Modulesinthelibrary are extracted and added to the program only if
they arerequired. Library routines that are not specifically invoked by your
program are not included in the final output. The linker extracts the modules from
the library and processes them exactly as it does other object modules.

OH166 Object-HEX Converter

The OH166 object-HEX converter creates Intel HEX files from absolute object
modules which are created by the L166 linker/locator. Inte HEX files are ASCII
files that contain a hexadecimal representation of your application program. They
can be easily loaded into a device programmer for programming EPROMS. Both
HEX-86 (1 MB address range) and HEX-386 (16 MB address range) file formats
are supported. You may also create HEX filesto program FLASH memory
devices. Thedatarecords in thesefiles are sorted in ascending order. Unused
bytes are filled with a specified byte value.

Getting Started 35

Chapter 4. Creating Applications

To makeit easy for you to evaluate and become familiar with our 166 product
line, we provide an evaluation version with sample programs and limited versions
of our tools. The sample programs are also included with our standard product
kits.

NOTE

The Keil C166 evaluation tools are limited in functionality and the code size of
the application you can create. Refer to the “ Release Notes’ for more
information on the limitations of the evaluation tools. For larger applications,
you need to purchase one of our development kits. Refer to “ Product Overview’
on page 8 for a description of the kits that are available.

This chapter describes the Build M ode of pVision2 and shows you how to use the
user interface to create a sample program. Also discussed are options for
generating and maintaining projects. This includes output file options, the
configuration of the C166 compiler for optimum code quality, and the features of
the uVision2 project manager.

Create a Project

uVision2 includes a project manager which makes it easy to design applications
for the 166 family. You need to perform the following steps to create a new
project:

¢ Start uVision2, create a project file and sdect a CPU from the device database.
¢+ Create a new source file and add this source file to the project.

¢+ Add and configure the startup code for the 166/ST 10 device

¢ Set tool options for target hardware.

¢« Build project and create a HEX filefor PROM programming.

The description is a step-by-step tutorial that shows you how to create a simple
uVision2 project.

36 Chapter 4. Creating Applications

Start pVision2 and Create a Project File

uVision2 is a standard Windows application and started by clicking on the
programicon. To create a new project file seect from the uVision2 menu Project
— New Prgject.... This opens a standard Windows dialog that asks you for the
new project file name.

We suggest that you use a separate folder for each project. You can simply use the
icon Create New Folder inthis dialog to get a new empty folder. Then sdect this
folder and enter the file name for the new project, i.e. Projectl. pVision2 creates
anew project file with the name PROJECT1.UVv2 which contains a default target
and file group name. Y ou can see these names in the Project Window — Files.

Now use from the menu Project — Select Device for Target and sdect a CPU for
your project. The Select Device dialog box shows the pVision2 device database.
Just select the microcontroller you use. We are using for our examples the
Siemens C167CR-LM CPU. This sdection sets necessary tool options for the
C167CR-LM device and simplifies in this way the tool configuration.

Select Device for Target 'Target 1"

oy |

Vendor Siemans - ol

:) = ision?
R SHBGRE Seleci Taalset [166/167Tools = =l |
Family 186167 @ Release Motes

@ uvision? Uset's Guide
Data base contents: Dizscription: = m Tools User's Guide
L—_@ Siemens | 16-Bit Microcontraller with 1171 1/0 Lines. Power Down, Yyat ' 9 Release Motes

- C1B1K Capture Compare Unit (32 channels), Pt Output (4 chanr ; ' =

101610 AN Cortraller, S5C. USART, AD Conyerter @ C166 User's Guide .

LI CIETRI or-chip AWM. (2B + 2KE XRAM) @ A166 & Utilites User's Guide

L3 ciey =811 EDevice Data Books

~L1 C163 (all Variants
1 C164 (all Variants
11 C165 (all Variants
(3 ©18B (all Variants

~L1 C167CR-16FM
3 C167CR-16RM
11 C167CR-ARM

S BB Product Overvew
A& User Manual
@ Instruction Set kManual

1 C167CRA.25M T TR
O (S Fies | (S¥Recs ULJBooks]
3 C1B7CS-32FM
£ C167-LM]
QK I Cancel

On some devices, the puVision2 environment needs additional parameters that
you have to enter manually. Please carefully read the information provided
under Description in this dialog, since it might have additional instructions for
the device configuration.

Getting Started 37

Once you have sdected a CPU from the device database you can open the user
manuals for that device in the Project Window — Books page. These user
manuals are part of the Keill Development Tools CD-ROM that should be present
inyour CD drive.

"i% Create New Source Files

Y ou may create a new source file with the menu option File— New. This opens
an empty editor window where you can enter your source code. pVision2 enables
the C color syntax highlighting when you save your file with the dialog File —
Save As... under afilename with the extension *.Cc. We are saving our example
file under the name MAIN.C.

1
B H:\Project! \main.c |- 0] %]
|
#incelude <reglé?.h> /* special function registers €167 devices */ [mi
fAEasdbasdtasdias 7
/% main program */
Rt EAEA A AR R AL i
woid main [void) { f* ewxecution starts here g
unsigned int i;
DE7 = OxFF; f* Hetup B7.7-P7.0 for output *
ODE7 = DxFF; /* @etup P7.7-F7.0 for open-drain *

while (1) { /* an embedded application never stops F
for (i = 0x01; i <= 0xB80; i <<= 1) {
P7 = i; /* Write new wvalue to BP7 */
ki
+
i

Once you have created your source file you can add this file to your project.
uVision2 offers several ways to add source files to a project. For example, you
can select the file group in the Project Window — Files page and click with the
right mouse key to open alocal menu. The option Add Files opens the standard
filesdialog. Select the file MAIN.C you havejust created.

38

Chapter 4. Creating Applications

EF

=3 Targst |

..... Source Group 1

select Devicefar et Maiget 1t
Options for Group 'Source Group 1!

(0 a}=1)5 | =

Add Files to Group 'Source Group 1'

Femowve Group 'Source Group 1' and it's Files

" B Files |§' Regs | AL Books I

Add and Configure the Startup Code

Typically, a 166/ST10 program requires a CPU initialization code that needs to
match the configuration of your hardware design. For most 166 / ST10
derivatives, you should use the START167.A66 file as startup code. Only the
8xC166 CPU variants are initialized with the STARTUP.A66 file. Since you need to
modify that file to match your target hardware, you should copy the START167.A66
file from the folder C:\KEIL\C166\LIB to your project folder.

It isagood practiceto create a new file group for the CPU configuration files.
With Project — Targets, Groups, Files... you can open a dialog box where you
add a group named System Filesto your target. In the same dialog box you can
usethe Add Filesto Group... button to add the START167.A66 file to your
project.

Another file that aids you in program debugging is TRAPS.C. Thisfile contains
service routines for the various CPU hardware traps (interrupts) which are called
on hardware or softwarefailures. Also TRAPS.C can be copied from the folder
C:\KEIL\C166\L1B to your project folder and added in the same way.

Getting Started 39

Targets, Groups, Files [2]=] The Prq ect WI nd()\N _ Fl I%
Targess Grovpe Add i | lists all items of your project
— Grougto Add: o

]

System Files| A =3 Target1

-4 Source Group 1

@ main.c

=i System Files

- Available Groups: % Start 67266
@ Traps.c
Source Gmuﬁ'\
Add Files ta Group.., | Femove Group |
" B Files [P Regs]M}
oK I Cancel J

The pVision2 Project Window — Files should now show the above file structure.
Open START167.A66 in the editor with a double click on the file namein the project
window. Then you configure the startup code as described in “ Chapter 10. CPU
and C Startup Code’ on page 153. It isvery important that the settings in the
startup code match the settings of the Options— Target dialog. Thisdialogis
discussed in the following.

40 Chapter 4. Creating Applications

ﬂi Set Tool Options for Target

uVision2 lets you set options for your target hardware. The dialog Options for
Target opens via thetoolbar icon. Inthe Target tab you specify all relevant
parameters of your target hardware and the on-chip components of the device you
have sdected. The following the settings for our example are shown.

Options for Target 'Target 1'

Target | Output | Listing | C186 | 4188 | L186 Locate | L166 Misc | Debug |

Siemens C167CR-LM Clock; |20000000

Memaony Model ISmaII: ‘near' functions and data j ™ Allocate On-chip XPAl and CAN

Operating System INone j

Data Thrashald IﬂEﬁr 3

 Near Memory

16 | KB RAM 16 - | KB ROM

i External memaoy

Start Sizs Start Size
|ROM =l ID)(D |nxmnnm 4 |RAM jl |
sz [Pam =] |ux1nuun |ux3nuun a5 [RAM jl |
#3 [PaM j| | #E: [RAM j| |

oK I Cancel | Defaults |

The following table describes the options of the Tar get dialog:

Dialog Item Description

Clock specifies the internal CPU clock of your device. Most 166 designs are using
the on-chip PLL to generate the CPU clock, in most cases this value is not
identical with the XTAL frequency. Check your hardware design carefully to
determine the correct value.

Allocate On-chip ... specifies the usage of the on-chip components which are typically enabled in
the CPU startup code. Make sure that the dialog settings are identical with the
START167.A66 settings.

Memory Model specifies the C166 compiler memory model. For starting new applications the

default SMALL is a good choice. Refer to “Memory Models and Memory
Types” on page 48 for a discussion of the various memory models.

Data Threshold allows you to optimize the memory model settings. Refer to “Data Threshold”
Near Memory on page 50 for more information.

Getting Started

41

External Memory

here you specify all external memory areas of the target hardware. RAM

denotes the memory areas where variables are stored. ROM refers to areas
that store constants and program code (typical EPROM or Flash memory).
When using the Monitor-166, the program will run in RAM space. However you
have to specify ROM in this dialog, otherwise your application has no memory
for constants and program code. For more information, refer to “Target Options
when Using Monitor-166" on page 159.

Typical, thetool settings under Options— Target are all you need to start a new
application. You may translate all source files and line the application with a click
on the Build Target toolbar icon. When you build an application with syntax
errors, uVision2 will display errors and warning messages in the Output Window
— Build page. A double click on a message line opens the source file on the

correct location in a uVision2 editor window.

Lepe

[Build target 'Target 1°' j
compiling main.c...
NMAIN.C(14): error 67: undefined identifier
NMAIN.C(15): error 67: 'Port7': undefined identifier
NMAIN.C(8): warning 47: 'j': unreferenced local variable
NMAIN.C(13): warning 47: 'lab': unreferenced label

of?

'var':

Target not created

[4] 4] » [/]: Build A Corrmand A Findin Files 1K

Build target 'Target 1°'
compiling main.c...
assembling Startl67.a6b...
compiling Traps.c...

linking...
creating hex file from Projectl...
Projectl - 0 Error(s). 0 Warning(s).

AT TETF Buitd A Gommand A Findin Fles J KA

Once you have successfully generated your application you can start debugging.
Refer to “ Chapter 5. Testing Programs’ on page 67 for a discussion of the
uVision2 debugging features. After you have tested your application, it is
required to create an Intel HEX file to download the software into an EPROM
programmer or simulator. pVision2 creates HEX files with each build process
when Create HEX file under Optionsfor Target — Output is enabled. The
FLASH Fill Byte, Start and End values direct the OH166 utility to generate a
sorted HEX files; sorted files are required for some Flash programming utilities.
You may start your PROM programming utility after the make process when you
specify the program under the option Run User Program #1.

42 Chapter 4. Creating Applications

Options for Target 'HLarge Model' [2]x]
Terget Output |Listing | G165 | A168 | L186 Locate | L186 Misc | Debug |

| Select Folder for Objects... I Name of Executabla: IPVDJECﬂ

¥ Create Executable: \Project]

v Debug Informatian

7| Create HEX File HEXFormat [HEX-386 (H167) -] St |El><D End |DxFFFF

ELASH Fil Byt [P Offse; |

™ Create Librany: \Project] LIB

—After Make

¥ Beep When Complete

™ Run User Program #1; | Browse

I Browse

0K | Cancel | Defaults |

Now you can modify existing source code or add new source files to the project.
The Build Target toolbar button translates only modified or new source files and
generates the executablefile. puVision2 maintains a file dependency list and knows
all include files used within a source file. Even thetool options are saved in the
file dependency list, so that uVision2 rebuilds files only when needed. With the
Rebuild Target command, all sourcefiles are trandated, regardless of
modifications.

Project Targets and File Groups

By using different Project Targets pVision2 lets you create several programs
from asingle project. Y ou may need onetarget for testing and another target for a
release version of your application. Each target allows individual tool settings
within the same project file.

Files Groups let you group associated files together in a project. Thisis useful

for grouping files into functional blocks or for identifying engineers in your
software team. We have already used file groups in our example to separate the
CPU rdated files from other sourcefiles. With these techniqueit is easily possible
to maintain complex projects with several 100 filesin pVision2.

TheProject — Targets, Groups, Files... dialog allows you to create project
targets and file groups. We have already used this dialog to add the system
configuration files. An example project structure is shown below.

Getting Started 43

d='| The Project Windows shows all groups and the

FRALE A related files. Files are built and linked in the same
L@ maine order as shown in thiswindow. You can movefile
D filel .o positions with Drag & Drop. You may sdect a
@?e:'e'rezc target or group name and Click to renameit. The

""" Y local menu opens with a right mouse Click and
- fledc allows you for each item:
i &’ Sth;”pE'fS . to set tool options . to add filesto a group
@ Start1G7.566 - toremovetheitem - to open thefile.
“?gf}";im In the build toolbar you can quickly change the
. Putchar.c current target to build.
=8 Documentation
LA readmeta

{[C167CR Board ~|
C167CR Board

" BlFites [SRegs | [Books |

Test Hardware

Overview of Configuration Dialogs

The options dialog lets you set all the tool options. Viathe local menu in the
Project Window — Files you may set different options for a file group or even a
singlefile; in this case you get only the related dialog pages. With the context help
button [] you get help on most dialog items. The following table describes the
options of the Tar get dialog.

Dialog Page Description

Target Specify the hardware of your application. See page 40 for details.

Output Define the output files of the tool chain and allows you to start user programs after the
build process. See page 56 for more information.

Listing Specify all listing files generated by the tool chain.

C166 Set C166 compiler specific tool options like code optimization or variable allocation.
Refer to “Other C166 Compiler Directives” on page 53 for information.

A166 Set assembler specific tool options like macro processing.

L166 Locate Define the location of memory classes and sections. Typical you will enable Use

Memory Layout from Target Dialog as show below to get automatic settings. Refer
to “Locate Sections to Absolute Memory Locations” on page 60 and “User Classes” on
page 61 for more information on this dialog.

L166 Misc Other linker related settings like Warning or memory Reserve directive. You need to
reserve some memory locations when you are using Monitor-166 for debugging. For
more informatino refer to “Target Options when Using Monitor-166 “ on page 159 for
more information.

Debug Settings for the pVision2 Debugger. Refer to page 74 for more information.

Properties File information and special options for files and groups refer to “File and Group
Specific Options — Properties Dialog” on page 62.

44

Chapter 4. Creating Applications

Options for Target 'C167CR Board' [2]x]
Target | Output I Listing | C1BB I Al6E L166 Locate |UEE MISDI Debug |
¥ Use Memory Layout from Target Dialac C166 Yariable Initialization Tables |0x000000 - 000EFFF
—DPP Usage
5| BERUEE ndlata. IdppZ j I nconst Idpm j I
Target |CLASSES (ICODE (0x0-0xEFFF), NCODE (Ix0-0xEFFF), ﬁ!
Classges FCOMST (Ix0-0xEFFF). HOONST (0x0-0xEFFF).
[XCONST (0x0-DxEFFF), NCONST (0x4000-0x7FFF), =l
User ;I
Classes
=
User ;I
Sections j
Linker [T0 Project! 3
Contral - 1CLASSES (IC0DE (Dx-IXEFFF), NCODE ((x-0xEFFF),
Sting |FCOMST (0n0-0xEFFF). HOOMST (Dxl-OxEFFF). =l

uVision2 Utilities

uVision2 contains many powerful functions that help you during your software
project. These utilities are discussed in the following section.

C#y Find in Files

The Edit — Find in Files dialog performs a global text search in all specified files.
The search results are displayed in the Find in Files page of the Output window.
A double click in the Find in Files page positions the editor to the text line with
matching string.

[Source Browser

The Source Browser displays information about program symbols in your
program. If Optionsfor Target — Output — Browser Information is enabled
when you build the target program, the compiler includes browser information into
the object files. Use View — Sour ce Browser to open the Browse window.

Getting Started 45

& Browse - C:\Keil\C166\EXAMPLES\MEASURE\Objectimeasure H[=] E3
Symbol: IC" j Memory Spaces: W idata, ¥ nearconst W xhuge const
Filter on: Macros Data o SRl biateatel
- ¥ hdata ¥ huge
Functions SfrBits) 5] Geer ¥ huge const
Farameters Twpes v far ¥ xhuge
File Outline: |<all filas> =

¥ hlame I Class I Twpe Space Uses |;| Definitions and References - current
CCM2 data(sf) uint idata 15 BB CAKeil\C16EYEXAMPLES\MEASURE \Measure.c
CCM3 data (sfr) uint idata. 15 -[i@* [D] Line &0
CChA4 data (sfr) uint idata. 5 TN
CCh5 45" Show 'G:\Keilt C1BBYEXAMPLE S\MEASURE \Measure ¢ (80)' R Line 119 [r/w]
ggmg g - : @R LR Line 120 [w]

ata (sfr) uint idata B[R] Line 122 [r/w]
CNTLO macra none 2 =])

iy [R]Line 123 [w]

CNTLS macro none 2 =4 .
CR macro none 2 g: ["] L!ne 1250/
CRIC data(sf) wint idata g & [R]Line 126 [v]
Class_B_trap function function near 1 ‘=d" [R]Line 128 [r/w]
c parameter char near 3 = [R] L!ne 123 [w]
c data. char near 9 Ay [R]Line 136 [w]
clear_records function function near 3 ;:d.ﬁ [R]Line 141 [w]
clock tag struct 7 3 [RLine 253 [1]
crdbuf data array near 9 El(_3 Y Keily C16EYExAMPLE SYMEASURE Mcommand.c
cnt data uchar near b W [R]Line 32
current data. struct near 15 = -3 [R] Line 77 [w]

The Browse window lists the symbol name, class, type, memory space and the
number of uses. Click on thelist item to sort the information. You can filter the
browse information using the options described in the following table:

Browse Options Description

Symbol specify a mask that is used to match symbol names. The mask may consist of
alphanumeric characters plus mask characters:
matches a digit (0 — 9)
$ matches any character
* matches zero or more characters.
Filter on select the definition type of the symbol
File Outline select the file where information should be listed for.
Memory Spaces specify the memory type for data and function symboals.

The following table provides a few examples of symbol name masks.

Matches symbol names ...

* Matches any symbol. This is the default mask in the Symbol Browser.
*px ... that contain one digit in any position.
_as#* ... with an underline, followed by the letter a, followed by any character, followed by a

digit, ending with zero or more characters. For example, _ab1l or _alOvalue.
_*ABC ... with an underline, followed by zero or more characters, followed by ABC.

46 Chapter 4. Creating Applications

Thelocal menu in the Browse window opens with aright Call Graph - main
mouse Click and allows you to open the editor on the =280 %ain_)
sdlected reference. For functions you can also view the E0] Hor records
Cadll and Callers graph. The Definitions and References | -) _getkey
view gives you additional information with the following ?‘"@_%‘gzjﬁf—d's‘j'ay
symbols: = ¥ set interval
3 ----- 0 printt
e S (R ... §0] sscant
Description =-§)] set_time
D] Definition 0] printt
[R] Reference 1 ol sscanf
[read access -¥0] read_index
[w] write access -F0)] sscanf
[riw] read/write access
[&] address reference

Y ou may use the browser information within an editor

window. Seect theitem that you want to search for and Callers Graph - prinf
open the local menu with a right mouse click or use the =8 printf
. E| E] read_indeax
following keyboard shortcuts: L&) main
E] set_interval
Shortcut Description Egtn;:r;

F12 Goto Definition; place cursor to the symbol definition
Shift+F12 Goto Reference; place cursor to a symbol reference
Ctrl+Num+ Goto Next Reference or Definition

Ctrl+Num— Goto Previous Reference or Definition

Tools Menu

Viathe Tools menu, you run external programs. You may add custom programs
to the Tools menu with the dialog Tools — Customize Tools Menu.... With this
dialog you configure the parameters of the user applications.

Using a key sequence in the Parameters Line you may pass arguments from the
uVision2 project manager to these user programs. A key sequenceis a
combination of aK ey Code and a File Code. Theavailable Key Codes and File
Codes arelisted in the tables below:

Key Code Specifies the path selected with the File Code

$ folder name of the file specified in the file code (C:\MYPROJECT)
filename with complete path specification (C:\MYPROJECT\PROJECT1.UV2)
% filename with extension, but without path specification (PROJECT1.UV2)

@ filename without extension and path specification (PROJECT1)

Getting Started 47

Touse$, #, %, or @ in the user program command line, use 3, ##, %%, or @@
For example @@ gives asingle @ in the user program command line.

File Code Specifies the file name inserted in the user program line

F current in focus editor file. (MEASURE.C)

P name of the current project file (PROJECT1.UV2)

X pVision2 executable program file (C:\KEIL\UV2\UV2.EXE)

H application HEX file (PROJECT1.H86)

L linker output file, typical the executeable file for debugging (PROJECT1)

Running PC-Lint

PC-Lint from Gimpd Software checks the syntax and semantics of C programs
across all modules of your application. PC-Lint flags possible bugs and
inconsistencies and locates unclear, erroneous, or non-sense C code. PC-Lint may
considerably reduce the debugging effort of your target application.

A

You need to install PC- C‘“"‘ Opiicrs
. PC-Lint Include Directories] XI 1+ ‘I

Llnton your PC a'nd Co el CThRA MC :

Sp&lfy various Chhyincludesy,

parameters with the

dialog Tools— PC Lint
Options. Theexample
shows atypical PC-Lint
configuration. To get
correct output in the
Build page, you need to LitEremimble [C\UNT e

use the configuration file Configurstion File: [T CT561EIN Corket Gt
that is located in the ,TI
folder KEIL\C166\BIN.

Lol

Cancel |

After the setting the PC-Lint options, you may Lint your source code. Tools—
Lint ... runs PC-Lint on the current in focus editor file. Tools— Lint All C

Sour ce Filesruns PC-Lint across all C source files of your project. The PC-Lint
messages are redirected to the Build — Output Window. A doubleclick onaLint
message line locates the editor to the source file position.

ZRunning PC-Lint... -~
dpc-1int for C/C++ (NT) Ver. 7.50k., Copyright Gimpel Software 1985-1998
SMecommand . (77.22): Warning 524: Loss of precision (assignment) (float to unsigned char)
NMcommand.c(77.22): Info 732: Loss of sign (assignment) (float to unsigned char)
NMcommand.c(78.44): Warning 524: Loss of precision (assignment) (float to unsigned int)
SMecommand . .c(78.44): Info 732: Loss of sign (assignment) (float to unsigned int)
-MMeasure.c(141.24): Info 737: Loss of sign in promotion from int to unsigned int
-“Measure.c(141,24): Info 713: Loss of precision (assignment) (unsigned int to int)
NMeasure.c(142.26): Info 737: Loss of sign in promotion from int to unsigned int
“Measure.c(142.26): Info 713: Loss of precision (assigonment) (unsigned int to int) -
bof

[T ¥ Buitd A Command_A_Findin Files /]| 4]

48 Chapter 4. Creating Applications

To get correct results in the Build — Output Window, PC-Lint needs the
following option lines in the configuration file:

-hsb_3 /1 3 lines output, colom bel ow
-format="*** LINT: %% (%) %% %: % /1 Change nessage output format
-wi dt h(0, 10) /1 Don't break |ines

The configuration file C:\K EIL\C166\BIN\CO-K C166.LNT contains already these
lines. It isstrongly recommended to use this configuration file, sinceit contains
also other PC-Lint options required for the Keil C166 compiler.

Writing Optimum Code

Many configuration parameters have influence on the code quality of your 166
application. Although, for most applications the default tool setting generates very
good code, you should be aware of the parameters which improve code density and
execution speed. The code optimization techniques are described in this section.

Memory Models and Memory Types

The most significant impact on code size and execution speed has the memory
modd. The memory mode influences variable access and CALL/RET
instructions. Refer to “Memory Modes’ on page 23 for detailed information.
The following table allows you to determine the memory model that best fits your
application. The memory model is selected in the Options for Target — Target

dialog page.

Total Code Size Data and Constant Size of the Application
of the Application less then 64KB more than 64KB
less than 64 KB SMALL HCOMPACT
more than 64KB MEDIUM HLARGE

Thistableisvalid for devices with extended instruction set (i.e. C161, C163, C164, C165, C167,
ST10-272, ST10-262) and SEGMENTED CPU mode. Thisistypical for all new applications.

Tips for SMALL and MEDIUM Memory Model

Even if your application exceeds the 64KB data/constant limit you may still use
the SMALL or MEDIUM memory modd. To bypass the 64KB variable
limitation, you may direct some variables to huge or xhuge memory. However,
the address of such variables cannot be passed to C run-time library functions, like
printf or scanf. The program will not work since C run-time library functions
cannot access huge or xhuge variables in this memory models. The

Getting Started 49

HCOMPACT and HLARGE memory modd does not have this limitation and
should be used instead. Ancther alternativeis, that you copy variables to near
memory and pass the address of the near variable to the C library function.

Tips for HCOMPACT and HLARGE Memory Model

You may apply near memory type to optimize variable accesses in this memory
mode. This generates 16-bit addressing instead of 32-bit addressing. Frequently
used variables should be located in the 166 on-chip memory with the idata
memory type. The C166 compiler HOL D directive may direct variables below a
specified size automatically to optional memory areas. For more information refer
to “Data Threshold” on page 50.

NOTE

The far memory typeis provided for compatibility to the 8xC166 CPU and
support of existing C166 code. For new designs you should use huge instead of
far, since this memory type has an object size limit of 64KB and generates better
code for near pointer cast operations. Thisiswhy you should use HCOMPACT
instead of COMPACT or HLARGE instead of LARGE when you select a
memory model.

Bit-field Structures

C166 accesses hit-fidd struct members with size 1 bit directly with CPU BIT
instructions if the struct is located in the bdata space. You can also enter a Data
Threshold inthe Optionsfor Target — Target dialog to locate such bit-field
structures automatically to the bdata space. Refer also to “Data Threshold” later
inthis section. The following shows and example:

struct test { /'l this structure contains sone
i nt bit0: 1; /1 fields with size 1 bit
i nt bitl: 1;
i nt bit2: 1;
i nt val uel: 4;
9;

i nt val ue2

bé
struct test bdata t; /'l locate to bit-addressabl e space
void nmain (void) {

t.bit0 = 1; /'l generates BSET instruction
if (t.bitl) t.bit2 =t.bitO; /'l uses JB and BMOV instructions

50 Chapter 4. Creating Applications

Data Threshold

In the Optionsfor Target — Target dialog you may enter a Data Threshold to
specify the default memory type for small objects. This entry generates directly
the C166 HOLD directive. If the LARGE, HLARGE or COMPACT,
HCOMPACT memory modd is used together with the default near, 6 all variable
definitions without explicit memory type which occupied not more then 6 bytes are
placeinthe near area. Objects that require more then 6 Bytes are located in the
far or huge area.

Examples:

Memary Model: IHCompact 'huge' data, 'near' funcs j Locat$ Va”abl& Wlth gze < 10 BytS
Operating System: [Hone =] tosdataspace. Thisistypically the
XRAM spacein a 166 device. Other
variables without explicit memory
space are in the huge space.

Data Threshold: ISdﬁtﬁw

Memary Madal: [HLarge: huge'dafs, fer ancs =] Locatesvariables with size < 2 Bytesto
Operating System: [Hone = idata, bit-fidd structs with single bit
members to bdata and variables with
size< 6 Bytesto near. Other variables
without memory type are in huge.

Data Threshold: Inear B, icata 2 bdata @

NOTE

The C166 HOLD directive should be identical for all modules in an application.
A problem may arise when a module with an extern variable definition is
translated with a different data threshold setting than the module defining this
variable. Inthis case, the C166 compiler might have different memory type
settings for thisvariable. When you create libraries with global variables or
accesses to extern application variables, you should use the same data threshold
setting for the application using this library. As an alternative, you may specify
explicit memory types.

Global Register Optimization

The Keil 166 tools provide support for application wide register optimization
which is enabled in the Options for Target — C166 dialog with Global Register
Coloring. With the application wide register optimization, the C166 compiler
knows the registers used by external functions. Registers that are not altered in
external functions can be used to hold register variables. The code generated by
the C compiler needs less data and code space and executes faster. To improve

Getting Started 51

the register allocation, the pVision2 build process makes automatically iterative
re-trandations of C sourcefiles.

In the following example the function funcl calls the external function func2.
func2 is using not all the CPU registers. Therefore funcl can use some CPU
register without saving it. Dueto the global register optimization, the C166
compiler is aware of this situation and can take advantage of it.

52

Chapter 4. Creating Applications

With Global Register Optimization

char *funcl (void) {

int a,b, c;
char *s;
b =c =0;
MOV R1, #0
;---- Variable 'c¢' assigned to 'Rl
MOV R2, #0
;---- Variable 'b' assigned to 'R
for (a =0; a < 100; a++) {

MOV R12, #0
;---- Variable 'a' assigned to 'R12’
?2C0004:

val = c;
MoV val , Rl

return (s);
MoV

R4, R6
MoV R5, R7
RET
}
void funcO (void) {
int j;
for (j =0; j <100; j++) {
MoV R3, #0
;---- Variable 'j' assigned to 'R3'
?00010:
funcl ();
CALL funcl
}
CWPl 1 R3, #099
JMPR cc_SLT, 200010
}
RET

c += (b + 1);
MOV R4, R2
ADD R4, #1
ADD R1, R4

s = func2 ();
CALL func2
MOV R6, R4
MOV R7, R5
;---- Variable 's' assigned to ' R6/R7"

b = strlen (s);
MOV R9, RS
MOV R8, R4
CALL strlen
MOV R2, R4

}
CWI1l R12, #063H
JMPR cc_SLT, 2C0004

char *funcl (void) {

int a, b, c;
char *s;
PUSH R13
PUSH R14
PUSH R15
SuB RO, #4
b =c=0;
MOV R14, #0
;---- Variable 'c¢' assigned to 'R14'
MOV R15, #0
;---- Variable 'b' assigned to 'R15'
for (a =0; a < 100; a++) {
MOV R13, #0
;---- Variable 'a' assigned to 'R13'
?2C0004:
c += (b + 1);
MOV R4, R15
ADD R4, #1
ADD R14, R4
s = func2 ();
CALL func2
MOV [RO], R4 ;s
MOV [RO+#02H] , R . S+2
b = strlen (s);
MOV R9, [RO+#02H] . S+2
MOV R8, [RO] ;s
CALL strlen
MOV R15, R4
CWI1 R13, #063H
JMPR cc_SLT, 2C0004
val = c;
MoV val , R14
return (s);
MOV R5, [RO+#02H] . S+2
MOV R4, [RO] ;s
RET
}
void funcO (void) {
int j;
PUSH R13
for (j =0; j <100; j++) {
MOV R13, #0
;---- Variable 'j' assigned to 'R3
?C0010:
funcl ();
CALL funcl
}
CWl 1 R1L3, #099
JVPR cc_SLT, 2C0010
}
POP R13
RET

Without Global Register Optimization

Code Size: 60 Bytes Code Size: 86 Bytes

Getting Started 53

Other C166 Compiler Directives

There are several other C166 directives that improve the code quality. These
directives are enabled in the Options — C166 dialog page. You can transate the C
modules in an application with different compiler settings. Y ou may check the
code quality of different compiler settings in the listing file.

Options for Target 'HLarge Model'

Target | Output I Listing C166 |A166 | L166 Lucatel L166 MISDI Debug |

— Preprocessor Symbols

i IChecK NoExtRiarm, X1=1+5

Undefine: I

— Code Optimization 5
Warnings: [\Warninglewel 2 j
Lewvel IB: Constant propagation j
. - I™ Keep “Wariahles in Order
Emphasis IFavor execution speead j B T e s g
™ Glohal Register Colaring I Zave DFP an Interrupt Entry

™ Use Static Memory for Non-register Automatics I Double-precisian Flaating-point

™ Sewe Temporary Yariahles to User Stack

¥ Alias Checking on Pointer Accesses

Iisc IMODWE?
Controls
Campiler [MOD167 DEFINE (Check NoExtRam *1="1+5") =)
Control

String =

oK I Cancel | Defaults |

The following table describes the options of the C166 dialog page:

Dialog Item Description

Define outputs the C166 DEFINE directive to enter preprocessor symbols.

Undefine is only available in the Group and File Options dialog and allows you to
remove DEFINE symbols that are specified at the higher target or group level.

Code Optimization specifies C166 OPTIMIZE level. Typical you will not alter the default. With the

Level highest level “7: Common Tail Merging” the compiler analyzes the code and

tries to locate common heads and tails. If the compiler detects common code
sequences, it will replace one code sequence by a jump instruction to the other
equivalent code sequence. While analyzing the code, the compiler also tries to
replace sequences with cheaper instructions. Since the compiler inserts JIMP
instructions, the execution speed of the optimized code might be slower.
Typical this level is interesting to optimize the code density.

Code Optimization You can optimize for execution speed or code size. With “Favor Code Size”,

Emphasis the C166 compiler inserts for some C operations (like long shift) loops instead
of a faster replacement code. Also some intrinsic sequences (like struct copy)
are replace by a library call.

Global Register enables the “Global Register Optimization”. Refer to page 50 for details.
Coloring

54 Chapter 4. Creating Applications

Dialog Item Description

Use Static Memory for instructs C166 to use static memory locations for function automatics (not

Non-register parameters) which cannot be allocated in CPU registers. The code generated

Automatics is not longer reentrant, but code size and execution speed can be improved,
since the CPU can access static variables faster.

Alias Checking on when this option is disabled, C166 ignores pointer write operations during the

Pointer Accesses optimization phase. If a CPU register holds a variable it gets reused, even
when a pointer write could modify that variable.

Keep Variables in tells the C166 compiler to order the variables in memory according their

Order definition in the C source file. This option does not influence code quality.

Treat ‘char’ as instructs C166 to treat all variables declared with plain char as unsigned char

‘unsigned char’ variables. This option does not influence code quality.

Save DPP on Interrupt instructs C166 not to save DPP registers on interrupt entries. This directive

Entry should not be used for the 8xC166 CPU and when you are sure that your
assembler code does not alter the DPP registers in any way. The C run-time
libraries and the RTX166 operating system never modifies these registers when
you are generating code with extended instruction set (MOD167 directive used),
this is typical for all new applications.

Double-Precision When this option is disabled, C166 uses single precision floating point

Floating-Point arithmetic even if the double keyword is used the C source file.

Save Temporary directs the C compiler to save temporary results and saved-by-callee variables

Variables to User to the User Stack. The default setting saves temporary results to the System

Stack Stack; this is always fast on-chip RAM it is faster, but the size is limited.

Misc Controls allows you to enter special C166 directives. You may need such options when
you are using very new 166/ST10 devices with chip bugs, to enter compiler
FIXxxx directives.

Compiler Control displays the C166 compiler invocation string. Allows you can verify the compiler

String options currently for your source files.

Data Types

The 166/ST10 CPU is a 16-bit microcontroller. Operations that use 16-bit types
(likeint and unsigned int) are more efficient than operations that use char or long
types. For thisreason, it istypically better to use theint or unsigned int data type
for all automatic and parameter variables in your application instead of char or
unsigned char. Thisisexemplified in following code example:

Program with ‘int’ data type Program with ‘char’ data type
char array[100]; char array[100];
char test (int i) { char test (char i) {
int k; char k;
for (k = 0; k < 10; k++) { for (k = 0; k < 10; k++) {
array[k] = 0; array[k] = 0;
return (array[1]); return (array[i]);

Getting Started 55

Generated Code: 18 Bytes Generated Code: 28 Bytes

- Variable 'i' assigned to 'R8' ;---- Variable 'i' assigned to 'R8'
MoV R6, #00H MOVB RL6, #00H

- Variable 'k' assigned to 'R6' ;---- Variable 'k' assigned to 'RL6'
MOVB RL5, #00H MOVB RL5, #00H

?00004: ?00004:

MOVB [R6+#array], RLS MOVBS R4, RL6
CWlI1l R6, #09H MOVB [Ra+#array], RLS
JMPR cc_SLT, ?7C0004 ADDB RL6, #01H

CVPB RL6, #0AH
JWPR cc_SLT, 200004

MOVB RL4, [R8+#array] MoV R4, R8
RET MOVBS R4, RL4
RET

Applications without external RAM Devices

For single-chip applications or hardware with no external RAM devices the User
Stack and the System Stack size needs to be reduced in the CPU startup file. The
following values in the startup files are good choices when only on-chip RAM is
availablein a system. Refer to “ Configuring the Startup Code’ on page 153 for
more information.

$SET (STK_SI ZE = 2) ; for 64 words system stack size
USTSZ EQU 80H ; for 128 bytes user stack size.

The C166 directive USERST ACK DPP3 changes the assumption made by the
C166 compiler regarding the access of the User Stack area. The default User
Stack is allocated in the NDATA memory class and accessed with DPP2. The
USERSTACK DPP3 should be applied when DPPO, DPP1 and DPP2 are used to
access the NCONST class. You enter this directive under Misc Controlsin the
Optionsfor Target — C166 dialog. If USERSTACKDPP3 isused, the
?C_USERSTACK section definition must be modified in the STARTUP.A66 or
START167.A66 file as shown below:

?C_USERSTACK ~ SECTION DATA PUBLIC ' | DATA'
or ?C_USERSTACK ~ SECTION DATA PUBLI C ' SDATA'
Also you need to change the line:

MV RO, #DPP2: ?C_USERSTKTOP
to MV RO, #DPP2: 2C_USERSTKTOP

56

Chapter 4. Creating Applications

Tips and Tricks

The following section discusses advanced techniques you may use with the
uVision2 project manager. You will not need the following features very often,
but readers of this section get a better feding for the pVision2 capabilities.

Import Project Files from pVision Version 1
Y ou can import project files from puVisionl with the following procedure;

1. Createanew pVision2 project file and sdect a CPU from the device database
as described on page 36. It isimportant to create the new pVision2 project file
in the existing uVisionl project folder.

2. Sdect theold pVisionl project file that exists in the project folder in the dialog
Project — Import pVisionl Project. This menu option isonly available, if the
filelist of the new pVision2 project fileis empty.

3. This command imports the old uVisionl linker settings into the L166. But, we
recommend that you are using the pVision2 Optionsfor Target — Target
dialog to define the memory structure of your target hardware. Once you have
done that, you should enable Use Memory Layout from Target Dialog in the
Optionsfor Target — L 166 L ocate dialog and remove the settings for User
Classes and User Sectionsin this dialog.

4. Check carefully if all settings are copied correctly to the new pVision2 project
file.

5. You may now create file groups in the new pVision2 project as described
under “ Project Targets and File Groups’ on page 42. Then you can Drag &
Drop filesinto the new file groups.

NOTE

It is not possible to make a 100% conversion from pVisionl project files since
uVision2 differsin may aspects fromthe previous version. After you have
imported your pVisionl check carefully if the tool settings are converted correct.
Some pVisionl project settings, for example user tranglator, library module lists
and special compiler and linker controls like the C166 PECDEF and L166
OBJECTCONTROLS directive are not converted to the uVision2 project. Also
the dScope Debugger settings cannot be copied to the pVision2 project file.

Getting Started 57

Start External Tools after the Build Process

The Optionsfor Target — Output dialog allows to enter up to two users
programs that are started after a successful build process. Using a key sequence
you may pass arguments from the pVision2 project manager to these user
programs. A key sequenceis a combination of a Key Code and a File Code. The
available K ey Codes and File Codes are listed in the tables bel ow:

Key Code Specifies the path selected with the File Code

$ folder name of the file specified in the file code (C:\MYPROJECT)

filename with complete path specification (C:\MYPROJECT\PROJECT1.UV2)
% filename with extension, but without path specification (PROJECT1.UV2)

@ filename without extension and path specification (PROJECT1)

Touse$, #, %, or @ in the user program command line, use 3, ##, %%, or @@
For example @@ gives asingle @ in the user program command line.

File Code Specifies the file name inserted in the user program line

P name of the current project file (PROJECT1.UV2)

X pVision2 executable program file (C:\KEIL\UV2\UV2.EXE)

H application HEX file (PROJECT1.H86)

L linker output file, typical the executeable file for debugging (PROJECT1)

Options for Target 'HLarge Model'
Target Output | Listing | C166 | A166 | L188 Locate | L1686 Misc| Debug |

| Select Folder for Ohjects I Name of Executable: IProjecﬂ

¥ Create Executable: \Project]

W Debug Information

W Creale HEXFile HEXFomat [HE<-306 (H167) 7| s |D><D End: IDxFFFF

FLASH Fil Byte: [0FF offset |

[" Creste Library: \Project! LIB

—After Make

W Beep When Complete

¥ Run User Program #1: IC YUtilities\Programmer.exe -d271001 #H Browse |

W Run User Program #2: IC yDebughEmulatorexe "L -p"$p" Browse

oK Cancel Defaults

58

Chapter 4. Creating Applications

In the example above the User Program #1 is called with the Hex Output file and
the full path specificationi.e. C:\MYPROJECT\PROJECT1.H86. The User
program #2 will get only the name of the linker output file PROJECT1 and as a
parameter -p the path specification to the project C:\MYPROJECT. Y ou should
enclose the key sequence with quotes (*") if you use folder names with special
characters, i.e. space, ~, #.

Specify a Separate Folder for Listing and Object Files
You can direct the output files of the tools to different folders:

¢ TheOptionsfor Target — Output dialog lets you Select a Folder for
Objects. When you use a separate folder for the object files of each project
target, uVision2 has still valid object files of the previous build process. Even
when you change your project target, a Build Target command will just re-
translate the modified files.

¢+ TheOptionsfor Target — Listing dialog provides the same functionality for
all listing files with the Select Folder for List Files button.

Use a CPU that is not in the pVision2 Device Database

The pVision2 device database contains all 166 / ST 10 standard products.
However, there are some custom devices and there will be future devices which are
currently not part of this database. 1f you need to work with an unlisted CPU you
have two alternatives:

¢+ Sdect adevicelisted under the rubric Generic. The C166 (all Variants)
device supports all CPU’s with no extended instruction set. The C167 (all
Variants) is used for devices with extended instruction set. All new devices
are based on the extended instruction set. Therefore most likely you will need
to sdect thisdevice. Specify the on-chip memory as External Memory in the
Optionsfor Target — Target dialog.

¢ You may enter a new CPU into the uVision2 device database. Open the dialog
File — Device Database and select a CPU that comes close to the device you
want to use and modify the parameters. The CPU setting in the Options box
defines the basic the tool settings. The parameters are described in the
following table.

Getting Started 59

Parameter Specifies ...

IRAM (range) Address location of the on-chip IRAM.
XRAM (range) Address location of the on-chip XRAM.

IROM (range) Address location of the on-chip (flash) ROM. The start address must be O; the
part is split automatically into two sections, if the size is more than 32KB. The
range specifies the physical ROM size.

ICAN (range) Address location of the on-chip CAN module.
CLOCK (val) Default CPU clock used when you select the device.
MOD167 Use the extended instruction set.

Other Option variables specify CPU data books and pVision2 Debugging DLLs.
Leave this variables unchanged when adding a new device to the database.

Create a Library File

Sdect Create Library inthe dialog Optionsfor Target — Output. pVision2 will
call the LIB166 Library Manager instead of the L166 Linker/Locater. Sincethe
codein the Library will be not linked and located, the entries in the L 166 L ocate
and L 166 Misc options page areignored. Also the CPU and memory settingsin
the Target page are not relevant. Select a CPU listed under the rubric Genericin
the device database, if you plan to use your code on different 166/ST 10 directives.
Read the section “ Data Threshold” on page 50 and check if you need to enter a
Target — Data Threshold valuein the options dialog.

The directive NOFIXDPP should be entered under Options— C166 — Misc, if the
library is designed for atarget application with one of the following
configurations:

¢ Morethan 16KB ROM or 16KB ROM are set for Target — Near Memory.
In this case the L166 DPPUSE directive will be applied. This directive
requires that the C166 compiler made no default assumptions for the DPP
registers.

¢ TheUser Stack is set to the memory class SDATA or IDATA as described
under “ Applications without external RAM Devices’ on page 55. You may
use the C166 directive USERSTACK DPP3 instead of NOFI XDPP, but
NOFIXDPP is more generic since no DPP register assumptions are made.

60 Chapter 4. Creating Applications

Copy Tool Settings to a New Target

Sdect Copy all Settings from Current Target when you add a new target in the
Project — Targets, Groups, Files... dialog. Copy tool settings from an existing
target to the current target in following way:

1. Use Remove Target to deete the current target.

2. Sdect the target with the tool settings you want to copy with Set as Current
Target.

3. Add the again removed target with Copy all Settings from Current Tar get
enabled.

Locate Sections to Absolute Memory Locations

Sometimes, it is required to locate sections to specific memory addresses. In the
following example, the structure called al ar m cont r ol should be located at
address 0x128000. This structureis defined in a source file named ALMCTRL.C
and this module contains only the declaration for this structure.

struct alarmst {
unsi gned int al arm nunber ;
unsi gned char enabl e fl ag;
unsi gned int tinme_del ay;
unsi gned char st at us;

b

#pragma NO NI T /'l disable zero initialization for alarmcontrol
struct alarm st huge al arm control ;

The C166 compiler generates an object filefor ALMCTRL.C and includes a section
for variables in the huge memory area. Thevariableal arm control isthe
located in the section ?2HD?ALMCTRL. pVision2 allows you to specify the base
address of any section under Optionsfor Target — L 166 Locate — Users
Sections.

Getting Started

61

Options for Target 'C167CR Board'

Target I Cutput | Listing | C1BB IA'\EE

L188 Locate | 1166 Misc| Debug |

v Use Memory Layout from Target Dialog C166 Yariable Initialization Takles |l000000 - D<O0EFFF
—DPP Usag
| BPRUEE nefsta IdppE j I nconst IdppW j I
Target |CLASSES (ICODE (Ox0-0xEFFF). FCODE (0x0-0<EFFF), =
Classges FCOMST (0x0-0xEFFF). HCOMNST (0x0-0xEFFF).
HCOMST (0x0-0xEFFF), NCONST (0x4000-0x7FFF), =l
User =
Classes
E
Usar THDTALMCTRLYHDATA (0x128000) ;l
Sections LI
Linker [XDATA (0x10000-0x3FFFF), XDATAD {1x10000-0x3FFFF)) B
antrol CIMNITTAB (0x0-0xEFFF) SECTIONS (THD?PALMCTRLSHDATA (01 280007) j
tring -

OK I Cancel

| Defaults |

In this example L 166 will locate the section named ?HD?ALMCTRL of the class
HDATAO at address 0x128000 in the physical memory.

User Classes

User classes are useful when you need to locate many variables from different
source modules to special memory areas. In the following example we have a non-
volatile RAM starting at address 0x100000. You can use the C166 directive
RENAMECLASS to rename the standard C166 HDATA memory class to
NVRAM for several modules. With #pragma NO NI T the variable zero
initialization is disabled. pVision2 allows you to specify the base address of any
section under Optionsfor Target — L 166 Locate — Users Classes.

Source Module 1;
#pragma RENAMECLASS (HDATA=NVRAM)

#pragma NO NI T
int huge val uel;
static int huge val ue2;

Source Module 2;
#pragma RENAMECLASS (HDATA=NVRAM)

#pragrm NO NI T
static float huge val ue3;
long huge val ue4;

62 Chapter 4. Creating Applications

Options for Target 'C167CR Board'
Target | Output I Listing | C1EG I AlBE L166 Locate |L'H36 MISDI Debug |
¥ Use Memory Layout from Target Dialog C166 Variahle Initialization Tahbles |Dx<000000 - DO0EFEE
—DPP Usage
| BPEUEE nelata IdppZ j I nconst Idpp] j I
Target |CLAIIES (CODE (0x0-0<EFFF), FCODE (0x0-0<EFFF), 3
The Sge - [FCONST (0x0-0xEFFF), HCONST (Dx0-0xEFFF),
PCOMST (OxD-0xEFFF), NCONST (0x4000-0x7FFF), =l
User [NVRAM (0x100000-0x107FFF) =
Classes
[
User ;I
Sections ﬂ
Linker beDATA, (0x1 0000-0x3FFFFL ¥DATAL (D] 0000-0x3FFFF). B
Contral INyRARM (0x1 00000-0x1 07FFF)
String CINITTAB (0x0-0xEFFF) j

oK I Cancel | Defaults |

In this example L 166 will locate the user class section named NVRAM in the
physical memory address range 0x100000 - Ox107FFF.

File and Group Specific Options — Properties Dialog

uVision2 allows you to set file and group specific options via the local menu in the
Project Window — Files page as follows. sdect afile or group, click with the
right mouse key and choose Optionsfor Thenyou can review information or
set special options for theitem selected. The dialog pages have tri-state contrals.

If asdection isgray or contains <default> the setting from the higher group or
target levd is active. The following table describes the options of the Praoperties

dialog page:
Dialog Item Description
Path, Type, Size Outputs information about the file selected.
Last Change

Include in Target Build Disable this option to exclude the group or source file in this target. If this
option is not set, pVision2 will not translate and not link the selected item into
the current targets. This is useful for configuration files, when you are using
the project file for several different hardware systems.

Always Build Enable this option to re-translate a source module with every build process,
regardless of maodifications in the source file. This is useful when a file
contains _ DATE___and __ TIME__ macros that are used to stored version
information in the application program.

Getting Started 63

Dialog Item Description

Generate Assembler Instructs the C166 compiler to generate an assembler source file from this C
SRC File module. Typical this option is used when the C source file contains #pragma
asm / endasm sections.

Assemble SRC File Use this option together with the Generate Assembler SRC File to translate
the assembler source code generated by C166 into an object file that can be
linked to the application.

Link Publics Only Instructs L166 to link only PUBLIC symbols from that module. Typical this
option when you want to use entry or variable addresses from a different
application. It refers in the most cases to an absolute object file which may be
part of the project.

Stop on Exit Code Specify an exit code when the build process should be stop on translator
messages. By default, uVision2 translates all files in a build process regardless
of error or warning messages.

Select Modules to Allows you to always include specific modules from a Library. Refer to “Include
Always Include Always specific Library Modules” on page 64 for more information.
Custom Arguments This line is required if your project contains files that need a different translator.

Refer to “Use a Custom Translator” on page 64 for more information.

Options for File 'file1.c'

Properties | C166 |

Fath: IH \Projectlfilel.c

Type: IC source file
F Inclucle in Target Build

Size: |114 Bytes

- W Always Build
last change: IFrI Jan 22 11:27:47 1959

¥ Generate Assembler SRCFile

7 Link Fublics Only

Stop on Exit Code: | Translator Warnings (Exit Code »=1) j

Select Modules
0 Ahways
Include:

Custam Arguments:

oK I Cancel | Defaults |

In this example we have specified for FILE1L.C that the build processis stopped
when there are transglator warnings and that thisfileis translated with each build
process regardless of modifications.

Translate a C Module with asm/endasm Sections

If you use within your C source module assembler statements, the C166 compiler
requires you to generate an assembler source file and translate this assembl er

64

Chapter 4. Creating Applications

sourcefile. In this case enable the options Generate Assembler SRC File and
Assembler SRC Filein the properties dialog.

NOTE

Check if you can use build-in intrinsic functions to replace the assembler code.
In general it better to avoid assembler code sections since you C source code
will not be portable to other platforms. The C166 compiler offers you many
intrinsic functions that allow you to access all special peripherals. Typically it
is not required to insert assembler instructions into C source code.

Include Always specific Library Modules

The Properties dialog page allows you to specify library modules that should be
always included in a project. Thisis sometimes required when you generate a
boot portion of an application that should contain generic routines that are used
from program parts that are reloaded later. In this case add the library that
contains the desired object modules, open the Options — Properties dialog via the
local menu in the Project Window — Files and Select M odulesto Always
Include.

Just enable the modules you want
toinclude in any case into your
target application.

(| FLOATING_POINT_LIBRARY_32_BIT
1 SMALL_MODEL_LIBRARY
(1 ?C_FPGETOPN

Select Modules 2C_FPADD

7C_FPMUL

[

to Ahways
Include:

Use a Custom Translator

If you add a file with unknown file extension to a project, puVision2 requires you
to specify thefiletypefor thisfile. You may sdect Custom File and use a custom
tranglator to process thisfile. The custom translator is specified along with its
command line in the Custom Arguments line of the Options — Properties dialog.
Typical the custom translator will generate a source file from the customfile. You
need to add this source file to your project to and use A166 or C166 to generate an
object file that can be linked to your application.

Getting Started 65

Options for File 'custom.pre’

Propeties |

Path: ID ‘tempimeasure\custom.pre

Type: ICus(omﬂIe
F Inclucle in Target Build

Size: |4 Butes

- W {Always Buil
last change: IFrI Jan 2213:37:13 1959 -

¥ | Generate Aseemmbler SR e
W | sesemble SEC e

7 Link Fublics Only

Stop on Exit Code: |Mot specified j

Select Modules
0 Ahways
Include:

Custor Arguments: [C-iUtliies\PRETRANS. exe custum.pre x

oK I Cancel | Defaults |

In this example we have specified for CUSTOM .PRE that the program
C:\UTILITIES\IPRETRANS.EXE is used with the parameter —Xx to trandlate the file.
Note that we have used also the Always Build option to ensure that thefileis
translated with every build process.

File Extensions

Thedialog Project — File Extensions allows you to set the default file extension
for aproject. You can enter several extensions when you separate them with semi-
colon characters. Thefile extensions are project specific.

Different Compiler and Assembler Settings

Viathelocal menu in the Project Window — Files you may set different options
for afilegroup or even asinglefile. The dialog pages havetri-state controls; if an
option is grayed the setting from higher level istaken. You can specify with this
technique different tools for a complete file group and still change settings on a
single source file within this file group.

Version and Serial Number Information

Detailed tool chain information is listed when you open Help — About. Please use
this information whenever you send us problem reports.

Getting Started 67

Chapter 5. Testing Programs

uVision2 Debugger

You can use pVision2 Debugger to test the applications you develop using the
C166 compiler and A166 macro assembler. The puVision2 Debugger offers two
operating modes that are selected in the Options for Target — Debug dialog:

Use Simulator allows to configure the pVision2 Debugger as software-only
product that simulates most features of the 166 / ST10 microcontroller family
without actually having target hardware. Y ou can test and debug your embedded
application before the hardware isready. pVision2 simulates a wide variety of
peripherals including the serial port, external 1/O, and timers. The peripheral set is
selected when you sdect a CPU from the device database for your target.

Use Advance GDI drivers, like Keil Monitor 166 interface. With the Advanced
GDI interface you may connect the environment directly to emulators, OCDS
debugging systems or the Keil Monitor program. For more information refer to
“Chapter 11. Using Monitor-166" on page 155.

CPU Simulation

uVision2 simulates up to 16 Mbytes of memory from which areas can be mapped
for read, write, or code execution access. The pVision2 simulator traps and
reportsillegal memory accesses.

In addition to memory mapping, the simulator also provides support for the
integrated peripherals of the various 166 / ST10 derivatives. The on-chip
peripherals of the CPU you have sdected are configured from the Device
Database sdlection you have made when you create your project target. Refer to
page 36 for more information about selecting a device.

You may sdlect and display the on-chip peripheral components using the Debug
menu. You can also change the aspects of each peripheral using the controlsin
the dialog boxes.

@ Start Debugging

You start the debug mode of pVision2 with the Debug — Start/Stop Debug
Session command. Depending on the Options for Target — Debug configuration,

68

Chapter 5. Testing Programs

uVision2 will load the application program and run the startup code. For
information about the configuration of the pVision2 debugger refer to page 74.
uVision2 saves the editor screen layout and restores the screen layout of the last
debug session. If the program execution stops, pVision2 opens an editor window
with the source text or shows CPU instructions in the disassembly window. The
next executable statement is marked with a yellow arrow.

During debugging, most editor features are still available. For example, you can
use the find command or correct program errors. Program source text of your
application is shown in the same windows. The pVision2 debug mode differs
from the edit mode in the following aspects.

¢ The"Debug Menu and Debug Commands”’ described on page 17 are available.
The additional debug windows are discussed in the following.

¢ Theproject structure or tool parameters cannot be modified. All build
commands are disabled.

@ Disassembly Window

The Disassembly window lets you view your target program as mixed source and
assembly program or just assembly code. In addition, a trace history of previously
executed instructions can be displayed with Debug — View Trace Records. To
enable the trace history, set Debug — Enable/Disable Trace Recording.

{2 Disassembly M=l E3

1026: JHFP FAE main Al
-4 0000019E FAODZEZ233 JMPR main(0zx233E2) —

187: wold main [wvoid) { S% main e
=3 000233EZ2 76E20004 OR P3,#0:z0400

195: DP3 |= O=0400: <% SET PORT 3.10 DIRECTION CONTE
-2 000233E6 76E30004 OR DP3,#0x0400

150E ¢ DP3 &= O=F7FF: <% RESET PORT 3.11 DIREECTION COB
=1l 000233EA G6BE3FFF7 AND DP3,#0xF7FF

197: 30TIC = OxB0: <% ZET TRANSMIT INTERRUFT FLAG
000233EE E6BGS000 MOV S0TIC, #0=0080

195: SO0RIC = Ox00; ~% DELETE RECEIVE INTERRUPT FLAC
000233F2 E6B70000 MOV SO0RIC,#0=0000

199: S0BG = Ox40; <% ZET BAUDRATE TO 9600 BALUD
000233F6 E6S5A4000 MOV S0BG,#0=0040

200: 20C0M = OxB011; <% ZET SERIAL MODE

201: #endif

202:

203: <% getup the timer 0 interrupt =
000233FA E6DE1180 MOV S0COM, #028011

204: TOREL = PERIOD: <% gat reload value *-
000233FE EGZA3CFE MOV TOREL, #0xF&3C

ZN5: TN = PERTON: hd

4 v

If you sdlect the Disassembly Window as the active window all program step
commands work on CPU instruction leve rather than program sourcelines. You

Getting Started 69

can select atext line and set or modify code breakpoints using toolbar buttons or
the context menu commands.

Y ou may use the dialog Debug — Inline Assembly... to modify the CPU
instructions. That allows you to correct mistakes or to make temporary changes to
the target program you are debugging.

=c!T_,"| Breakpoints

uVision2 lets you define breakpoints in several different ways. You may already
set Execution Breaks during editing of your source text, even before the program
codeistrandated. Breakpoints can be defined and modified in the following ways:

¢ WiththeFile Toolbar buttons. Just select the code linein the Editor or
Disassembly window and click on the breakpoint buttons.

¢ With the breakpoint commands in the local menu. Thelocal menu opens with
aright mouse click on the code line in the Editor or Disassembly window.

¢« TheDebug - Breakpoaints... dialog lets you review, define and modify
breakpoint settings. This dialog allows you to define also access breakpoints
with different attributes. Refer to the examples below.

¢ Inthe Output Window — Command page you can use the Break Set,
BreakKill, BreakList, BreakEnable, and BreakDisable commands.

The Breakpoint dialog lets you view and modify breakpoints. You can quickly
disable or enable the breakpoints with a mouse click on the check box in the
Current Breakpointslist. A double click inthe Current Breakpaintslist allows
you to modify the selected break definition.

70 Chapter 5. Testing Programs

Breakpoints (2] x|
Current Breakpoints:

00: (E) 0x000240d0. "yMeasurei143'.

01: (E) 0x00024170. 'main’,

(1 02: (E) 0x00023fea,. "timerD’. cmd: "printf (}"Timer0 Interrrupt occurediiny™)"
vl 03: (E) 0x0002319e. 'save_measurements'. count=10,

] 04: (C) 'mdisplay == 1"

[05: (A readwrite 0x000210AA len=48),
W 06: (A write 0x0002300A len=2). 'sindex == 10°,

(Wl 07: (E) 0xD002432e. 'measure_display’. cmd: "MyStatus ()"

L« | i
Access

Expression: Isave_rec:ordﬂ 0] ¥ Read ¥ White

Count: I1 3: Size:
= B
R
Comrmand: I ¥ Objects

Biefine | EiIISelededl Kill Al |

'save record[10]",

X &8

Y ou define a breakpoint by entering an Expression in the Breakpoint dialog.
Depending on the expression one of the following breakpoint types is defined:

¢ When the expression is a code address, an Execution Break (E) is defined that
becomes active when the specified code address is reached. The code address
must refer to the first byte of a CPU instruction.

¢« When amemory Access (Read, Write or both) is selected an Access Break (A)
is defined that becomes active when the specified memory access occurs. You
can specify the size of the memory access window in bytes or object size of the
expression. Expressions for an Access Break must reduce to a memory
address and memory type. The operators (&, &&, <. <=.>,>=, == and!=)
can be used to compare the variable values before the Access Break halts
program execution or executes the Command.

¢+ When the expression cannot be reduced to an address a Conditional Break (C)
is defined that becomes active when the specified conditional expression
becomes true. The conditional expression is recalculated after each CPU
instruction, therefore the program execution speed may slow down
considerably.

When you specify a Command for a breakpoint, pVision2 executes the command
and resumes executing your target program. The command you specify here may
be a pVision2 debug or signal function. To halt program execution in a uVision2
function, set the _break_ system variable. For more information refer to “ System
Variables’ on page 85.

Getting Started 71

The Count value specifies the number of times the breakpoint expression is true
before the breakpoint is triggered.

Breakpoint Examples:

The following description explains the definitions in the Breakpoint dialog shown
above. The Current Breakpoints list summarizes the breakpoint type and the
physical address along with the Expression, Command and Count.

Expressi on: \ Measure\ 143

Execution Break (E) that halts when the target program reaches the code line 143
in the module MEASURE.

Expression: main

Execution Break (E) that halts when the target program reaches the main
function.

Expression: tiner0 Command: printf ("TimerO |Interrupt occurred\n")

Execution Break (E) that prints the text "TimerO Interrupt occurred" in the
Output Window — Command page when the target program reaches the timer 0
function. This breakpoint is disable in the above Breakpoint dialog.

Expressi on: save_neasurenents Count: 10

Execution Break (E) that halts when the target program reaches the function
save_measurements the 10" time.

Expression: ncommand == 1

Contional Break (C) that halts program execution when the expression
mcommand = = 1 becomes true. This breakpoint is disable in the above
Breakpoint dialog.

Expressi on: save_record[10] Access: Read Wite Size: 3 bjects

Access Break (A) that halts program execution when an read or write access
occursto save record[10] and the following 2 objects. Since save recordisa
structure with size 16 bytes this break defines an access region of 48 bytes.

Expressi on: sindex == 10 Access: Wite

Access Break (A) that halts program execution when the value 10 is written to the
variable sindex.

72 Chapter 5. Testing Programs

Expressi on: nmeasure_di spl ay Command: MyStatus ()

Execution Break (E) that executes the pVision2 debug function MyStatus when
the target program reaches the function measure_display. Thetarget program
execution resumes after the debug function MyStatus has been executed.

Target Program Execution
uVision2 lets execute your application program in several different ways:

¢ With the Debug Toolbar buttons and the “ Debug Menu and Debug
Commands” as described on page 17.

¢ Withthe Run till Cursor line command in thelocal menu. The local menu
opens with a right mouse click on the code line in the Editor or Disassembly
window.

¢ Inthe Output Window — Command page you can use the Go, Ostep, Pstep,
and Tstep commands.

@ Watch Window

The Watch window lets you view and modify program variables and lists the
current function call nesting. The contents of the Watch Window are
automatically updated whenever program execution stops. Y ou can enable View
— Periodic Window Update to update variable values while a target programis
running.

= Name [walue I
= sawe_recordfich] stuctmrec{..}
- time structclock { ..}

: 0x0C
023
000
00016

. startflag
- anter here>

[A[ATF TP, Cocals A atch #1 A Watch #2 }, Call Stack 7

The Locals page shows all local function variables of the current function. The
Watch pages display user-specify program variables. You add variables in three
different ways:

Getting Started 73

¢ Select the text <enter here> with a mouse click and wait a second. Another
mouse click enters edit mode that allows you to add variables. In the same way
you can modify variable values.

¢+ Inan editor window open the context menu with a right mouse click and use
Add to Watch Window. pVision2 automatically selects the variable name
under the cursor position, alternatively you may mark an expression before
using that command.

¢ Inthe Output Window — Command page you can use the WatchSet
command to enter variable names.

To remove a variable, click on the line and press the Delete key.

The current function call nesting is shown in the Call Stack page. Y ou can double
click on aline to show the invocation an editor window.

E CPU Registers

The CPU registers are displayed and Project Window — Regs page and can be
modified in the same way as variables in the Watch Window.

Memory Window

The Memory window displays the contents of the various memory areas. Up to
four different areas can bereview in the different pages. The context menu
allows you to sdect the output format.

x

j Address: |pt->buf
000z300C: 0000 0OOO0& 0301 0OOO QOO0 OQOO dooo oooa

[»

0002301C: 0000 0000 O07= Snss =n= == E 0ooo oooo
0002302C: FDEC 4004 OC : Soroon
0002303C: 8BCO S0F4 Unsigned Char
0002304C: 4472 00CA 35 Signed ¥ v Int

0002305C: 145C 81ED 1C - Long
0002306C: 3912 OREQD Fy Ascl T

0002307C: 4480 0o0ca 37 Float N B9C0 FAER
0002308C: 4455 00CA 35 Double b DF3D FDFC
Qo0z2309C: O0CE OhZ28 OHET oOoEgZ OO0Z OZE0 4004 0004 Ll

[A[AT 5 Hemory #1 £ Memory #2 4 Memary #2 5 Memory # 1

In the Address fidd of the Memory Window, you can enter any expression that
evaluates to a start address of the area you want to display. To changethe
memory contents, double click on avalue. This opens an edit box that allows you

74

Chapter 5. Testing Programs

to enter new memory values. To update the memory window while a target
program is running enable View — Periodic Window Update.

g’.ﬁf’i Toolbox

The Toolbox contains user-configurable buttons. Click on a Toolbox button to
execute the associated command. Toolbox buttons may be executed at any time,
even while running the test program.

Toolbox buttons are define the Output Window —
Command page with the DEFINE BUTTON Update Windows
command. The general syntax is: 1 Decimal Outout
>DEFI NE BUTTON "button_| abel", "command" 5 Hex Output
button_label isthe nameto display on the button 3 by Status Infi

in the Toolbox. y | Enalogh £V
command is the yVision2 command to execute 5 Stop Analogl

when the button is pressed.

The following examples show the define commands used to create the buttonsin
the Toolbox shown above:

>DEFI NE BUTTON "Deci mal Qutput", "radi x=0x0A"

>DEFI NE BUTTON "Hex Qutput”, "radi x=0x10"

>DEFI NE BUTTON "My Status Info", "MyStatus ()" /* call debug function */
>DEFI NE BUTTON " Anal 0og0..5V", "anal og0 ()" /* call signal function */

>DEFI NE BUTTON " Show R15", "printf (\"RL5=%94XH\\n\")"

NOTE

The printf command defined in the last button definition shown above introduces
nested strings. The double quote (") and backslash (\) characters of the format
string must be escaped with \ to avoid syntax errors.

You may remove a Toolbox button withthe KILL BUTTON command and the
button number. For example:

>Kill Button 5 /* Renpbve Show R15 button */

NOTE

The Update Windows button in the Toolbox is created automatically and cannot
be removed. The Update Windows button updates several debug windows
during program execution.

Getting Started 75

% Set Debug Options
Thedialog Optionsfor Target - Debug configures the pVision2 debugger.

Options for Target 'Small Model'
Target | Output | Listng | C166 | A166 | L16 Locate | L1686 Misc Debug |
& {lse Simulator Use IKeiI Monitor-166 Drivar j Settings |

I Load Application at Startup

Initialization File

7 Go il maing)

\measure.ini

Erowse... | I

¥ Load Application at Startup

Initialization File

™ Go till main()

Erowse.

Restore Debug Session Settings Restore Debug Session Setings

v Breskpoints W Toolbox ¥ Breakpoints W Toolbox

¥ Watchpoints & PA ¥ ‘Watchpoints

¥ tdemorny Display ™ Mermory Display
CPUDLL: Parameter: Driver DLL: Pararneter:
IS]EE.DLL | IS]EE.DLL |
Dialog DLL: Parameter: Dialog DLL: Farameter:
IDT B7.0LL |—p1 B7CR |DT E7.OLL |—p1 B7CR

oK I Cancel | Defaults |

The following table describes the options of the Debug dialog page:

Dialog Item Description

Use Simulator Select the pVision2 Simulator as Debug engine.

Use Keil Monitor-166 ~ Select the Advanced GDI driver to connect to your debug hardware. The Keil

Driver Monitor-166 Driver allows you to connect a target board with the Keil Monitor.
There are pVision2 emulator and OCDS drivers in preparation.
Settings Opens the configuration dialog of the selected Advanced GDI driver.

Other dialog options are available separately for the Simulator and Advanced GDI section.

Load Application at
Startup

Go till main ()
Initialization File

Enable this option to load your target application automatically when you start
the pVision2 debugger.

Start program execution till the main label when you start the debugger.
Process the specified file as command input when starting a debug session.
Breakpoints Restore breakpoint settings from the previous debug session.
Toolbox

Watchpoints & PA

Restore toolbox buttons from the previous debug session.

Restore Watchpoint and Performance Analyzer settings from the previous
debug session.

Memory Display Restore the memory display settings from the previous debug session.

76

Chapter 5. Testing Programs

Dialog Item Description

CPU DLL Configures the internal pVision2 debug DLLs. The settings are taken from the
Driver DLL device database. Please do not modify the DLL or DLL parameters.
Parameter

5 Serial Window

uVision2 provides two Serial Windows for serial input and output. Serial data
output from the simulated CPU is displayed in this window. Characters you type
in the Serial Window areinput to the simulated CPU.

= Serial #1 |- O] x|
+xxxexxxexxxxx REMOTE MEASUREMENT RECORDER using ClHb *exxxxxxxxxi
This program is a simple Measurement Recorder. It is based |
on the 800166 CPU and records the state of Port 2 and the |
voltage on the four analog inputs ANO through AN3J. |

|
|
|
+ command -+ syntax ----- + funetion -----------------—m +
| Read | B [n] | read <nr recorded measurements |
| Display | D | ITASCHMDDIB surement wvalues |
| Time | T hhimm:ss | Hex Mods |
| Interval | I mm:ss.ttt | = |
| Clear | C | Clear \Wind o ecords |
| Quit | g | oIt meosuremen e recording |
| Btart | 2 | start measurement recording |
- fom - o +
Command :
-
|41 4

This lets you simulate the CPU’s UART without the need for external hardware.
The serial output may be also assigned to a PC COM port using the ASSIGN
command in the Output Window — Command page.

Getting Started 77

The pVision2 Performance Analyzer displays the execution time recorded for
functions and address ranges you specify.

= Performance Analyzer IH[=] E3
0% 10 20 30 40 S0 60 70 80 90 100% —
| | . | | 1 . | | | |
<unspecified>: |
timer0d: W
measure_displayj | Reset PA
main: I [v Activate PA
\measure\937. \measure\103: | ngdate Times
clear_records:
getline: I
[
mintime: maxtime: avgtime: totaltime: % count
|u.nnnnun |n.13050? |n13n4?a |n.250955 | 6.5 | 2

The <unspecified> address range is automatically generated. It shows the amount
of time spent executing code that is not included in the specified functions or
address ranges.

Results display as bar graphs. Information such as invocation count, minimum
time, maximum time, and averagetimeis displayed for the selected function or
address range. Each of these statistics is described in the following table.

Label Description

min time The minimum time spent in the selected address range or function.

max time The maximum time spent in the selected address range or function.

avg time The average time spent in the selected address range or function.

total time The total time spent in the selected address range or function.

% The percent of the total time spent in the selected address range or function.
count The total number of times the selected address range or function was executed.

To setup the Performance Analyzer use the menu command Debug —
Performance Analyzer. You may enter the PA command in the command
window to setup ranges or print results.

‘29‘ Code Coverage

The pVision2 debugger provides a code coverage function that marks the code
that has been executed. In the debug window, lines of code that have been
executed are market green in the left column. Y ou can use this feature when you

78

Chapter 5. Testing Programs

test your embedded application to determine the sections of code that have not yet
been exercised.

Code Coverage 2l The Code Coverage dialog
Current Module: |SEIIEREES pr0V|des |nf0rmat|on and
statistics. Y ou can output

this information in the

odules/Functions | Execution percentage
command

~measure_display 100% of 43 instructions
- get_time 0% of 45 instructions

[

- set_intensal 0% of 87 instructions i
! vose Output Window
i save_measurements 100% of 24 instructions Command page us ng the
tirmerl 6% of 76 instructions
read_index 46% of 45 instructions COVERAGE Command

clear_records 100% of 11 instructions

i “ main 1% of 147 instructions
E| - Getline
L tling 74%. it 43 instrctinns]

Memory Map

The Memory Map dialog box lets you specify the memory areas your target
program uses for data storage and program execution. Y ou may also configure
the target program’s memory map using the M AP command.

When you load a target application, pVision2 automatically maps all address
ranges of your application. Typically it is not required to map additional address
ranges. You need to map only memory areas that are accessed without explicit
variable declarations, i.e. memory mapped 1/0O space.

The dialog opens via the menu Memary Map BB
Debug —_ M ernory M ap . Current Mapped Ranges:

0071 0x00000000 - 0x00000083 exec read wite -
002: 0x00000084 - 0x000007A1 execread
003: Dx000001A2 - 0xN0003FFF exac read write

As your targa program runs 004; 0x00004000 - 0x00004494 read write
7. ! 005: Dx00004495 - Dx00004435 Bxecrea_idwrlie
KVision2 uses the memory map to 007 01004520 DDDDEFFF svecroad e o
Ve-lfy that your prograr-n dOES nOt ONA- MO0 ANAN - (v(NATRANNT resd werite
. . il EElE e Panne
access invalid memory areas. For Lo |

— Map Range - Example: 0x40000, OxdFFFF

each memory range, you may
specify the access method: Read, o
Write, Execute, or a combination. I wite

I" Execute IEm Bange

Getting Started 79

View — Symbols Window

The Symbols Window displays public symboals, local symbols or line number
information defined in the currently loaded application program. CPU-specific
SFR symbols are also displayed.

Symbols [7]]
Mode: Current Module: kask:
IMcommand j I* Apply I

Address | Marme | Type I;

<MODULE> tcommand

000023118 set_intersal near function

00002309 set_time near function

0x0002302C measure_display near function

<FUNCTION?> measure_display

[RO+20] display struct mrec

R13 i uint

CFUMCTIONM> set_time

Fa buffer near painter

R5 args int

[RO+#0] time struct clock

<FUMCTION> set_intersal I

Fa buffer near painter

[RO+#4] second float =

[l Br) Y Pt

Y ou may sdect the symbol type and filter the information with the options in the
Symbol Window:

Options Description

Mode select PUBLIC, LOCALS or LINE. Public symbols have application-wide scope.
The scope of local symboals is limited to a module or function. Lines refer to the
line number information of the source text.

Current Module select the source module where information should be displayed.

Mask specify a mask that is used to match symbol names. The mask may consist of
alphanumeric characters plus mask characters:
matches a digit (0 — 9)
$ matches any character
* matches zero or more characters.

Apply applies the mask and displays the update symbol list.

The following table provides a few examples of masks for symbol name.

Matches symbol names ...

* Matches any symbol. This is the default mask in the Symbol Browser.
*px ... that contain one digit in any position.
_as#* ... with an underline, followed by the letter a, followed by any character, followed by a

digit, ending with zero or more characters. For example, _ab1 or _alOvalue.

80 Chapter 5. Testing Programs

Mask Matches symbol names ...

_*ABC ... with an underline, followed by zero or more characters, followed by ABC.

Debug Commands

You interact with the pVision2 debugger by entering commands from the
keyboard in the Command page of the Output Window. You can enter nearly all
debug commands. In thefollowing all available pVision2 debug commands are
listed in categories.

NOTE
Use the underlined characters in the command names to enter commands. For
example, the WATCHSET command must be entered as WS.

Memory Commands

The following memory commands let you display and alter memory contents.

Command Description

ASM Assembles in-line code.

DEFINE Defines typed symbols that you may use with pVision2 debug functions.
DISPLAY Display the contents of memaory.

ENTER Enters values into a specified memory area.

EVALUATE Evaluates an expression and outputs the results.

MAP Specifies access parameters for memory areas.

UNASSEMBLE Disassembles program memory.

WATCHSET Adds a watch variable to the Watch window.

Program Execution Commands

Program commands let you run code and step through your program one
instruction at atime.

Command Description

Esc Stops program execution.

GO Starts program execution.

PSTEP Steps over instructions but does not step into procedures or functions.
OSTEP Steps out of the current function.

TSTEP Steps over instructions and into functions.

Getting Started

81

Breakpoint Commands

uVision2 provides breakpoints you may use to conditionally halt the execution of
your target program. Breakpoints can be set on read operations, write operations
and execution operations.

Command Description

BREAKDISABLE Disables one or more breakpoints.

BREAKENABLE Enables one or more breakpoints.

BREAKKILL Removes one or more breakpoints from the breakpoint list.
BREAKLIST Lists the current breakpoints.

BREAKSET Adds a breakpoint expression to the list of breakpoints.

General Commands

The following general commands do not belong in any other particular command
group. They are included to make debugging easier and more convenient.

Command Description

ASSIGN Assigns input and output sources for the Serial window.

COVERAGE List code coverage statistics.

DEFINE BUTTON Creates a Toolbox button.

DIR Generates a directory of symbol names.

EXIT Exits the pVision2 debug mode.

INCLUDE Reads and executes the commands in a command file.

KILL Deletes pVision2 debug functions and Toolbox buttons.

LOAD Loads CPU drivers, object modules, and HEX files.

LOG Creates log files, queries log status, and closes log files for the Debug
window.

MODE Sets the baud rate, parity, and number of stop bits for PC COM ports.

PerformanceAnalyze Setup the performance analyzer or list PA information.

RESET Resets CPU, memory map assignments, Performance Analyzer or
predefined variables.

SAVE Saves a memory range in an Intel HEX386 file.

SCOPE Displays address assignments of modules and functions of a target program.

SET Sets the string value for predefined variable.

SETMODULE Assigns a source file to a module.

SIGNAL Displays signal function status and removes active signal functions.

SLOG Creates log files, queries log status, and closes log files for the Serial

window.

82

Chapter 5. Testing Programs

You can interactively display and change variables, registers, and memory
locations from the command window. For example, you can type the following
text commands at the command prompt:

MDH Display the MDH register.

R7 =12 Assign the value 12 to register R7.

time.hour Displays the member hour of the time structure.
time.hour++ Increments the member hour of the time structure.
index =0 Assigns the value 0 to index.

Expressions

Many debug commands accept numeric expressions as parameters. A numeric
expression is a number or a complex expressions that contains numbers, debug

objects, or operands.

Components of an Expression

An expression may consist of any of the following components.

Component Description
Bit Addresses Bit addresses reference bit-addressable data memory.
Constants Constants are fixed numeric values or character strings.

Line numbers reference code addresses of executable programs.
W hen you compile or assemble a program, the compiler and
assembler include line number information in the generated object

module.

Operators Operators include +, -, *, and /. Operators may be used to combine
subexpressions into a single expression. You may use all operators
that are available in the C programming language.

Program Variables (Symbols) Program variables are those variables in your target program. They
are often called symbols or symbolic names.

System Variables System variables alter or affect the way pVision2 operates.

Type Specifications Type specifications let you specify the data type of an expression or
subexpression.

Line Numbers

Constants

The pVision2 accepts decimal constants, HEX constants, octal constants, binary
constants, floating-point constants, character constants, and string constants.

Getting Started 83

Binary, Decimal, HEX, and Octal Constants

By default, numeric constants are decimal or base ten numbers. When you enter
10, thisis the number ten and not the HEX value 1on. The following table shows
the prefixes and suffixes that are required to enter constants in base 2 (binary),
base 8 (octal), base 10 (decimal), and base 16 (HEX).

Prefix Suffix Example
Binary: None Yory 11111111Y
Decimal: None T or none 1234T or 1234
Hexadecimal: 0x or 0X Horh 1234H or 0x1234
Octal: None Q,q,0,0ro 777q or 777Q or 7770

Following are a few points to note about numeric constants.

Numbers may be grouped with the dollar sign character (“$") to make them
easier toread. For example, 111181111y isthesameas11111111y.

HEX constants must begin prefixed with a leading zero when the first digit in
the constant is A-F.

By default, numeric constants are 16-bit values. They may be followed with
an L to make them long, 32-hit values. For example: ox1234L, 12341, 1255HL.

When a number is entered that is larger than the range of a 16-bit integer , the
number is promoted automatically to a 32-bit integer.

Floating-Point Constants
Floating-point constants are entered in one of the following formats.

number . number
number €] +- | number

number . number [e]+- | number |
For example, 4. 12, 0. 1e3, and 12. 12e-5. In contrast with the C programming

language, floating-point numbers must have a digit before the decimal point. For
example, . 12 isnot allowed. It must be entered aso. 12.

84

Chapter 5. Testing Programs

Character Constants

Therules of the C programming language for character constants apply to the
uVision2 debugger. For example, the following are all valid character constants.

‘a', '1', ‘\n", "\v', "\xOFE, '\015

Also escape sequences are supported as listed in the following table:

Sequence Description Sequence Description
\ Backslash character (“\”). \n Newline.
\" Double quote. \r Carriage return.
\' Single quote. \t Tab.
\a Alert, bell. \Onn Octal constant.
\b Backspace. \Xnnn HEX constant.
\f Form feed.

String Constants

Therules of the C programming language for string constants also apply to
uVision2. For example

"string\x007\n" "value of % = %4XH n"

Nested strings may be required in some cases. For example, double quotes for a
nested string must be escaped. For example:

"printf (\"hello world!/\n\")"

In contrast with the C programming language, successive strings are not
concatenated into a single string. For example, "stri ng1+* "string2" isnot
combined into a single string.

Getting Started 85

System Variables

System variables allow access to specific functions and may be used anywhere a
program variable or other expression is used. The following table lists the
available system variables, the data types, and their uses.

Variable Type Description
$ unsigned long represents the program counter. You may use $ to display and change
the program counter. For example,
$ = 0x4000

sets the program counter to address 0x4000.

break unsigned int lets you stop executing the target program. When you set _break_to a
non-zero value, pVision2 halts target program execution. You may use
this variable in user and signal functions to halt program execution.
Refer to “Chapter 6. uVision2 Debug Functions” on page 97 for more
information.

traps unsigned int when you set _traps_ to a non-zero value, pnVision2 display messages
for the 166 hardware traps: Undefined Opcode, Protected Instruction
Fault, lllegal Word Operand Access, lllegal Instruction Access, Stack
Underflow and Stack Overflow.

states unsigned long current value of the CPU instruction state counter; starts counting from
0 when your target program begins execution and increases for each
instruction that is executed.
NOTE: states is a read-only variable.

itrace unsigned int indicates whether or not trace recording is performed during target
program execution. When itrace is 0, no trace recording is performed.
When itrace has a non-zero value, trace information is recorded. Refer
to page 68 for more information.

radix unsigned int determines the base used for numeric values displayed. radix may be
10 or 16. The default setting is 16 for HEX output.

On-chip Peripheral Symbols

uVision2 automatically defines a number of symbols depending on the CPU you
have sdected for your project. There are two types of symbols that are defined:
special function registers (SFRs) and CPU pin registers (VTREGS).

Special Function Registers (SFRs)

uVision2 supports all special function registers of the microcontroller you have
sdlected. Special function registers have an associated address and may be used in
expressions.

86 Chapter 5. Testing Programs

CPU Pin Registers (VTREGS)

CPU pinregisters, or VTREGS, let you use the CPU’s simulated pins for input
and output. VTREGS are not public symbols nor do they reside in a memory
space of the CPU. They may be used in expressions, but their values and
utilization are CPU dependent. VTREGS provide a way to specify signals coming
into the CPU from a simulated piece of hardware. Y ou can list these symbols with
theDIR VTREG command.

The following table describes the VTREG symbols. The VTREG symbols that
are actually available depend on the sdected CPU.

VTREG Description

AINX An analog input pin on the chip. Your target program may read values you write to AINx
VTREGS.

PORTX A group of 1/0 pins for a port on the chip. For example, PORT2 refers to all 8 or 16 pins of
P2. These registers allow you to simulate port I/O.

SxIN The input buffer of serial interface x. You may write 8-bit or 9-bit values to SxIN. These
are read by your target program. You may read SxIN to determine when the input buffer is
ready for another character. The value OXFFFF signals that the previous value is
completely processed and a new value may be written.

SxOUT The output buffer of serial interface x. uVision2 copies 8-bit or 9-bit values (as
programmed) to the SxOUT VTREG.

SXTIME Defines the baudrate timing of the serial interface x. When SXTIME is 1, puVision2
simulates the timing of the serial interface using the programmed baudrate. When
SXTIME is 0 (the default value), the programmed baudrate timing is ignored and serial
transmission time is instantaneous.

CLOCK The clock frequency of the simulated CPU as defined in the Options — Target dialog.

NOTE

You may use the VTREGs to simulate external input and output including
interfacing to internal peripherals like interrupts and timers. For example, if
you toggle bit 2 of PORT3 (on the 8051 drivers), the CPU driver simulates
external interrupt O.

For the C167 CPU the fallowing VTREG symbols for the on-chip peripheral
registers are available:

CPU-pin Symbol Description
AINO Analog input line AINO (floating-point value)
AIN1 Analog input line AIN1 (floating-point value)

AIN2 Analog input line AIN2 (floating-point value)

Getting Started 87

CPU-pin Symbol Description

AIN3 Analog input line AIN3 (floating-point value)
AIN4 Analog input line AIN4 (floating-point value)
AIN5 Analog input line AIN5 (floating-point value)
AING Analog input line AIN6 (floating-point value)
AIN7 Analog input line AIN7 (floating-point value)
AIN8 Analog input line AIN8 (floating-point value)
AIN9 Analog input line AIN9 (floating-point value)
AIN10 Analog input line AIN10 (floating-point value)
AIN11 Analog input line AIN11 (floating-point value)
AIN12 Analog input line AIN12 (floating-point value)
AIN13 Analog input line AIN13 (floating-point value)
AIN14 Analog input line AIN14 (floating-point value)
AIN15 Analog input line AIN15 (floating-point value)
EA Status of the EA pin (1 bit). This configuration pin is necessary for

calculating the execution time of a program. You must invoke the
RESET command after changing the value of EA.

EBC External Bus Configuration after reset (2 bits). EBC may have one of
the following values:
Value Description
0 8-bit data bus, non-multiplexed
1 8-bit data bus, multiplexed
2 16-bit data bus, non-multiplexed
3 16-bit data bus, multiplexed

Bus configuration pins are necessary for calculating the execution time
of a program. Bit O of EBC represents EBCO. Bit 1of EBC represents
EBC1. When EBC is 3, EBCO and EBCL1 are both set. You must
invoke the RESET command after changing the value of EBC.

PORTOH Digital I/O lines of PORT OH (8-bit)

PORTOL Digital I/O lines of PORT OL (8-bit)

PORT1H Digital 1/O lines of PORT 1H (8-bit)

PORTI1L Digital I/O lines of PORT 1L (8-bit)

PORT2 Digital I/O lines of PORT 2 (16-bit)

PORT3 Digital I/O lines of PORT 3 (16-bit)

PORT4 Digital I/O lines of PORT 4 (8-bit)

PORT5 Digital/analog Input Lines of PORT 5 (16-bit)
PORT6 Digital I/O lines of PORT 6 (8-bit)

PORT7 Digital I/O lines of PORT 7 (8-bit)

PORTS8 Digital I/O lines of PORT 8 (8-bit)

SOIN Serial input for SERIAL CHANNEL 0 (9 bits)
SOOUT Serial output for SERIAL CHANNEL 0 (9 bits)
SOTIME Serial timing enable for SERIAL CHANNEL 0
S1IN Serial input for SERIAL CHANNEL 1 (9 bits)

S10UT Serial output for SERIAL CHANNEL 1 (9 bits)

88

Chapter 5. Testing Programs

CPU-pin Symbol Description
S1TIME Serial timing enable for SERIAL CHANNEL 1
CLOCK Clock frequency

The following examples show how VTREGs may be used to aid in simulating
your target program. In most cases, you use VTREGs in signal functions to
simulate some part of your target hardware.

/O Ports

uVision2 defines a VTREG for each 1/0 port: i.e. PORT2. Do not confuse these
VTREGs with the SFRs for each port (i.e. P2). The SFRs can be accessed inside
the CPU memory space. The VTREGS are the signals present on the pins.

With puVision2, it is easy to simulate input from external hardware. If you havea
pulse train coming into a port pin, you can use a signal function to simulate the
signal. For example, the following signal function inputs a square wave on P2.1
with a frequency of 1000Hz.

signal void one_thou_hz (void) ({

while (1) { /* repeat forever */
PORT2 | = 1; /* set P1.2 */
twatch ((CLOCK / 2) / 2000); /* delay for .0005 secs */
PORT2 &= ~1; [* clear P1.2 */
twatch ((XCLOCK / 2) / 2000); /* delay for .0005 secs */

/* repeat */

}

The following command starts this signal function:

one_t hou_hz ()

Refer to “Chapter 6. pVision2 Debug Functions’ on page 97 for more
information about user and signal functions.

Simulating external hardware that responds to output from a port pinis only
dlightly more difficult. Two steps arerequired. First, write a uVision2 user or
signal function to perform the desired operations. Second, create a breakpoint that
invokes the user function.

Suppose you use an output pin (P2.0) to enable or disable an LED. Thefollowing
signal function uses the PORT2 VTREG to check the output from the CPU and
display a message in the Command window.

Getting Started 89

signal void check_p20 (void) {

if (PORT2 & 1)) { /* Test P2.0 */
printf ("LEDis ON\\n"); } /[* 1? LED is ON */
el se { /[* 0? LED is OFF */

printf ("LED is OFF\n"): }

Now, you must add a breakpoint for writesto port 1. The following command
line adds a breakpoint for all writes to PORT2.

BS WRI TE PORT2, 1, "check_p20 ()"

Now, whenever your target program writes to PORT 2, the check P20 function
prints the current status of the LED. Refer to page 69 for more information about
setting breakpoints.

Serial Ports

The on-chip serial port is controlled with: SOTIME, SOIN, and SOOUT. SOIN
and SOOUT represent the serial input and output streams on the CPU. SOTIME
lets you specify whether the serial port timing instantaneous (STIME = 0) or the
serial port timing is relative to the specified baudrate (SXTIME = 1). When
SOTIME is 1, serial data displayed in the Serial window is output at the specified
baudrate. When SOTIME is O, serial datais displayed in the Serial window much
more quickly.

Simulating serial input is just as easy as simulating digital input. Suppose you
have an external serial device that inputs specific data periodically (every second).
You can create a signal function that feeds the data into the CPU’ s serial port.

signal void serial _input (void) {

while (1) { /* repeat forever */
twat ch (CLOCK) ; /* Delay for 1 second */
SOIN = " A"; /* Send first character */
twatch (CLOCK / 900); /* Delay for 1 character time */

/* 900 is good for 9600 baud */

SOIN = 'B'; /* Send next character */
twatch (CLOCK / 900);
SOIN = 'C; /* Send final character */

} /* repeat */

}

When this signal function runs, it delays for 1 second, inputs‘A’, ‘B’, and ‘C’ into
the serial input line and repeats.

Serial output is simulated in a similar fashion using a user or signal function and a
write access breakpoint as described above.

90 Chapter 5. Testing Programs

Program Variables (Symbols)

uVision2 lets you access variables, or symbols, in your target program by simply
typing their name. Variable names, or symbol names, represent numeric values
and addresses. Symbols make the debugging process easier by allowing you to use
the same names in the debugger as you use in your program.

When you load a target program module and the symbol information is loaded into
the debugger. The symbols include local variables (declared within functions), the
function names, and the line number information. Y ou must enable Options for
Target — Output — Debug I nfor mation. Without debug information, puVision2
cannot perform source-level and symbolic debugging.

Module Names

A module name is the name of an object module that makes up all or part of a
target program. Source-level debugging information as well as symboalic
information is stored in each module.

The module name is derived from the name of the sourcefile. If the target
program consists of a source file named MCOMMAND.C and the C compiler
generates an object file called MCOMMAND.OBJ, the module nameis
MCOMMAND.

Symbol Naming Conventions
The following conventions apply to symboals.

The case of symbolsisignored: SYMBOL is equivalent to Symboal.
Thefirst character of a symbol namemust be ‘A’-’Z", ‘a-'2",* ', or ‘7.

Subsequent characters may be: ‘A’-'Z’,‘a-'Z',‘0'-'9",* ", or‘'?.

NOTE

When using the ternary operator (“ ?:”) in pVision2 with a symbol that begins
with a question mark (“ ?”), you must insert a space between the ternary
operator and the symbol name. For example, R5 = R6 ? ?symbol : R7.

Getting Started 91

Symbol Classification
uVision2 recognizes two classes of symbols:

Program Symbols are defined in the target program.

Reserved Words are predefined in pVision2. Debug commands & options,
data type names, register names, system variables, CPU symboals, and
VTREGs are all reserved words.

Literal Symbols

Often you may find that your program symbols duplicate reserved words. When
this occurs, you must literalize your program symbol using the back quote
character () to differentiate them from reserved words.

For example, if you define a variable named R5 in your program and you attempt
to access it, you will actually access the R5 register. To access the R5 variable,
you must prefix the variable name with the back quote character.

Accessing the R5 Register Accessing the R5 Variable
>R5 = 121 >"R5 = 212

Normally, uVision2 searches for reserved words then for target program symboals.
When you literalize a symbol, pVision2 only searches for target program symboals.

Fully Qualified Symbols

Symbols may be entered using the only name of the variable or function they
reference. Symbols may also be entered using a fully qualified name that includes
the name of the module and name of the function in which the symboal is defined.

A fully qualified symbol name may include any of the following components:

M odule Name identifies the module where a symboal is defined.

Line Number identifies the address of the code generated for a particular line
in the module.

Function Name identifies the function in a module where alocal symbol is
defined.

Symbol Name identifies the name of the symbol.

92 Chapter 5. Testing Programs

Y ou may combine names as shown in the following table:

Symbol Components Full Qualified Symbol Name addresses ...
\ModuleName\LineNumber ... line number LineNumber in ModuleName.
\ModuleName\FunctionName ... FunctionName function in ModuleName.
\ModuleName\SymbolName ... global symbol SymbolName in ModuleName.
\ModuleName\FunctionName\SymbolName ... local symbol SymbolName in the FunctionName

function in ModuleName.

Examples of fully qualified symbol names:

Full Qualified Symbol Name Identifies ...

\MEASURE\clear_records\idx ... local symbol idx in the clear_records function in the
MEASURE module.

\MEASURE\MAIN\cmdbuf ... cmdbuf local symbol in the MAIN function in the MEASURE
module.

\MEASURE\sindx ... sindx symbol in the MEASURE module.

\MEASURE\225 ... line number 225 in the MEASURE module.

\MCOMMAND\82 ... line number 82 in the MCOMMAND maodule.

\MEASURE\TIMERO ... the TIMERO symbol in the MEASURE module. This symbol
may be a function or a global variable.

Non-Qualified Symbols

When you enter afully qualified symbol name, pVision2 determines if the symbol
exists and reports an error if it does not. For symbols that are not fully qualified,
uVision2 searches a number of tables until a matching symbol nameis found.
This search works as follows:

1. Local Variablesin the Current Function in thetarget program. The current
function is determined by the value of the program counter.

2. Global or Static Variablesin the Current Module. As with the current
function, the current module is determined by the value of the program counter.
Symbols in the current module represent variables that were declared in the
module but outside a function. This includes file-scope or static variables.

3. Symbals Created with the pVision2 DEFINE Command. These symbols
are used for debugging and are not a part of the target program.

4. System Variables provide away to monitor and change debugger
characteristics. They arenot a part of thetarget program. Refer to “ System
Variables’ on page 85 for more information. If a global variable in your target

Getting Started 93

program shares the same name as a system variable, you may access the global
variable using a literal symbol name. Refer to “Literal Symbols’ on page 91
for more information.

5. Global or Public Symbols of your target program. SFRs defined by pVision2
are considered to be public symbols and are also searched.

6. CPU Driver Symbols (VTREGS) defined by the CPU driver. Refer to “CPU
Pin Registers (VTREGS)” on page 86 for a description of VTREG symboals.

NOTE

The search order for symbols changes when creating user or signal functions.
uVision2 first searches the table of symbols defined in the user or signal
function. Then, the above list is searched. Refer to “ Chapter 6. pVision2
Debug Functions’ on page 97 for more information about user and signal
functions.

Line Numbers

Line numbers enable source-level debugging and are produced by the compiler or
assembler. Theline number specifies the physical address in the source module of
the associated program code. Since a line number represents a code address,
uVision2 lets you use in an expression. The syntax for a line number is shown in
the following table.

Line Number Symbol Code Address ...

\LineNumber ... for line number LineNumber in the current module.
\ModuleName\LineNumber ... for line number LineNumber in ModuleName.
Example

\ measur e\ 108 /* Line 108 in nodul e "MEASURE" */

\ 143 /* Line 143 in the current nodule */

94 Chapter 5. Testing Programs

Bit Addresses

Bit addresses represent bits in the memory. This includes bits in special function
registers. The syntax for a bit addressis expression . bit_position

Examples
R6. 2 /* Bit 2 of register R6 */
0xFD0O0. 15 /* Value of the 166 bit space */

Type Specifications

uVision2 automatically performs implicit type casting in an expression. 'Y ou may
explicitly cast expressions to specific data types. Type casting follows the
conventions used in the C programming language. Example:

(unsigned int) 31.2 /* gives unsigned int 31 fromthe float value */

Operators

uVision2 supports all operators of the C programming language. The operators
have the same meaning as their C equivalents.

Differences Between pVision2 and C

There are a number of differences between expressionsin pVision2 and
expressions in the C programming language:

uVision2 does not differentiate between uppercase and lowercase characters
for symbolic names and command names.

uVision2 does not support converting an expression to a typed pointer like
char * or int *. Pointer types are obtained from the symbol information in the
target program. They cannot be created.

Function calls entered in the uVision2 Output Window — Command page refer
to debug functions. Y ou cannot invoke functions in your target from the
command line. Refer to“ Chapter 6. pVision2 Debug Functions” on page 97
for more information.

uVision2 does not support structure assignments.

Getting Started 95

Expression Examples

Thefollowing expressions were entered in the Command page of the Output
Window. All applicable output is included with each example. The MEASURE
example program were used for all examples.

Constant

>0x1234 /* Sinple constant */
0x1234 /* Cutput */
>EVAL 0x1234

4660T 11064Q 1234H '... 4 /* CQutput in several number bases */
Register

>R1 /* Interrogate value of register RL */
0x000A /* Address from ACC = OxEO, memtype = D: */
>Rl = --R7 /* Set Rl and R7 equal to value R7-1 */

Function Symbol

>mai n /* Cet address of main() from MEASURE. C */
0x00233DA /* Reply, main starts at Ox233DA */
>&mai n /* Same as before */
0x00233DA

>d main /* Display: address = main, nemtype = C */
0x0233DA: 76 E2 00 04 76 E3 00 04 - 66 E3 FF F7 E6 B6 80 00 v...v...f......
0x0233EA: E6 B7 00 00 E6 5A 40 00 - E6 D8 11 80 E6 2A 3C F6 @. *<
0x0233FA: E6 28 3C F6 E6 CE 44 00 - BF 88 E6 A8 40 00 BB D8 .(<...D..... @ .

0x02340A: E6 F8 7A 40 CA 00 CE 39 - E6 F8 18 44 CA0O0O CE 39 ..z@..9...D...

Address Utilization Examples

>&\ neasur e\ mai n\ cndbuf [0] + 10 /* Address cal cul ation */
0x23026

> RBYTE (0x233DA) /* Read byte from code address 0x233DA */
0x76 /* Reply */

Symbal Output Examples

>dir \measure\main /* CQutput synmbols frommain() in nodul e MEASURE */
R14 idx . . . uint /* Cutput */
R13 i . . . uint
0x0002301C cndbuf . . . array[15] of char

Program Counter Examples

>$ = nmain /* Set program counter to main() */
>dir /* points to | ocal nemsym from main() */
R14 idx . . . uint /* Cutput */
R13 i . . . uint
0x0002301C cndbuf . . . array[15] of char

Program Variable Examples

96 Chapter 5. Testing Programs
>cndbuf /* Interrogate address from cndbuf */
0x0002301C /* CQutput of address due to aggregate type (Array)*/
>cndbuf [0] /* Qutput contents of first array el ement */
0x00
>j /* CQutput contents fromi */
0x00
>j dx /* CQutput contents fromidx */
0x0000
>j dx = DPP2 /* Set contents fromindex equal to register DPP2 */
>j dx /* CQutput contents fromidx */
0x0008
Line Number Examples
>\ 163 /* Address of the line nunber #104 */
0x000230DA /* Reply */
>\ MCOMVAND\ 91 /* A line nunber of nodule "MCOWAND' */
0x000231F6
Operator Examples
>- - R5 /* Auto-decrement also for CPU registers */
OxFE
>mdi spl ay /* Qutput a PUBLIC bit variable */
0
>mdi splay = 1 /* Change */
>mdi spl ay /* Check result */
1
Structure Examples
>save_record[0] /* Address of a record */
0x002100A
>save_record[O] . tinme. hour = DPP3 /* Change struct el enent of records */
>save_record[0] . tine. hour /* Interrogation */
0x03
pVision2 Debug Function Invocation Examples
>printf ("uVision2 is com ng!\n") /[* String constant within printf() */
uVision2 is com ng! /* Cutput */
> WBYTE(0x20000, _RBYTE(0x20001) /* Read & Wite Menory Byte */
> /* exanpl e useful in debug functions */
>interval .min = getint ("enter integer: ");

Fully Qualified Symbol Examples
>- -\ measur e\ mai n\ i dx /* Auto INC/DEC valid for qualified symbol */

OXFFFF

Getting Started 97

Chapter 6. pVision2 Debug Functions

This chapter discusses a powerful aspect of the yVision2: debug functions. You
may use functions to extend the capabilities of the pVision2 debugger. You may
create functions that generate external interrupts, log memory contentsto afile,
update analog input values periodically, and input serial data to the on-chip serial
port.

NOTE

Do note confuse pVision2 debug functions with functions of your target
program. pVision2 debug functions aids you in debugging of your application
and are entered or with the Function Editor or on pVision2 command level.

uVision2 debug functions utilize a subset of the C programming language. The
basic capabilities and restrictions are as follows:

Flow control statements if, else, while, do, switch, case, break, continue, and
goto may be used in debug functions. All of these statements operatein
uVision2 debug functions as they doin ANSI C.

Local scalar variables are declared in debug functions in the same way they are
declared in ANSI C. Arrays are not allowed in debug functions.

For a complete description of the “ Differences Between Debug Functions and C”
refer to page 110.

Creating Functions

uVision2 has a built-in debug function editor which opens with Debug — Function
Editor. When you start the function editor, the editor asks for a file name or
opens the file specified under Optionsfor Target — Debug — I nitialization File.
The debug function editor works in the same way as the build-in pVision2 editor
and allows you to enter and compile debug functions.

98 Chapter 6. pVision2 Debug Functions

: Function Editor - measure.ini [2]x]
Open | Mew... | Sawve | Save As.. | Compile |
Compile Errars: I j
_,u"’ F e e = *Ju"’
/* My@tatus shows analog and other values */
_,u"’ F e e = *Ju"’

FUNC woid MyStatus (wvoid) {

printf | W'
printf (" Analog-Input-0: F£4%n", ainl);
printf (" Analog-Input-1: %£vin", ainl);
printf (" Analog-Input-Z2: F£4%n", ainl);
printf (" Analog-Input-3: %£in", ain3);
printf (" Registers (CP): %04¥%\n", CP);
printf (" Program Counter: 3$061XHAWn", §);

printf | Wn'y;
' -
KNl a7
Options Description
Open open an existing file with pVision2 debug functions or commands.
New create a new file
Save save the editor content to file.
Save As specify a file for saving the debug functions.
Compile send current editor content to the pVision2 command interpreter. This compiles
all debug functions.
Compile Errors shows a list of all errors. Choose an error, this locates the cursor to the
erroneous line in the editor window.

Once you have created a file with uVision2 debug functions, you may use the
INCLUDE command to read and process the contents of thetext file. For
example, if you type the following command in the command window, pVision2
reads and interprets the contents of MYFUNCS.INI.

>| NCLUDE MYFUNCS. | NI

MY FUNCS.INI may contain debug commands and function definitions. You
may enter this file also under Optionsfor Target — Debug - Initialization File.
Every time you start the pVision2 debugger, the contents of MY FUNCS.INI will
be processed.

Functions that are no longer needed may be deleted using the KILL command.

Getting Started 99

Invoking Functions

To invoke or run a debug function you must type the name of the function and any
required parameters in the command window. For example, to run the printf
built-in function to print “ Hello World,” enter the following text in the command
window:

>printf ("Hello World\n")

The pVision2 debugger responds by printing the text “ Hello World” in the
Command page of the Output Window.

Function Classes

uVision2 supports the following three classes of functions: Predefined Functions,
User Functions, and Signal Functions.

Predefined Functions perform useful tasks like waiting for a period of time or
printing a message. Predefined functions cannot be removed or redefined.

User Functions extend the capabilities of pVision2 and can process the same
expressions allowed at the command level. Y ou may use the predefined
function exec, to execute debug commands from user and signal functions.

Signal Functions simulate the behavior of a complex signal generator and lets
you create various input signals to your target application. For example,
signals can be applied on the input lines of the CPU under simulation. Signal
functions run in the background during your target program’s execution.
Signal functions are coupled via CPU states counter which has a resolution of
instruction state. A maximum of 64 signal functions may be active
simultaneously.

As functions are defined, they are entered into the internal table of user or signal
functions. You may use the DIR command to list the predefined, user, and signal
functions available.

DIR BFUNC displays the names of all built-in functions. DIR UFUNC displays
the names of all user functions. DIR SIGNAL displays the names of all signal
functions. DIR FUNC displays the names of all user, signal, and built-in
functions.

100 Chapter 6. pVision2 Debug Functions

Predefined Functions

uVision2 includes a number of predefined debug functions that are always
availablefor use. They cannot be redefined or deeted. Predefined functions are
provided to assist the user and signal functions you create.

Thefollowing table lists all predefined pVision2 debug functions.

Return Name Parameter Description

void exec (“command_string”) Execute Debug Command

double getdbl (“prompt_string”) Ask the user for a double number

int getint (“prompt_string”) Ask the user for a int number

long getlong (“prompt_string”) Ask the user for a long number

void memset (start_addr, value, len) fill memory with constant value

void printf (“string”, ...) works like the ANSI C printf function

int rand (int seed) return a random number in the range -32768
to +32767

void twatch (ulong states) Delay execution of signal function for specified
number of CPU states

uchar _RBYTE (address) Read char on specified memory address

uint _RWORD (address) Read int on specified memory address

ulong _RDWORD (address) Read long on specified memory address

float _RFLOAT (address) Read float on specified memory address

double _RDOUBLE (address) Read double on specified memory address

void _WBYTE (address, uchar val) Write char on specified memory address

void _WWORD (address, uint val) Write int on specified memory address

void _WDWORD (address, ulong val) Write long on specified memory address

void _WFLOAT (address, float val) Write float on specified memory address

void _WDOUBLE (address, double val) Write double on specified memory address

The predefined functions are described below.

void exec (“command_string”)

The exec function lets you invoke pVision2 debug commands from within your
user and signal functions. The command_string may contain several commands
separated by semicolons.

Getting Started 101

The command_string is passed to the command interpreter and must be a valid
debug command.

Example

>exec ("DIR PUBLIC; EVAL R7")
>exec ("BS tinmer0")
>exec ("BK *")

double getdbl (“prompt_string”), int getint (“prompt_string”),
long getlong (“prompt_string”)

This functions prompts you to enter a number and, upon entry, returns the value of
the number entered. If no entry is made, the value O is returned.

Example
>age = getint ("Enter Your Age")

void memset (start address, uchar value, ulong length)

The memset function sets the memory specified with start address and length to
the specified value.

Example
>MEMSET (0x20000, 'a', 0x1000) /* Fill 0x20000 to Ox20FFF with "a" */

void printf (“format_string”, ...)

The prinf function works like the ANSI C library function. Thefirst argument is
aformat string. Following arguments may be expressions or strings. The
conventional ANSI C formatting specifications apply to printf.

Example

>printf ("random nunmber = 9%94XH n", rand(0))
random nunber = 1014H

>printf ("random nunber = 9%94XH n", rand(0))
random nunmber = 64D6H

S>printf ("% for %\n", "uVision2", 166)
uVision2 for 166

Sprintf ("% u\n", (ulong) -1)
4294967295

102 Chapter 6. pVision2 Debug Functions

int rand (int seed)

Therand function returns a random number in the range -32768 to +32767. The
random number generator is reinitialized each time a non-zero value is passed in
the seed argument. Y ou may use therand function to delay for a random number
of clock cycles or to generate random data to feed into a particular algorithm or
input routine.

Example

>rand (0x1234) /* Initialize random generator with 0x1234 */
0x3B98

>rand (0) /* No initialization */
0x64BD

void twatch (long states)

Thetwatch function may be used in a signal function to delay continued execution
for the specified number of CPU states. pVision2 updates the state counter while
executing your target program.

Example

Thefollowing signal function toggles the INTO input (P3.2) every second.

signal void intO_signal (void) {

while (1) {
PORT3 | = 0x04; [* pull INTO(P3.2) high */
PORT3 &= ~0x04; /* pull INTO(P3.2) |ow and generate interrupt */
PORT3 | = 0x04; /* pull I NTO(P3.2) high again */
twat ch (CLOCK) ; /* wait for 1 second */
}

}

NOTE

The twatch function may be called only fromwithin a signal function. Calls
outside a signal function are not allowed and result in an error message.

Getting Started 103

uchar RBYTE (address), uint RWORD (address),
ulong RDWORD (address), float RFLOAT (address),
double RDOUBLE (address)

These functions return the content of the specified memory address.

Example

> RBYTE (0x20000) /* return the character at 0x20000 */
> RFLOAT (0xEO000) /* return the float value at OxXEO00 */
> RDWORD (0x1000) /* return the long value at 0x1000 */

_WBYTE (addr, uchar value), _WWORD (addr, uint value),
_WDWORD (addr, ulong value), WFLOAT (addr, float value,
_WDOUBLE (addr, double value)

These functions write a val ue to the specified memory address.

Example
> WBYTE (0x20000, 0x55) /* wite the byte 0x33 at 0x20000 */
> RFLOAT (O0xEO000, 1.5) /* wite the float value 1.5 at OxE000 */

> RDWORD (0x1000, 12345678) /* wite the |ong val ue 12345678 at 0x1000 */

104 Chapter 6. pVision2 Debug Functions

User Functions

User functions are functions you create to use with the pVision2 debugger. You
may enter user functions directly in the function editor or you may use the
INCLUDE command to load afile that contains one or more user functions.

NOTE
uVision2 provides a number of system variables you may use in your user
functions. Refer to “ System Variables’ on page 85 for more information.

User functions begin with FUNC keyword and are defined as follows:

FUNC return_type fname (paranmeter_list) {
st at ement s

}

return_type isthetype of the value returned by the function and may be: bit,
char, float, int, long, uchar, uint, ulong, void. You may use
void if the function does not return a value. If no returntypeis
specified the typeint is assumed.

fname is the name of the function.

parameter _list isthelist of arguments that are passed to the function. Each
argument must have atype and a name. If no arguments are
passed to the function, use void for the parameter_list. Multiple
arguments are separated by commas.

statements are instructions the function carries out.

{ is the open curly brace. The function definition is complete when
the number of open braces is balanced with the number of the
closing braces (“}").

Example

The following example shows a user function that displays the contents of the
registers RO through R7. For more information about “ Creating Functions” refer
to page 97.

FUNC void MyRegs (void) {
printf ("---------- M/Regs() ---------- \n");
printf (" R4 R8 R9 R10 R11 R12\n");
printf (" %94X %04X %04X 904X %04X 904X\ n",
R4, R8, R9, RI10, R11, R12);
printf ("------------iie - \n");

Getting Started 105

To invoke this function, type the following in the command window.
M/Regs()

When invoked, the M yRegs function displays the contents of the registers and
appears similar to the following:

R4 R8 R9 R10 R11 R12

Restrictions

uVision2 checks user functions to ensure they return values that correspond to
the function return type. Functions with a void return type must not return a
value. Functions with a non-void return type must return avalue. Note that
uVision2 does not check each return path for a valid return value.

User functions may not invoke signal functions or the twatch function.
Thevalue of alocal object is undefined until avalueis assigned to it.

Remove user functions using the KILL FUNC command.

106 Chapter 6. pVision2 Debug Functions

Signal Functions

A Signal function let you repeat operations, like signal inputs and pulses, in the
background while pVision2 executes your target program. Signal functions help
you simulate and test serial 1/0, analog I/0O, port communications, and other
repetitive external events.

Signal functions execute in the background while pVision2 simulates your target
program. Therefore, a signal function must call the twatch function at some point
to delay and let pVision2 run your target program. pVision2 reports an error for
signal functions that never call twatch.

NOTE
uVision2 provides a number of system variables you may use in your signal
functions. Refer to “ System Variables” on page 85 for more information.

Signal functions begin with the SIGNAL keyword and are defined as follows:

SIGNAL void fnane (paranmeter_list) {
st at ement s

}

fname is the name of the function.

parameter _list isthelist of arguments that are passed to the function. Each
argument must have atype and a name. If no arguments are
passed to the function, usevoid for the parameter_list. Multiple
arguments are separated by commas.

statements are instructions the function carries out.

{ is the open curly brace. The function definition is complete when
the number of open braces is balanced with the number of the
closing braces (“}").

Example

The following example shows a signal function that puts the character ‘A’ into the
serial input buffer once every 1,000,000 CPU states. For more information about
“Creating Functions’ refer to page 97.

SIGNAL void StuffS0Oin (void) {
while (1) {
SOIN = "A';
twatch (1000000) ;
}
}

Getting Started 107

To invoke this function, type the following in the command window.

St uf f S0i n()

When invoked, the StuffS0in signal function puts and ASCII character ‘A’ inthe
serial input buffer, delays for 1,000,000 CPU states, and repesats.

Restrictions
Thefollowing restrictions apply to signal functions:

Thereturn type of a signal function must be void.

A signal function may have a maximum of eight function parameters.

A signal function may invoke other predefined functions and user functions.
A signal function may not invoke ancther signal function.

A signal function may be invoked by a user function.

A signal function must call the twatch function at least once. Signal functions
that never call twatch do not allow the target program time to execute. Since
you cannot use Ctrl+C to abort a signal function, pVision2 may enter an
infinite loop.

Managing Signal Functions

uVision2 maintains a queue for active signal functions. A signal function may
either be either idle or running. A signal function that isidleis ddayed while it
waits for the number of CPU states specified in a call to twatch to expire. A
signal function that is running is executing statements inside the function.

When you invoke a signal function, uVision2 adds that function to the queue and
marks it as running. Signal functions may only be activated once, if the function
is aready inthe queue, awarning is displayed. View the state of active signal
functions with the command SIGNAL STATE. Remove active signal functions
form the queue with the command SIGNAL KILL.

When a signal function invokes the twatch function, it goes in the idle state for the
number of CPU states passed to twatch. After the user program has executed the
specified number of CPU states, the signal function becomes running. Execution
continues at the statement after twatch.

108 Chapter 6. pVision2 Debug Functions

If asignal function exits, because of areturn statement, it is automatically
removed from the queue of active signal functions.

Analog Example

The following example shows a signal function that varies the input to analog
input 0 on a C167. The function increases and decreases the input voltage by 0.5
volts from OV and an upper limit that is specified as the signal function’s only
argument. This signal function repeats indefinitely, delaying 200,000 states for
each voltage step.

signal void analog0 (float limt) {
float volts

printf ("Analog0 (%) entered.\n", limt);
while (1) { /* forever */
volts = 0
while (volts <= limt) {
ain0 = volts; /* anal og input-0 */
twatch (200000); /* 200000 states Tinme-Break */
volts += 0.1; /* increase voltage */
volts = limt;

while (volts >= 0.0) {
ain0 = volts;
twatch (200000); /* 200000 states Tinme-Break */
volts -= 0.1; /* decrease voltage */
}
}
}

The signal function analog0 can then be invoked as follows:

>ANALOGD (5. 0) /* Start of 'ANALOQ)' */
ANALOGD (5. 000000) ENTERED

The SIGNAL STATE command to displays the current state of the analogO:

>S| GNAL STATE
1 idle Signal = ANALOX (Iline 8)

uVision2 lists theinternal function number, the status of the signal function: idle
or running, the function name and the line number that is executing.

Since the status of the signal functionisidle, you can infer that analog0 executed
the twatch function (on line 8 of analog0) and is waiting for the specified number
of CPU states to dapse. When 200,000 states pass, analog0 continues execution
until the next call to twatch in line 8 or line 14.

Getting Started 109

The following command removes the analog0 signal function from the queue of
active signal functions.

>S| GNAL KI LL ANALOGO

110 Chapter 6. pVision2 Debug Functions

Differences Between Debug Functions and C

There are a number of differences between ANSI C and the subset of features
support in pVision2 debug user and signal functions.

uVision2 does not differentiate between uppercase and lowercase. The names
of objects and control statements may be written in either uppercase or
lowercase.

uVision2 has no preprocessor. Preprocessor directives like #define, #include,
and #ifdef are not supported.

uVision2 does not support global declarations. Scalar variables must be
declared within a function definition. 'Y ou may define symbols with the
DEFINE command and use them like you would use a global variable.

In uVision2, variables may not beinitialized when they are declared. Explicit
assignment statements must be used to initialize variables.

uVision2 functions only support scalar variable types. Structures, arrays, and
pointers are not allowed. This applies to the function return type as well as the
function parameters.

uVision2 functions may only return scalar variable types. Pointers and
structures may not be returned.

uVision2 functions cannot be called recursively. During function execution,
uVision2 recognizes recursive calls and aborts function execution if oneis
detected.

uVision2 functions may only be invoked directly using the function name.
Indirect function calls via pointers are not supported.

uVision2 supports the new ANSI style of function declaration for functions
with a parameter list. Theold K&R format is not supported. For example, the
following ANSI style function is acceptable.

func test (int pal, int pa2) ({ /* ANSI type, correct */
[* .. %
}

Thefollowing K&R style function is not acceptable.

func test (pal, pa2) /* Ad K&R style is */

int pal, pa2; /* not supported */
[* .. %

}

Getting Started 111

Chapter 7. Sample Programs

This section describes the sample programs that areincluded in our tool kits. The
sample programs are ready for you to run. You can use the sample programs to
learn how to use our tools. Additionally, you can copy the code from our samples
for your own use.

The sample programs are found in the C:\K EIL\C166\EXAMPLES\ folder. Each
sample program is stored in a separate folder along with project files that help you
quickly build and evaluate each sample program.

The following table lists the sample programs and their folder names.

Example Description

BADCODE Program with syntax errors and warnings. You may use the pVision2 editor to
correct these.

CSAMPLE Simple addition and subtraction calculator that shows how to build a multi- module
project with pVision2.

DHRY Dhrystone benchmark. Calculates the dhrystones factor for the target CPU.

HELLO Hello World program. Try this first when you begin using uVision2. It prints Hello

W orld on the serial interface and helps you confirm that the development tools
work correctly. Refer to “HELLO: Your First 166 C Program” on page 112 for
more information about this sample program.

MEASURE Data acquisition system that collects analog and digital signals. Refer to
“MEASURE: A Remote Measurement System” on page 117 for more information
about this sample program.

RTX_EX1 Demonstrates round-robin multitasking using RTX-166 Tiny.

RTX_EX2 Demonstrates an RTX-166 Tiny application that uses signals.

SIEVE Benchmark that calculates prime numbers.

TRAFFIC Shows how to control a traffic light using the RTX-166 Tiny real-time executive.
WHETS Benchmark program that calculates the whetstones factor for the target CPU.

To begin using one of the sample projects, usethe uVision2 menu Project — Open
Project and load the project file.

The following sections in this chapter describe how to use the tools to build the
following sample programs.

¢ HELLO: Your First C51 Program
¢ MEASURE: A Remote Measurement System

112 Chapter 7. Sample Programs

HELLO: Your First 166 C Program

The HELL O sample programis located in C:\K EIL\C166\EXAMPLES\HELLO\ .
HEL L O does nothing more than print the text “ Hello World” to the serial port.
The entire program is contained in a single sourcefile HELLO.C.

This small application helps you confirm that you can compile, link, and debug an
application. Y ou can perform these operations from the DOS command line,
using batch files, or from pVision for Windows using the provided project file.

The hardware for HELL O is based on the standard C167 CPU. The only on-chip
peripheral used is the serial port. You do not actually need a target CPU because
uVision2 lets you simulate the hardware required for this program.

HELLO Project File

In l.lViSiOl’], app“cations are Select Project File s

maintained in a project file, | lekin [=reto &l Bl ol [

A project file has been BiHelouwz

created for HELLO. To

load this project, sdect

Open Project fromthe

Project menu and open

HELLO.UV2 from the folder B -

...\C166\EXAMPLES\HELLO. | |
Files oftype: |Project Files {*uve) Bl —

Editing HELLO.C

You can now edit HELLO.C. Doubleclick on HELLO.C in the Files page of the
Project Window. pVision2 loads and displays the contents of HELLo.c inan
editor window.

Getting Started 113

File Edit Wiew Project Debug Tools Window Help |
BrEgrEe|sc P Yonaiog) e g aEEloer s
& [# i) | & [Small Model | |

BE B C:\Keil\C166\EXAMPLES\helloyHello.c O[]
=3 Small odsl finclude <stdio.h> /* standard I/0 .h-fils =/ =
Emgi’f? Files #include <regls?.h» /* special function register S0CLET */ B
ello.c
=] QE Config Files
@ Start167.066 AR R AR AR R ARk)
=43 Documentstion /* main program */
@ Abstractba JEEREAEE A AR AR R AR S
vold main (void) { /* execution starts here *
#* initialize the serisl interface *
#ifndef MCB1&7 /* do not initialize if you use Monitor-166 *
P3 |= 0x0400; /* @ET FORT 3.10 OUTEUT LATCH (TXD) *f
DE3 |= 0x0400; /* @ET PORT 3.10 DIRECTION CONTROL (TXD OUTEUT) */
DE3 &= OxFIFF; /* RESET FORT 3.11 DIRECTION CONTROL (RXD INEUT) */
s0TIC = 0xA0; /* SET TRANSMIT INTERRUPT FLAG *f
sSORIC = 0x00; /* DELETE RECEIVE INTERRUPT FLAG *f
0BG = 0x40; /* SET BAUDRATE TO 5600 BaUD *f
B0CON = 0x=8011; /* BT SERIAL MODE *
#Fendif
printf ("Hello Worldin"); /* the "printf' function call *4
while (1) { /* An embedded program does not stop and *f
PR /* never returns. We'we used an endless)
) /* loop. You may wish to put in your own *
i /* code wers we've printed the dots (...). */

" EiFi.. [$rem | @0

=¥, Build A Command A_Findin Files /- | KN} | »I_I
[Le4ac7s [[NUM | [[Rew [4

Compiling and Linking HELLO

When you are ready to compile and link your project, use the Build Target
command from the Prgject menu or the Build toolbar. pVision2 begins to
trandlate and link the source files and creates an absolute object module that you
can load into the pVision2 debugger for testing. The status of the build processis
listed in the Build page of the Qutput Window.

Ll

Build target 'Small Model' il

compiling Hello.c...

assembling Startle7.a66...

linking...

creating hex file from "Hello"...

"Hello" - 0 Error(s). 0 Warning(s). =
o

H [ETEI, Build Findl in Files | KAl

NOTE
You should encounter no errors when you use pVision2 with the provided sample
projects.

7

114

Chapter 7. Sample Programs

@ Testing HELLO

Once the HELL O programis compiled and linked, you can test it with the
uVision2 debugger. In pVision2, usethe Start/Stop Debug Session command

fromt

he Debug menu or toolbar. pVision2 initializes the debugger and starts

program execution till the main function. The following screen displays.

File Edit Wiew Project Debug Tools Window Help |
e D E R Janaog e g aEE 0 ey s |
glRowned u|sEe|aEreEe »|
& C\Keil\C16B\EXAMPLEShello\Hello.c o=
Register Malug = AR AR AR AR AR ARE]
B word void main (void) { /* execution starts here +/
"""" 0 Dx3000 /% initielize the serial interface s
n 0000 #ifndef MCBLET /* do not initialize if you use Monitor-166 */
"""" 2 00000 5 Pz |= 0x0400; /* SET PORT 3.10 OUTPUT LATCH (TXD) *i
3 0x0000 DP3 |= 0x0400; /* SET PORT 3.10 DIRECTION CONTROL (TED OUTEUT) */
rd 0x0000 DE2 &= OXF7FF; /* RESET FORT 3.11 DIRECTION CONTROL (RED INBUT) *+/
------- 15 0x0000 80TIC = 0x80; /* SET TRANSMIT INTERRUET FLAG +f
6 0x0000 S0RIC = 0x00; /* DELETE RECEIVE INTERRUET FLAG +f
------- 7 0x0000 0BG = 0x40; /* SET BAUDRATE TO 9600 BAUD *
8 0x0000 30CON = 0xB011; /* SET SERIAL MODE *
....... 9 0001 ffendif
[all 0x0000 . . .
_______ 1 00000 |l printf ("Hello Worldin"); /* the 'printf' function «all i
12 00000 while (1) { /* An embedded program does not =top and *
_______ 13 00000 [A /* never returns. We've used an endless *
0 000 } /* loop. You may wish to put in your own */
. ' : B
s g } /% code were we've printed the dots (...). */
B e
B sys
....... p 000
sp 0xfc00
"""" mdl 0x0000
mdh 0x0000
T neinzn =)
ElFi.. ' Regs [\ Books
2l[Load "C: Eeil“~C16E““EXAMPLES“ hello“ Helln" ;I ::(II MName |Va\ue
>
ASM ASSIGN -~
W4T Ipif, cor[«] (] TA[< T 10T, Locals / Wisteh #1 J, scn #2 J,, Call Stack
[[[NOM] el 4

]

Open Serial Window #1 that displays the serial output of the application
with the Serial Window #1 command from the View menu or the Debug
toolbar.

Run HELL O with the Go command from the Debug menu or toolbar. The
HELL O program executes and displays the text “ Helo World” in the serial
window. After HELLO outputs “ Hello World,” it begins executing an
endless loop.

Stop Running HELLO with the Halt command from the Debug menu or
thetoolbar. You may also type ESC in the Command page of the Output
window.

Getting Started

115

During debugging Vision2 will show the following output:

i Hello - pVision? [_[Ofx]
File Edit Wiew Project Debug Tools Window Help |
HEEG e RS o e g aEE 0 ey s |
gFmoneo o ske ARYEIE >

EEM & C\Keil\C166\EXAMPLES hello\Hello.c o= |
Register Valus = - - -
/* main program */
= ward Y
"""" o 03000 void main (void) { /* execution starts here L
n 00000 /* initialize the serisl interface */
"""" 2 0x0000 #ifndef MCELET /* do not initialize if you use Monitor-166 *i
13 (=000 PZ |= 0x0400; /+* SET PORT 2.10 QUTPUT LATCH (TZD) +/
4 0x000c DP3 |= 0x0400; /* EET PORT 3.10 DIRECTION CONTROL (TXD OUTBUT) */
------- 15 0x0000 DP3 &= OxF7FF; /* RESET PORT 3.11 DIRECTION CONTROL (RED INEUT) */
16 0x0000 #0TIC = 0x80; #* SET TRANSMIT INTERRUPT FLAG *f
------- 7 00000 S0RTC = O0x00; /* DELETE RECEIVE TNTERRUET FLAG *f
8 0000 S0BR,_ = Ox40; /* SET BAUDRATE TO 9600 BAUD *f
...... a0 1; /* SET SERTAL MODE *
dtend
0x0000 -)))
0x0000 printf ("Hello Worldin"); /* the 'printf’ function call *
0x0000 while (1) { /* An embedded program does not stop and *
A /* never returns. We've used an endless i
0=0000 X .
0000 } /* loop. ¥ou may wish to put in your own i
i * /* code were we've printed the dots (...). */ ||
7 o
Dxfc0D ,
Oxfc00 = Serial #1 I [s=] B3
0x0000 elloc World =
0x0000 ello World
ol MeN2 T = &
ElFi. $'Regs [{AE0 ‘ oz
2l[Load "C: Eeil“~C16E““EXAMPLES“ hello“ Helln" ;I ::(II MName |Va\ue |
>
ASM ASSIGN BreakDisable BreakEnable BreakKill rzi
1[I, Buiid j, Command & Findin Fils /. | X | JA[ATETH Locals /4 istch #1 J, Tiaich #2_},_Call Siack

[L1en [[NUM | [[Rew [4

Single-Stepping and Breakpoints

4 Usethe I nsert/Remove Breakpoints command from the toolbar or the local
editor menu that opens with a right mouse click and set a breakpoint at the
beginning of the main function.

H':"S"? Use the Reset CPU command from the Debug menu or toolbar. If you have
halted HELL O start program execution with Run. pVision2 will stop the
program at the breakpoint.

F} Y ou can single-step through the HELL O program using the Step buttonsin
the debug toolbar. The current instruction is marked with a yellow arrow.
The arrow moves each time you step

% Place the mouse cursor over avariableto view their value,

@ Y ou may stop debugging at any time with Start/Stop Debug Session

116 Chapter 7. Sample Programs

command.

Getting Started 117

MEASURE: A Remote Measurement System

The MEASURE sample program is located in the \C166\EXAMPLES\M EASURE\
folder. MEASURE runs a remote measurement system that collects analog and
digital data like a data acquisition systems found in a weather stations and process
control applications. MEASURE is composed of three source files. GETLINE.C,
MCOMMAND.C, and MEASURE.C.

This implementation records data from one 16-bit digital port and four A/D
inputs. A timer controls the samplerate. The sampleinterval can be configured
from 1 millisecond to 60 minutes. Each measurement saves the current time and
all of theinput channdsto a RAM buffer.

Hardware Requirements

The hardware for MEASURE is based on the C167 CPU. This microcontroller
provides analog and digital input capability. Port 2 is used for the digital inputs
and ANO through AN3 are used for the analog inputs. Y ou do not actually need a
target CPU because pVision2 lets you simulate all the hardware required for this

program.

MEASURE Project File

=l The project file for the MEASURE sample program
Ry v is called MEASURE.UV2. To load this project file,
g m;;;”urrﬂfzd-c use Open Praject from the Project menu and select
@ Gefline.c MEASURE.UV2 in the folder
H--'E{g@ihm C:\KEIL\C166\EXAMPLES\MEASURE.
@ Getkey.c
D@gﬁtrem Files The Files page in the Project Window shows the
1 Stanl67.a66 source files that compose the MEASURE project.
“"Q’gi“bﬁt?;‘jﬁ” Thethree application related sourcefiles that are
' located in the Main Files group. The function of the
source filesis described below. To open a source
" E)Fites [SiRegs | WBooks | file, double-click on the filename.

Build 5]

2 [# £ &[Small Model -

Emall Model

HLarge Model
Keil MCB167

The project contains several targets for different test
environments. For debugging with the simulator
sdect the target Small Modd in the Build toolbar.

118

Chapter 7. Sample Programs

MEASURE.C contains the main C function for the measurement system and the
interrupt routine for timer 0. The main function initializes all
peripherals of the C167 and performs command processing for the
system. Thetimer interrupt routine, timerO, manages the real-time
clock and the measurement sampling of the system.

MCOMMAND.C processes the display, time, and interval commands. These
functions are called from main. The display command lists the
analog values in floating-point format to give a voltage between
0.00V and 5.00V.

GETLINE.C contains the command-line editor for characters received from the
serial port.

| Compiling and Linking MEASURE

When you are ready to compile and link MEASURE, use the Build Tar get
command from the Project menu or the toolbar. pVision2 begins to compile and
link the source filesin MEASURE and displays a message when the build is
finished.

Oncethe project is build, you are ready to browse the symbol information or begin
testing the MEASURE program.

@ Browse Symbols

The MEASURE project is configured to generate full browse and debug
information. To view the information, use the Sour ce Browse command from the
View menu or the toolbar. For more information refer to “ Source Browser” on

page 44.

@) Testing MEASURE

The MEASURE sample program is designed to accept commands from the on-
chip serial port. If you have actual target hardware, you can use aterminal
simulation to communicate with the C167 CPU. If you do not have target
hardware, you can use pVision2 to simulate the hardware. You can also usethe
serial window in puVision2 to provide serial input.

Getting Started 119

Once the MEASURE program is build, you can test it. Usethe Start/Stop Debug
Session command from the Debug menu to start the pVision2 debugger.

Remote Measurement System Commands

The serial commands that MEASURE supports are listed in the following table.
These commands are composed of ASCII text characters. All commands must be
terminated with a carriage return. Y ou can enter these commands in the Serial
Window #1 during debugging.

Command Serial Text Description

Clear © Clears the measurement record buffer.

Display D Displays the current time and input values.

Time T hh:mm:ss Sets the current time in 24-hour format.

Interval | mm:ss.ttt Sets the interval time for the measurement samples. The interval
time must be between 0:00.001 (for 1ms) and 60:00.000 (for 60
minutes).

Start S Starts the measurement recording. After receiving the start
command, MEASURE samples all data inputs at the specified
interval.

Read R [count] Displays the recorded measurements. You may specify the
number of most recent samples to display with the read
command. If no count is specified, the read command transmits
all recorded measurements. You can read measurements on the
fly if the interval time is more than 1 second. Otherwise, the
recording must be stopped.

Quit Q Quits the measurement recording.

120 Chapter 7. Sample Programs

@ View Program Code

uVision2 lets you view 2. Disnasembly =
i 165: static char near cmdbuf [15]: SE .
the prograrn COde In the 166: unsigned char i: s®
Disassembly Window 167: unsigned int idi; ol
1 H 169: #ifndef MCBLET <% no init of serial interf
that OpmSWIth theVIGIV 170: ## initialize the serial interface *-
171: P3 |- 0x0400: % SET PORT 3.10 OUTPUT LAT | '
menu or the toolbar L onn2330a 7ER20004 R 23, 40x0400 :
: 172: DP3 |= 0x0400: % SET PORT 3.10 DIRECTION
button. The Disassembly e T o O TR
. 173: DP3 &= 0xF7FF: el]
Window shows 000233E2 66ESFFF7 AND p| SoSEmER/MOES
. . 174: SOTIC - 0z80: o= Aeeamldi.
intermixed source and 000233E6 ERBRBOOD MOV 5 T— R

. 175: SORIC - 0z00: -
amnbly lines. You may 000233EA EGE70000 MOV el ey Ol

. 176: S0BG = 0z40; 4 iew Trace Record
change the view mode or 00N233EE ERSA4000 MOV 2 o no staamment
177: S0CON = 0=x8011: =

use Otha' Commands 178: #endif ’ETEEnable,fDisable Trace Becarding
179: {3 Bun till Cursor line
from the local menu that 180: . * setup the timer Insert/Remave Breakpaint
. . 000233F2 EBDBL180 MOV 3 I Eneble/bis skl Breakpaint
opens with the r|ght DDD%g%;‘E‘ Eggsga; pﬁg\l]on; 1.__Clear complete Code Coverage Info
mouse button. PR |

View Memory Contents

uVision2 displays =
memory in various 1| Address: [save_record —
formats. The Memory 0002100&4: FF 00 00 00 00 OO OO0 00 00 00 00 00
.) 00021016; 00 Of o808 == oo oo oo oo oo oo op
Window opens via the 00oz1022: oo o Decimal o
View menu or the toolbar 0002102E: 00 0if Unsigned L
0002103&: 00 01 Signed v [0
button. You can enter 00021046+ 00 O -
the address of four 00021052: 00 0 AsGl p
. . 0002105E: 00 0 Float 0
different memory areasin 00021062: 00 01 Double 0
thepages. Thelocal 0oo021076: 00 Ol
00021082: 00 01 Modity Memaory at Dx00021017 0
menu allows you to 0002108E: 00 00 00 00 00 00 00 00 00 00 00 00
modify the memory 0D00210%&4: 00 00 00 00 00 OO OO0 OO OO0 00 00 00
minin Oae = 00 OO0 NN NN N 00 00 00 00 00 00 FIFILI
contents or sdlect Ilm \ Wemory #1) Memory #2 4 Memory #3 5, Memory #4 7
different output formats.

Program Execution

g’ Before you begin simulating MEASURE, open the Serial Window #1 that
displays the serial output with the View menu or the Debug toolbar. You
may disable other windows if your screenis not large enough.

Getting Started 121

Y ou can use the Step toolbar buttons on assembler instructions or source code
lines. If the Disassembly Window is active, you single step at assembly
instruction basis. If an editor window with source code is active, you single step
at source code leve.

F} The Steplnto toolbar button lets you single-step through your application
and into function calls.

'ﬁl StepOver executes afunction call as single entity and is not interrupt unless
a breakpoint occurs.

{"F On occasion, you may accidentally step into a function unnecessarily. You
can use StepOut to complete execution of that function and return to the
statement immediately following the function call.

I::} A ydlow arrow marks the current assembly or high-level statement. You
may usethe you may accidentally step into a function unnecessarily. You
can use StepOut to complete execution of that function and return to the
statement immediately following the function call.

M1} Thetoolbar or local menu command Run till Cursor Line lets you use the
current cursor line as temporary breakpoint.

4™ With | nsert/Remove Breakpoints command you can set or remove
breakpoints on high-level source lines or assembler statements.

B call stack
uV|SI_on2 mte_rnally tracks s — 7
funCt|0n nSnng as the program 77| 000: \Measurelsave_measurements | \Measure\timerl75
007: Ox00000080 YWPutcharputchar bl

executes. The Call Stack page 002: \Putchariputchar YPRINTF\SaveCh
of the Watch W|ndaN ShO\NS 003: \PCPPRINFIM T print_formatter |4 ?CYPRNFMT Y print_formatter

. . 004: \PRINTF printf ‘Wleasure\main 191
the current function nesting. A 005: yMeasureymain (%00000000
double click on aline displays (AR Locak Ji Wamh#1 ji WAth#2 j Call Stack /7

the source code that called the
sdected function.

122 Chapter 7. Sample Programs

£ Trace Recording

It is common during debugging
to reaCh abreakpo' n‘_: Whae -10 22603}21325Egg;g?¥ﬁ(’j0 .gNB SORIR, getkey (0xz23658) -
you requireinformation like B Tt T —
register values and other 0 ol ratir wois eieenl (enid) dteerant b23D veing THY
circumstances that led to the gl DD0zzzocieaD 0UDRNS KIE DERS. #0200
breakpoint. If Enable/Disable | =3 [00ee220 Eotootie S ob somrcon

Trace Recording is set you 7 i iE (memeurement.dnterval) o
Can VieN the CPU inSU’UC'[iOI’]S -2 ?5?002322:v2§3225536m£58 ™ 0xFDOO.0,0x02326E B
that were executed be reaching e Statie void save monsuremonts fwora) (T
the breakpoint. The Regs page 33””2325"* PoReohB0 WOV 4 DPPS: beSD0A
of the Project Window shows & =¥

the CPU register contents for
the sdected instruction.

Breakpoints Dialog

uVision2 also supports complex breakpoints as discussed on page 69. Y ou may
want to halt program execution when a variable contains a certain value. The
example shows how to stop when the value 3 is written to current.time.sec.

Breakpoints [2]x]

Current Breakpairnts

Access

Expression: currenttime.sec==3 [~ BEead ¥ Write

Count: |1 3: Size i
!

|
= v Objects
Defne | KilSelced | Kilal | Closs |

Command:

Open the Breakpoints dialog from the Debug menu. Enter as expression
current.time. sec==3. Select the Write check box (this option specifies that the
break condition is tested only when the expression is written to). Click on the
Define button to set the breakpoint.

Getting Started 123

To test the breakpoint condition perform the following steps:
Orils

If program execution is halted begin executing the MEASURE program.

After afew seconds, puVision2 halts execution. The program counter linein the
debug window marks the line in which the breakpoint occurred.

&4 Watch Variables

Y ou may constantly view the contents of variables, structures, and arrays. Open
the Watch Window from the View menu or with the toolbar. The L ocals page
shows all local symbols of the current function. The Watch #1 and Watch #2
pages allow you to enter any program variables as described in the following:

¢ Select the text <enter here> with a mouse click and wait a second. Another
mouse click enters edit mode that allows you to add variables. In the same way
you can modify variable values.

¢+ Sdect avariable namein an Editor Window and open the local menu with a
right mouse click and use the command Add to Watch Window.

¢ You can enter WatchSet in the Output Window — Command page.

To remove avariable, click on the
line and press the Delete key.

structmrec{ ..}
structclock { ..}
000

[T Structures and arrays open on

01 demand when you click on the [+]
0=029C . . .

IxD4A2 symbol. Display lines are indented to
o onalod (- reflect the nesting level.

[A[ATF P, Locals), vidatch #1 A Wiatch #2), Call Stack [

The Watch Window updates at the end of each execution command. Y ou enable
may enable Periodic Window Update in the View menu to update the watch
window during program execution.

124 Chapter 7. Sample Programs

View and Modify On-Chip Peripherals

uVision2 provides several ways to view and modify the on-chip peripherals used
inyour target program. You may directly view the results of the example below
when you perform the following steps:

OF Reset CPU and kill &l defined breakpoints.
If program execution is halted begin executing the MEASURE program.

1 Open the Serial Window #1 and enter the ‘d’ command for the MEASURE
application. MEASURE shows the values from 1/0O Port2 and A/D input O
— 3. The Serial Window shows the following output:

= Serial #1 M= 3

Command: d

Display current Measurements: (ESC to abort)
ime: 0:01:06.569 P2:D4AZ AND:3.39V AN1:1.40V AM2:4.19V AN3:3.19‘J—Iz|

A

Y ou may now use the following procedures to supply input to the I/O pins:

Using Peripheral Dialog Boxes

uVision2 provides dialogs for: 1/0O Ports, Interrupts, Timers, A/D Converter,
Serial Ports, and chip-specific peripherals. These dialogs can be opened from the
Debug menu. For the MEASURE application you may open |/O Ports:Port2 and
A/D Converter. The dialogs show the current status of the peripherals and you
may directly change theinput values.

Getting Started 125

Analog/Digital Converter [x]
Part2 —Analog Digital Converter
15 Bits 5 7 Bits 0
F2: |0x0000 COCCCCCC CooooooC PR inic Ch Conversion ADCON: [0x0003
o0 (T el ol sl a0cTe [ToL*24 x| ADDAT [oazsE
SR U ol i ADSTC: [tce*1 =] ADDATZ: [0x0000
Pins: |0xD4A2 128 =2 il 2wl 2 2) = [ADST [T ADBSY [ADWR ADCH: W
IRQ Channel Injection
) . ’V P ADCIR [~ ADEIR ’7 " ADCRO [~ ADCIN
Each of these dialogs lists the rdlated el ek
SFR symbols and shows the current o 17000 4 [ooooo s fooos | e [00000
status of the peripherals. To changethe 1 [l4000 | 5 [oooeo s fooooe | 1 [00000
inputs, change the values of the Pins or 2 [12000 | ® [00000 10: ooono | 14 fo.0000
Analog Input Channéls. 3 [32000 | 7 [ooooo g foooon |18 [0.0000

Using VTREG Symbols

You may usethe“CPU Pin Registers (VTREGS)” described on page 86 to change
input signals. In the Command page of the Output Window, you may make
assignments to the VTREG symbols just like variables and registers. For

example
PORT2=0x DA00 set digital input PORT2 to OxDAOO.
Al N1=3. 3 set analog input AINL to 3.3 volts.

Using User and Signal Functions

You may combine the use of VTREG symbols defined
by the CPU driver and pVision2 user and signal Wpdate Windaws

functions to create a sophisticated method of providing

X 1 Decimal Output
external input to your target programs. The“Analog
Example’ on page 108 shows a signal function that 2 Hex Qutput
provides input to AINO. Thesignal function is 3 My Status Info
included in the MEASURE example and may be 4 | AnalogD by
quickly invoked with the Toolbox button Analog0..5V 5 Stop Analogl

and changes constantly the voltage on the input AINO.

Using the Performance Analyzer

uVision2 lets you perform timing analysis of your applications using the
integrated performance analyzer. To prepare for timing analysis, halt program
execution and open the Setup Performance Analyzer dialog with the Debug
menu.

126 Chapter 7. Sample Programs

Setup Performance Analyzer [2]x]
Current PA Ranges Function Symbols:
0 AMeasurehmain (0<02330A) ExIT ;I
1 \Measurehtimerl [0x023256) GETARG
2 \Measurehclear_records (0x0233BA) getcarg
3 \Mcommandimeasure_display (0x02302C) getchar
4 \Measurehsave_measurerments (0x023204) getling
5 \Measurehread_index [(x023344) getptr
isspace
main
measure_display
MNMI_trap
l ﬂ print_formatter
Define Performance Anakyzer Range: printf
utchar
[\Messureread_index M
save_measurements
SavaCh
scanf -
Dene | wizeecer | kman | omse | [_,l—l

Y ou may specify the function names dialog box available from the Setup menu.
Perform the following steps to see the performance analyzer in action:

OF Reset CPU and kill all breakpoints.

If program execution is halted begin executing the MEASURE program.

g’ Sdect the Serial Window #1 and type the commands S Enter D Enter

= Performance Analyzer !EI The Pa'formance Analyze'
[II/., 1.“ 2.“ 3‘[I 4‘[I SP E.I] 7II] B.I] H.[I 1[II[I/., g,]O\NS a ba.r graph fOf %Ch
< ified>:
\M:;Ss':l‘::\l:ain: | range' The bar graph ShO\NS
AMeasureitimerd: I the percent of the time spent
\Measure\clear_records: . .
Menmmondineosure_dopley EE— executing code in each range.
easure SﬂVE_mEﬂSUIEmEnlSZ .
YMeasure\read_index: j CI |Ck on the range tO see
mintime: maxtime: awvgtime: totaltime: % count: dda”ed t|m| ng StaIIStICS
| 0.000003 | 0.0000711 | 0.000010 | 0.003965 | 0.4 ‘ 1005 Refer to page 77 for more

information.

Getting Started 127

Chapter 8. Using on-chip Peripherals

There are a number of techniques you must know to create programs that utilize
the various on-chip peripherals and features of the 8xC166 and C167 family.
Many of these are described in this chapter. You may use the code examples
provided hereto quickly get started working with the 166.

The on-chip peripherals of the C167 are quite sophisticated and offer numerous
configuration options. The code examples in this chapter only present one or two
methods of using each peripheral. Be awarethat there are more configuration
options than are presented in this text.

128 The code exampl es presented
Header Files” here were tested with the
“DPP Registers” 129 C167CR microcontroller. Itisa
“Interrupt” 131 simple procedure to convert
“Peripheral Event Controller” 134 them to work with your
“parallel Port I/O” 138 particular device. Make sure
“General Purpose Timers” 140 that the on-chi p per i pheraJ syou
“Serial Interface” 142 attempt to use actually exist in
“Watchdog Timer” 145 your device.
“Pulse Width Modulation” 146
“A/D Converter” 149

“Power Reduction Modes” 150

128 Chapter 8. Using on-chip Peripherals

Header Files and Startup Code

The on-chip peripherals of the 166/ST 10 are accessed using the special function
registers located in the system area of the on-chip memory. The Keil development
tools provide include files or header files that define these registers. Y ou must
include the provided header files or you may create and include your own header
files to access the on-chip peripherals.

Many of the example programs presented in this chapter begin with:

#i ncl ude <regl67. h>

The REG167.H includefileis located in the folder C:\KEIL\C166\INC. It defines
the special function registers for the Siemens C167 device series. The following
excerpt from that file shows the definitions for the paralld 1/0 ports.

/* 1/0O Ports */

sfr DPOL = 0xF100;
sfr DPOH = 0xF102;
sfr DP1L = O0xF104;
sfr DP1H = 0xF106;
sfr DP2 = OxFFC2;
sfr DP3 = OxFFCs;
sfr DP4 = OXFFCA;
sfr DP6 = OxFFCE;
sfr DP7 = OxFFD2;
sfr DP8 = OxFFD6;

It is easy to create your own custom header files for new chips or for you own
projects.

The following table gives you an overview of the 166/ST 10 derivatives currently
available and the required startup and SFR definition files.

Derivatives Instruction Set Startup File Include File

8xC166 / ST10x166 Standard 166 STARTUP.A66 REG166.H
C161 Enhanced 167 START167.A66 REG161.H
C163/ ST10x163 Enhanced 167 START167.A66 REG163.H
C164 Enhanced 167 START167.A66 REG164.H
C165/ ST10x165 Enhanced 167 START167.A66 REG165.H
C167 / ST10x167 Enhanced 167 START167.A66 REG167.H

Many devices include CAN peripherals. The CAN.H header file supports these peripherals.

Getting Started 129

DPP Registers

In the segmented mode of the 166, the C166 compiler uses the four DPP registers
(DPPO - DPP3) to efficiently access memory with 16-bit near addresses. Thisis
faster than full 32-bit memory accesses.

NOTE
Except for the TINY memory model, the C166 Compiler always uses the
segmented mode of the 166/ST10.

By default, DPP registers are allocated according to the following table.

DPP Register By default, used in C programs

DPPO To access far, huge, and xhuge objects code for the 8xC166 is generated.
For CPU with extended instruction set, the compiler accesses far, huge and
xhuge objects with EXTP and EXTS instructions instead of using the DPPO
register.

DPP1 The access the NCONST group (variables defined with const near).

DPP2 The access the NDATA group (variables defined with near).

DPP3 The access the SDATA or SYSTEM group (variables defined with sdata, idata
or bdata).

In uVision2, you may specify under Options— Target - Near Memory the size
for RAM (= NDATA group) and ROM (= NCONST group). If you specify
more than 16KB for RAM or ROM, pVision2 inserts the C166 NOFI XDPP and
the L166 DPPUSE directive. DPPUSE reassigns the DPP registers for NDATA
and NCONST. With DPPUSE the NDATA and NCONST groups can be
expanded to atotal of 64 Kbytes.

NOTES
The DPP3 register is also used when generating 166 code to speed-up memory
and string copy and compare functions, if two far or huge objects are accessed.

When C166 isinvoked with the MOD167 directive the DPP registers are never
altered by C code or the run-time library.

Typically, the 166 microcontroller family uses 16KB pages to access data. The
DPP registers contain the base address for four different data pages. This has the
advantage that the CPU instructions require only 16-bit address fields for memory
accessing. Except the 8xC166 CPU, all 166/ST10 microcontrollers are using the
extended instruction set which offer EXTS and EXTP instructions to overwrite the
DPP addressing mode.

130 Chapter 8. Using on-chip Peripherals

When using the C166 near addressing, the CPU gets a 14-bit offset and a 2-bit
DPP sdector. Thetop tow hits of a 16-bit near address indicate the DPP which
holds the base address for the 14-bit offset. For example, the assembler
instructions below will use the DPP2 to form the physical address, since the top
two bits of theinstruction address 8042H are 10 indicating that DPP2 holds the
base address for the 14-bit offset 0042H.

MoV R1, 0x8042 ; load R1 with nenory | ocation (DPP2*0x4000) + 0x0042

If DPP2 contains 2, the base will be 2*0x4000 = 0x8000. Thus R1 will be loaded
with the content of the memory address 0x8042. However, if DPP2 = 8, the
instruction accesses the address; 8*0x4000 + 0x0042H = 0x20042.

The same address calculations are performed for indirect addressing modes:

; R2 contains the val ue 0x4010H whi ch i ndi cat es DPP1:
MoV R1, [R2] ; load RL with nenory | ocati on (DPP1*4000H) + 0010H

The EXTS and EXTP instructions overwrite the DPP addressing mode. In EXTS
code sequences, the CPU uses linear 24-bit addresses; the upper 8-bits are
specified by the EXTS instruction, the lower 16-bits are given by the executed
instructions. An EXTP instruction sequence specifies a 10-bit page address; thus
the CPU ignores the DPP contents and uses the base address given by the EXTP
instruction instead. This is exemplified in the following code example:

EXTS 0x10, #1 ; use segnment address 0x10 for the next instruction
MoV R1, 0x8042 ; load R1 with nenory | ocati on 0x108042

; R2 contains 0x180, R3 contains 5:

EXTP R3, #2 ; use page address in R3 for next two instructions
MoV R4, [R2] ; load R4 with |ocation (4*0x4000+0x180) = 0x14180
MoV R5, [R2+#2] ; load R5 with |ocation (4*0x4000+0x180+2) = 0x14182

The C166 compiler and the L166 Linker/Locater handles all the CPU addressing
modes for you. Therefore the different CPU address calculations are totally
transparent to the C programmer. Only during the debugging phase you need to
know about DPP registers and EXTP / EXTS CPU instructions when you view
pointer values or assembly code. You are faced with the 14-bit offset / 2-bit DPP
sdector format when near pointer values are displayed. A far pointer contains a
14-hit offset and a 10-bit page address. Only during debugging, you need to
calculate the physical memory address for near and far pointer values as shown in
the above examples. The huge and xhuge pointer values are representing directly
physical memory addresses.

Getting Started 131

Interrupts

The C166 compiler lets you write interrupt serviceroutinesin C. The compiler
generates very efficient entry and exit code and accommodates register bank
switching. Interrupt routines are declared as follows:

voi d function (void) interrupt vector |[usi ng rbank]

function is the name of theinterrupt function.
vect or is the interrupt vector definition.
r bank is the register bank name.

Typical interrupt routines are define as follows:

¢ Thevect or isonly atrap number without any symbolic name.
void isr (void) interrupt 42 using RBANK1

¢ Thevect or isasymbalic name followed by the trap number it references.
void isr (void) interrupt SOTINT=42 usi ng RBANK1

Ther bank isasymboalic register bank name you define for a new register bank.
Thelinker automatically reserves space for the register bank and the compiler
automatically switches register bank contexts inside the interrupt routine. You
may use the same register bank for interrupt routines which cannot interrupt each
other. For example, you may define RBANK 1 for interrupt priority leve 1
(ILVL 1), RBANK2 for ILVL 2, and so on.

The following example code shows the interrupt code for the serial transmit
interrupt routine.

1 voi d serial _TX_irqg (void) interrupt SOTINT=42 using rbankl {
2 1

3 1 if (tx_in !'= tx_out) /* buffer not empty? */

4 1 SOTBUF = tx_buf [tx_out++]; /* transmit next character */
5 1 el se

6 1 tx_restart = 1; /* re-start transmt */

7 1 }

Thefollowing listing shows the code generated by the C166 compiler for the
above interrupt routine. Note that the register bank context is swapped on entry to
the interrupt routine and is restored on exit.

132 Chapter 8. Using on-chip Peripherals

SOURCE LINE # 1

0000 C6030300 SCXT DPP3, #03H

0004 CC00 NOP

0006 F6F00000 R MoV rbank1, RO

000A C60800C0 R SCXT CP, #r bank1 ;o *** Switch to rbankl ***
000E CC00 NOP

; SOURCE LINE # 3
0010 F3F80002 R MOVB RL4, t x_out
0014 43F80202 R CvPB RL4, tx_in
0018 2DOB JWPR cc_Z, ?C0001

; SOURCE LINE # 4
001A F3FA0002 R MOVB RL5, t x_out
001E 258F0002 R SUBB t x_out , ONES

0022 COA4 MOVBZ R4, RL5
0024 F4840000 R MOVB RL4, [R4+#t x_buf]
0028 C084 MOVBZ R4, RL4
002A F6F4BOFE MoV SOTBUF, R4
002E 0DO1 JMPR cc_UC, ?C0002
0030 ?C0001:
; SOURCE LINE # 6
0030 OFO0O0 R BSET tx_restart
0032 ?C0002:
; SOURCE LINE # 7
0032 FC08 POP CP ; *** Restore Register Bank ***
0034 FCO03 POP DPP3
0036 FB88 RETI
NOTE

If interrupt routines are small, it may be more efficient to exclude the using
attribute and allow the compiler to push the registers used onto the stack.
Therefore you should compare the assembler code generated by C166 for simple
interrupt functions with and without using attribute.

Interrupt Control Registers

The C167 provides interrupt services for nearly every on-chip peripheral.
Interrupts are globally enabled and disabled using the |EN bit of the PSW. When
IEN isset to 1, interrupts are enabled. When |EN is set to O, interrupts are
disabled.

Interrupts are individually controlled through the interrupt control register for each
interrupt source. All interrupt contral registers of the C167 have the same format
as shown in the following figure.

Interrupt Control Register Layout

Reserved xxIR xxIE ILVL GLVL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Getting Started 133

Bits 15-8 are unused while bits 7-0 contain four fieds that control different
aspects of theinterrupt. These fields are described in the following table.

Field Description

XXIR The interrupt request flag indicates whether or not an interrupt request is pending.
A value of 1 indicates that an interrupt is pending while a value of 0 indicates that
no interrupt is pending. This bit is written by hardware when the interrupt occurs
and is cleared automatically by the hardware when the interrupt service routine
exits. It may be set by software to trigger an interrupt service routine.

XXIE The interrupt enable bit enables or disables an individual interrupt source. If set to
1, the interrupt is enabled. If set to O, the interrupt is disabled.

ILVL The interrupt priority level defines the priority level of the interrupt request. It may
be a number from 0 to 15. Higher numbers represent higher priority levels. Note
that an ILVL of 0 never gets serviced! However, priority level 0 may be used to
awaken the CPU from IDLE mode. See “Idle Mode” on page 150 for more
information.

GLVL The group level defines the order in which simultaneous interrupts with the same
priority level are services. The group level may be from 0 to 3. Higher numbers
represent higher priority levels.

NOTE

The ILVL and GLVL fields may not be the same for more than one interrupt
source. Each enabled interrupt source must have its own unigue combination of
ILVL and GLVL.

Since all interrupt control registers share the same format, you may define C
macros to initialize the fields for the interrupt. The following code exemplifies the
setup of theinterrupt control registers.

#define |1 C_I E(x) (((x) == 0) ? 0x0000 : 0x0040)
#define | C_| LVL(X) (((x) << 2) & 0x0030))
#define | C_GLVL(x) ((x) & 0x0003)

T3IC = ICIE(1) | ICILVL(1) | ICGVL(O); /* Interrupt Enabled, Level 1 */

134 Chapter 8. Using on-chip Peripherals

Peripheral Event Controller

The 166 devices provide an 8-channd peripheral event controller or PEC that you
can program to automatically move data (8-bit bytes or 16-bit words) when an
interrupt occurs. The benefit of using the PEC is that the memory transfers are
fast (only 1 CPU cycle) and the setup required istrivial.

The number of uses for the PEC is virtually unlimited. For example, you can
program the PEC to...

¢ Read data from the A/D converter and storeit in a buffer,

¢+ Transfer data from a static buffer out to the serial port,

¢+ Periodically read A/D input values and output them to the serial port.

Basically, the PEC works just like direct memory access (DMA) controllers. But,
it is easier to program and it works much faster.

PEC transfers may occur only in page O—the first 64K address space
(0Ox000000-0x00FFFF). The PEC can read from and write to the special function
registers of the CPU as well asto internal RAM.

Each PEC channd includes a PEC contral register (PECCO-PECCY), a source
pointer register (SRCPO-SRCP7), and a destination pointer register
(DSTPO-DSTP?).

There are 4 steps you must follow to properly initialize and use the PEC.

Initialize the PEC Control Register.
Initialize the Source Pointer.
Initialize the Destination Pointer.

A W DN P

Initialize the Interrupt Control Register for the interrupt source.

Each of these steps is described in detail in the following sections.

PEC Control Register

The PEC control register provides three fields that let you sdlect whether bytes or
words are moved (BWT fied); whether the source pointer, destination pointer, or
neither pointer are incremented after the move (INC fidd); and the number of

Getting Started 135

times to move the data (COUNT field). The layout of the control register is
shown in the following figure.

PEC Control Register Layout

Reserved INC BWT COUNT
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits 15-11 of each PEC control register are unused. Bits 10-0 contain three fidlds
that control several aspects of the interrupt and PEC channd. Thesefidds are
described in the following table.

Field Description

INC The INC field selects the pointer that is incremented after the PEC transfer.
Either the source pointer or the destination pointer may be incremented.
Incrementing both pointers is not supported. Valid values are:
0 0: Neither pointer is modified.
0 1: Destination pointer (DSTPXx) is incremented by 1 (BWT=1) or by 2 (BWT=0).
1 0: Source pointer (SRCPXx) is incremented by 1 (BWT=1) or by 2 (BW T=0).

BWT Selects whether bytes (when 1) or words (when 0) are transferred.

COUNT Selects the number of transfers. When COUNT is OxFF, continuous moves are
made. When COUNT is a non-zero value, that number of moves are made.
When COUNT is 0, the interrupt service routine is invoked instead of a PEC
transfer.

Source and Destination Pointers

The source and destination pointers areinitialized directly in the C source code.
The address is a 16-bit address that corresponds to the lower 64K of the C167.
For example, the following line of code:

DSTPO = (unsigned int) &SOTBUF; /* Destination is the serial output */

Assigns the value OXFEBO to the destination pointer for PEC channd 0. This
address is the address of the SOTBUF register (which is the serial 0 transmit
buffer).

Thefollowing line of code:

SRCPO = _sof _ (stringl); /* Source is STRINGL */

Assigns the address of stringl to the source pointer for PEC channd 0.

NOTE
Usethe sof intrinsic library routine to obtain the page 0 offset of variables
used with the PEC source and destination pointers.

136 Chapter 8. Using on-chip Peripherals

Channel Selection

A PEC channd is sdlected for a particular interrupt source through the interrupt
control register. At most, 8 interrupts can use the PEC (sincethere are only 8
PEC channdls). Theinterrupt control registers of the C167 use the format shown
in the following figure when the PEC is enabled.

Interrupt Control Register Layout for PEC

Reserved xxIR xxIE 1 1 1 PEC Channel
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits 15-8 of each interrupt control register are unused. Bits 7-0 contain three
fidlds that control several aspects of the interrupt and PEC channd. Thesefields
are described in the following table.

Field Description

xxIR The interrupt request flag indicates whether or not an interrupt request is pending.
A value of 1 indicates that an interrupt is pending while a value of 0 indicates that
no interrupt is pending. This bit is written by hardware when the interrupt occurs
and is cleared automatically by the hardware when the interrupt service routine
exits. It may be set by software to trigger an interrupt service routine.

XxXIE The interrupt enable bit enables or disables an individual interrupt source. If set to
1, the interrupt is enabled. If set to O, the interrupt is disabled.
PEC Channel The PEC channel defines which PEC channel is used for the interrupt source.

Since all interrupt control registers share the same format for the PEC, you may
define C macros to setup thefidlds. The following code exemplifies the setup of
the interrupt control register for PEC channd transfers.

X) == 0) ? 0x0000 : 0x0040)

#define | C_ I E(x) ((
(((x) & 0x0007) | 0x0038)

#define | C_PEC(x)

—_~

SOTIC = ICIE(1) | I CPEC(O); /* Interrupt Enabl ed, PEC Channel 0 */

Getting Started 137

PEC Example Program

The following example program shows how to program PEC channel O for data
transfers to the serial port transmit buffer. It transmits the string “ 0123456789\n”
out the serial port and then generates a transmit interrupt (serial_TX _IRQ). This
interrupt function resets the PEC 0 transfer and the string is sent again.

#i ncl ude <regl67. h>
#i nclude <intrins.h>

#pragma PECDEF (0) /* Reserve space for PEC channel 0O pointers */
const char stringl [] = "0123456789\n";
/* This function initializes PEC Channel 0O to nove the data from */
/* STRINGL to the serial transmt buffer. */
voi d serial _PECO_setup (void) {
PECCO = 0x0500 /* Move Bytes, Inc Src Ptr */
| ((sizeof (stringl) / sizeof (stringl [0])) - 1);

SRCPO
DSTPO

}

_sof _ (stringl); /* Source is STRINGL */
(unsi gned int) &SOTBUF; /* Destination is the serial output */

/* The Serial TX interrupt just resets PEC 0 and transfers another */
/* copy of STRING 1. */

void serial _TX_irqg (void) interrupt SOTINT = 42 {
serial _PECO_setup ();
}

/* The setup routine for the serial port also initialized the PEC 0 */
/* transfer and sets a TX interrupt request */

voi d serial _setup (unsigned int baud) ({
/* Calcul ate rel oad val ue for baudrate generator */
SOBG = (20000000UL / (32UL * (unsigned | ong) baud)) -1;

DP3 | = 0x0400; Set TXD for output */

DP3 &= ~0x0800; /* Set RXD for input */

P3 | = 0x0400; /* Set TXD high */

SOCON = 0x8011;

SOTI C = O0xO00FS8; /* Serial TX |RQ = Level 14, Priority O (PEC 0) */
seri al _PECO_set up ()

IEN = 1; * Enable interrupts */

}

void main (void) {
serial _setup (19200);

while (1) {
}

138 Chapter 8. Using on-chip Peripherals

Parallel Port I/O

The C167 provides a number of paralld 1/O ports you may use for your target
application. Many may be used for general purpose I/0. However, some ports
have alternate uses that may prevent their generic use by your application.

Port Direction Width Alternate Use

POL 110 8 bits Muxd. 16-bit bus: AO0-A7 & DO-D7
Mux'd. 8-bit bus: AO0-A7 & DO-D7
Non-Mux'd. 16-bit bus: DO-D7
Non-Mux'd. 8-bit bus: DO-D7
POH 110 8 bits Muxd. 16-bit bus: A8-A15 & D8-D15
Mux'd. 8-bit bus: A8-A15
Non-Mux'd. 16-bit bus: D8-D15
Non-Mux'd. 8-bit bus: Available for user 1/10
P1L 110 8 bits Muxd. 16-bit bus: Available for user 1/0
Mux'd. 8-bit bus: Available for user 1/0
Non-Mux'd. 16-bit bus: AO-A7
Non-Mux'd. 8-bit bus: AO-A7
P1H 110 8 bits Muxd. 16-bit bus: Available for user 1/0
Mux'd. 8-bit bus: Available for user 1/0
Non-Mux'd. 16-bit bus: A8-A15
Non-Mux'd. 8-bit bus: A8-A15
P1H.4-P1H.7: Compare/Capture 1/0
P2 1/0 16 bits P2.0-P2.15: Compare/Capture /0
P3 110 15 bits P3.1: Timer 6 Output
P3.2: CAPIN
P3.3: Timer 3 Output
P3.4: Timer 3 Ext. Up/Down
P3.5: Timer 4 Input
P3.6: Timer 3 Input
P3.7: Timer 2 Input
P3.10: Serial Chan. 0 Transmit
P3.11: Serial Chan. 0 Receive
P3.12: /BHE or /\WRH
P3.13: SSC Master Clock Output
P3.14: Not Implemented
P3.15: System Clock Output
P4 1/0 8 bits P4.0-P4.7: A16-A23
P4.4: CAN2_RxD
P4.5: CAN1_RxD
P4.6: CAN1 TxD
P4.7: CAN2_TxD
BS | 16 bits P5.0-P5.15: A/D Analog Inputs
P5.10: Timer 6 Ext. Up/Down
P5.11: Timer 5 Ext. Up/Down
P5.12: Timer 6 Input
P5.13: Timer 5 Input
P5.14: Timer 4 Ext. Up/Down
P5.15: Timer 2 Ext. Up/Down

Getting Started

139

Port Direction Width Alternate Use

P6 110 8 bits P6.0-P6.4: CS0-CS4 Output
P6.5: External Master Hold Reqg. Intput
P6.6: Hold Acknowledge Output
P6.7: Bus Request Output
P7 1/0 8 bits P7.0-P7.3: PWM Outputs 0-3
P7.4-P7.7: Compare/Capture 1/0
P8 110 8 bits P8.0-P8.7: Compare/Capture 1/0O

Most ports have data direction registers you must properly initialize to specify
whether each port pinis an input or an output. The pins of Port 2, Port 3, Port 6,
Port 7, and Port 8 may be programmed for push-pull operation or open-drain
operation via control registers. The following table specifies the names for these
registers.

Write a 1 to a direction
control register bit to
configure the
corresponding port bit or

Direction Push-Pull/Open-Drain

Control Register

Port Register Control Register

POL DPOL))
pin as an output. Write a 0
POH DPOH to configure the port bit or
P1L DP1L pin as an input.
P1H DP1H
P2 DP2 ODP2 Write a 1 to a push-pull/
open-drain control register
P3 = E bit to configure the
P4 DP4 corresponding port bit or
PG DP6 ODP6 pin as an open-drain
output. Write a 0 to
P7 DP7 ODP7 configure the port bit or pin
P8 DPS ODP8 as a push-pull output.

The following example program shows how to output values to Port 7 in
open-drain configuration.

#i ncl ude <regl67. h>

void main (void) {
unsi gned int i;

DP7 = OxFF; /* Setup P7.7-P7.0 for output */
ODP7 = OxFF; /* Setup P7.7-P7.0 for open-drain */
while (1) {
for (i = 0x01; i <= 0x80; i <<=1) {
P7 =i; /* Wite new value to P7 */
}
}

}

140 Chapter 8. Using on-chip Peripherals

General Purpose Timers

The C167 has two groups (GPT1 and GPT2) of general purpose timers/counters.
GPT 1 contains 3 timers/counters (T2, T3, and T4) and GPT2 contains 2
timers/counters (T5 and T6). Each timer in each group may operate independently
in a number of different modes including timer mode, counter mode, gated timer
mode, reload mode, and capture mode.

The following table lists the special function registers used to program the general
purpose timers.

Register Description

CAPREL GPT2 capture/reload register.

CRIC GPT2 CAPREL interrupt control register.
T2 GPT1 timer 2 register.

T3 GPT1 timer 3 register.

T4 GPT1 timer 4 register.

T5 GPT2 timer 5 register.

T6 GPT2 timer 6 register.

T2IC GPT1 timer 2 interrupt control register.
T3IC GPT1 timer 3 interrupt control register.
T4IC GPT1 timer 4 interrupt control register.
T5IC GPT2 timer 5 interrupt control register.
T6IC GPT2 timer 6 interrupt control register.
T2CON GPT1 timer 2 control register.

T3CON GPT1 timer 3 control register.

T4ACON GPT1 timer 4 control register.

T5CON GPT2 timer 5 control register.

T6CON GPT?2 timer 6 control register..

The following example program shows how to use Timer 3 to generate a 1000Hz
timer tick interrupt for timing purposes. Thetimer tick interrupt increments the
timer_tick variable oncefor each interrupt. Thetimer3_setup function initializes
the timer and the timer 3_delay function delays for the specified number of timer
ticks.

This example program toggles a bit on Port 7 every 0.100 seconds.

Getting Started 141

#i ncl ude <regl67. h>
#i nclude <intrins.h>

static unsigned |long volatile tiner_tick = OUL;

static void timer3_irq (void) interrupt T3INT = 35 {
timer_tick++;

}

void timer3_setup (unsigned int ticks_per_sec) {
unsi gned int rel oad;
unsi gned | ong frequency = 2500000;
unsi gned int prescale;

for (prescale = 0; prescale < 8; prescal et+) {
if ((frequency / ticks_per_sec) <= 65535) break;
frequency /= 2;

rel oad = frequency / ticks_per_sec;

T3CON = 0x0080; /[* 2.5MHz, Tinmer Mdde, Count Down */

T3CON | = prescal e;

T2CON = 0x0027; /* Setup T2 for rel oad operation on any T3OTL */
T2 = rel oad; /* Reload for T3 */

T3 = rel oad; /* Start T3 with proper reload */

T3l C = 0x0044; /* Timer 3 interrupt enabled, Level 1 */

T3R = 1; [* Start Timer */

I EN = 1; /* Enable Interrupts /

voi d timer3_delay (unsigned |ong ticks) {
unsi gned long start_tick;
unsigned long tinmer_tick_copy;

atomic (0); /* start un-interruptable code */
start_tick = timer_tick_copy;
endatomic (); /* end un-interruptable code */
while (1) {
atomic (0); /* start un-interruptable code */
timer_tick_copy = tiner_tick;
endatomc (); /* end un-interruptable code */

if ((timer_tick_copy - start_tick) > ticks) break;

}
void nmain (void) {
DP7 = 0x01; /* Setup P7.0 for output */
ODP7 = 0x01; /* Setup P7.0 for open-drain */
timer3_setup (1000); /* Setup tinmer for 1000Hz operation */
while (1) {
timer3_delay (100); /* Wait 0.10 seconds */
P7 | = 0x01; /[* Turn on P7.0 */
timer3_delay (100); /* Wait 0.10 seconds */
P7 &= ~0x01; [* Turn off P7.0 */
}

142 Chapter 8. Using on-chip Peripherals

Serial Interface

The C167 includes a standard RS-232 compatible serial port (ASCO) you may use
with your application programs. The C167 uses port pins P3.10 and P3.11 for
transmit and receive respectively. You must properly configure these port pins for
input and output to use the serial port. Additionally, thereis a baudrate reload
register and a control register that you must properly configure before serial port 0
will function.

The C167 provides full interrupt control for the serial port transmit, receive, and
error conditions. There are separate transmit and receive buffers you write
outgoing data to and read incoming data from. You may poll the interrupt control
registers to determine when a character has been receive or when the next
character may be sent. You may also create interrupt routines to handle these
operations.

The following table lists the special function registers used to program serial

port O.
SO0BG Serial port O baud rate generator reload register.
SOCON Serial port O control register.
SOEIC Serial port O error interrupt control register.
SORBUF Serial port O receive buffer.
SOTBIC Serial port O transmit buffer interrupt control register.
SOTBUF Serial port O transmit buffer.
SORIC Serial port O receive interrupt control register.
SOTIC Serial port O transmit interrupt control register.

The following example program shows how to perform interrupt-driven serial 1/0
using the C167’s asynchronous serial channd. Interrupt routines in this example
handle transmit interrupts (serial_TX _irqg) and receive interrupts (serial_ RX _irq)
using 256-byte circular buffers. Routines are provided to transmit (serial_TX)
and receive (serial_RX) characters and to initialize the serial channe
(serial_setup). Additionally, the library routines for putchar and _getkey have
been replaced with ones that use the interrupt-driven serial 1/O routines. This also
lets the printf and scanf library functions work with the interrupt-driven 1/O
routines in this example.

Getting Started 143

#i ncl ude <regl67. h>
#i nclude <intrins.h>

static unsigned char volatile rx_buf [sizeof (unsigned char) * 256];
static unsi gned char tx_buf [sizeof (unsigned char) * 256]

/* Note: variables that are nodified in interrupts are volatile! */
static unsigned char volatile rx_in 0; /* RX buffer next in index */

static unsi gned char r x_out 0; /* RX buffer next out index */
static unsi gned char tx_in = 0; /[* TX buffer next in index */
static unsigned char volatile tx_out = 0; /[* TX buffer next out index */
static bit volatile tx_restart = 0; /[* NZ for transmt restart */

void serial _TX_irg (void) interrupt SOTINT = 42

if (tx_in !'= tx_out) /* buffer not empty? */
SOTBUF = tx_buf [tx_out++]; /* transmit the next character */
else tx _restart = 1; /* transmit nmust be re-started */
}
void serial _RX_irqg (void) interrupt SORI NT = 43 {
rx_buf [rx_in++] = SORBUF; /* put received character in buffer */
}
char putchar (char c) { /* substitute function for putchar */
/* wait while buffer is full */
while (((unsigned char)(tx_in + 1)) == tx_out); [* buffer full? */
atomic (0); start un-interruptabl e code */
tx_buf [tx_in++] = c; /* put the character in the buffer */
endatomic (); /* end un-interruptable code */
if (tx_restart) { /* if transmts nust be restarted... */
tx_restart = 0; /* clear re-start flag */
SOTIR = 1; /* enable transmit request */
}
SOTIE = 1; /* enable interrupt */
return (c);
}
char _getkeyserial _RX (void) { /* substitute function for _getkey */
while (rx_in == rx_out)
return (rx_buf [rx_out++])
}

voi d serial _setup (unsigned int baud) ({
/* Calcul ate rel oad val ue for baudrate generator */
SOBG = (20000000UL / (32UL * (unsigned |ong) baud)) - 1;

DP3 | = 0x0400; /* Set TXD for output */

DP3 &= ~0x0800; /* Set RXD for input */

P3 | = 0x0400; /* Set TXD high */

SOCON = 0x8011

SORI C = 0x0044; /* Enable serial receive interrupt Ivl 1 */
SOTI C = 0x0008; /* Disable serial transmit interrupt |vl 2*/
tx_restart = 1; /* Set restart flag */

void nmain (void) {
seri al _setup (19200)

144 Chapter 8. Using on-chip Peripherals

I EN = 1; /* Enable interrupts */
printf ("Serial I/O lnitialized\n");

while (1) {
char c;

c = getchar ();
printf ("\nYou typed the character %.\n", c);

Getting Started 145

Watchdog Timer

The C167 includes a 16-bit watchdog timer for recovery from hardware or
software failures. The watchdog timer counts up until it overflows or until it is
reset by the SRVWDT instruction. If the watchdog timer overflows, it resets the
CPU and starts executing your program from the beginning exactly asif a
hardware reset occurred.

Y our application must periodically reset the watchdog timer using the _srvwdt
intrinsic C library function. If your program does not reset the watchdog timer
frequently enough or if your program crashes, the watchdog timer overflows and
resets the CPU.

The watchdog timer configuration register WDTCON lets you specify the reload
value for upper byte of the timer as well as the clock divisor (2 or 128).

The following example code shows how to initialize the watchdog timer and how
to reset it.

#i ncl ude <regl67. h>
#i nclude <intrins.h>

void nmain (void) {

WDTCON = 0x8001; /* Setup the watchdog tiner */
[* 80..------------- Set the reload value to 0x80 */
[* R e Di vi de by 2 */
while (1) {
/* Applicaiton Code */
_srvwdt _ (); /* Reset the watchdog tiner */
}
}
NOTE

The watchdog timer is enabled after a software reset, hardware reset, or
watchdog reset. Your application must disable the watchdog timer if it is not
used. By default, the C startup code disables the watchdog for you.

However, if your application uses the watchdog timer, make sure the startup code
(found in START 167.A66) properly enablesit. Look for the following section in
the startup code and set the WATCHDOG variableto 1.

; WATCHDOG: Di sabl e Har dwar e \Wat chdog
; --- Set WATCHDOG = 1 to enabl e the Hardware wat chdog
$SET (WATCHDOG = 1)

146 Chapter 8. Using on-chip Peripherals

Pulse Width Modulation

Pulse width modulation (PWM) is a method of varying the width of a pulseto
control the duty cycle of asignal. Dimmer switches use this technology to control
the amount of the AC sine wave that reaches the light bulb.

The C167 provides 4 independent PWM channels. The PWM signals are output
on Port 7 pins 0 to 3. Each channd has a 16-bit up/down counter, a 16-bit period
register, and a 16-bit pulse width register. There are 2 common control registers
and a common interrupt control register.

The PWM output signals are XORed with the outputs of their respective Port 7
latches. After reset, the Port 7 latches are cleared to 0 and the PWM signals go
directly to the port pins. You may set a port latch to invert the PWM signal on
that port pin. For example, setting P7.0 inverts the PWM channe 0 output signal.

Register Description

PPx PWM period register for channel x.
PWx PWM pulse width register for channel x.
PTx PWM counter register for channel x.
PWMCONO PWM control register 0.

PWMCON1 PWM control register 1.

PWMIC PWM interrupt control register.

The clock for each of the PWM counters is the CPU clock with no divisor or with
adivisor of 64. In the standard PWM generation mode, the PWM counter (PTXx)
counts up from O until it reaches the defined period and then resets to 0.

If the clock frequency is 20.000 MHz and the PWM counter is driven with no
divisor and the period register (PPx) contains 19999, the counter counts from O to
19999 (20,000 counts). 20,000,000 divided by 20,000 is 1,000 (1.000 kHz).

The pulse width register (PWX) contains the count at which the PWM signal is
“on”. When the PWM counter contains a value that is less than the pulse width
register, the output is “off” or 0. When the PWM counter contains avalue that is
greater than the pulse width register, the output is“on” or 1.

If the period is setup for 19999 (20000 counts), the following pulse widths
generate the specified duty cycles.

Getting Started 147

Pulse Width Duty Cycle'r

0 100.0%
2500 87.5%
5000 75.0%

10000 50.0%
15000 25.0%
17500 12.5%
20000 0.0%

T For aperiod of 20,000 counts.

The following example code shows functions to initialize the PWM (PWM _setup)
and how to set the pulse width (PWM _pulse width).
#i ncl ude <regl67. h>

voi d PWM setup (unsigned char channel, unsigned int period) {
if (channel > 3) return;

DP7 |= (1 << channel); /* Setup P7.channel for output */
ODP7 | = (1 << channel); /* Setup P7.channel for open-drain */
P7 &= ~(1 << channel); /* Pl.channel = 0 */
switch (channel) {
case O:
PPO = peri od; /* Set PWM period */
PW = period + 1; /* Set 0%duty cycle */
PBO1 = O; /* Channel 0 & 1 are independent */
br eak;
case 1:
PP1 = peri od; /* Set PWM period */
PWM = period + 1; /* Set 0%duty cycle */
PBO1 = O; /* Channel 0 & 1 are independent */
br eak;
case 2
PP2 = peri od; /* Set PWM period */
PW2 = period + 1; /* Set 0% duty cycle */
PS2 = 0; /* Stardard node (non-single shot) */
br eak;
case 3:
PP3 = peri od; /* Set PWM period */
PWB = period + 1; /* Set 0%duty cycle */
PS3 = 0; /* Stardard node (non-single shot) */
br eak;
}
PWMCONO | = (0x0001 << channel); /* Start the PTx counter */

PWMCONO &= ~(0x0010 << channel); /* PTx cl ocked with CLKCPU */
PWMCONO &= ~(0x0100 << channel); /* Disable interrupts */
PWMCONO &= ~(0x1000 << channel); /* Clear interrupt request */

PWMCON1 | = (0x0001 << channel); /* Enabl e channel output */
PWMCON1 &= ~(0x0010 << channel); /* Setup edge aligned node */

148

Chapter 8. Using on-chip Peripherals

voi d PWM pul se_wi dth (unsigned char channel,

switch (channel) {

case 0: PW = width;
case 1: PWL = width;
case 2: PW2 = width;
case 3: PWB = width;

void nmain (void) {
PWM setup (0, 20000 -

while (1) {
PWM pul se_wi dth (0,
PWM pul se_wi dth (0,
PWM pul se_wi dth (0,
PWM pul se_wi dth (0,
}
}

br eak;
br eak;
br eak;
br eak;

1);

0);

20000) ;
10000) ;
15000) ;

unsigned int wdth) {

/* 20MHz/ 20000 = 1kHz (1ms pul se width) */

/* 100% duty

/*
/*
/*

0% duty
50% dut y
25% dut y

cycle
cycle
cycle
cycle

(ON fromO to 19999) */
*/
*/
*/

Getting Started 149

A/D Converter

The C167 A/D converter provides 16 channds of 10-bit analog to digital
conversion. Voltages presented to the input pins on Port 5 are converted to digital
values and may be read from the A/D result register. Analog inputs may range
from the voltages present on the Varer and Vacnp pins.

The on-chip A/D converter may be configured for a number of conversion modes

including single or continuous conversions on one or more analog input channes.

In addition, the C167 A/D converter can generate interrupts for end-of-conversion
and overwrite conditions and can even be used to trigger a PEC data transfer.

Register Description

ADCON A/D converter control register.

ADDAT A/D converter result register.

ADDAT2 A/D converter channel injection result register.

ADCIC A/D converter interrupt control register (for end-of-conversion).

ADEIC A/D converter interrupt control register (for overrun errors and channel injection).

The following example code shows how to initialize the A/D converter for single
channd single conversion mode and read the data for that channdl.

#i ncl ude <regl67. h>

unsi gned int ADC_read (unsigned char channel) {
ADCON = 0xB000;

[* B...--------oooo- Conversion Clock = TCC = 96 *TCL */
/* B...----eeee oo Sanpl e Clock = 8 * TCC */
ADCON | = channel & 0x000F; /* Sel ect channel to convert */
ADST = 1, /* Begin conversion */
while (ADBSY == 1); /* Wait while the ADC is converting */
return (ADDAT & OxO3FF); /* Return the result */

}

voi d read_adc_channels (void) {
unsi gned char i;

while (1) {
for (i =0; i < 16; i++) { /* Loop thru ADC channels */
printf ("ADC Channel % = %\n",
(unsigned) i, /* Print channel */

(unsigned) ADC read (i)); /* Print ADC input */

150 Chapter 8. Using on-chip Peripherals

Power Reduction Modes

The C167 offers two different power saving modes you may invoke using a single
instruction: Idle Mode and Power Down M ode.

Idle Mode

Idle M ode halts the CPU but |ets peripherals continue operating. When any reset
or interrupt condition occurs, Idle M odeis canceled. Power consumption can be
greatly decreased inidlemode. All peripherals including the watchdog timer
continue to operate normally.

To enter 1dle M ode, your program must execute the | DL E instruction. Y ou may
do thisdirectly in C using the _idle _intrinsic library function.

#i nclude <intrins.h>

void main (void) {
while (1) {
task_a ();
task_b ():
task_c ():
idle (); /* Enter |DLE Mode */

}
}

Any interrupt condition, regardless of | EN, terminates |dle Mode. This applies
only to those interrupts whose individual interrupt enable flags were set before
Idle M ode was entered.

After the RETI instruction of the interrupt that terminates | dle M ode, the CPU
begins executing the code following the | DL E instruction.
Power Down Mode

Power Down M ode halts both the CPU and peripherals. It is canceled only by a
hardware reset.

To enter Power Down M ode, your program must pull the NM I pin low using
external hardware and execute the PWRDN instruction using the _pwrdn_
intrinsic library function.

#i nclude <intrins.h>

void nmain (void) {
task_a ();
task_b ():

Getting Started 151

task_c ():

pwrdn (); /* Enter PONER DOWN Mbde - Wit for reset */
}

If the NM1 pinisnot hed low, the PWRDN instruction is ignored and the 166
does not go into Power Down M ode.

Once Power Down M ode is entered, only a hardware reset will restart the CPU
and peripherals.

Getting Started 153

Chapter 10. CPU and C Startup Code

Your target program must initialize the CPU to match the configuration of your
hardware design. The STARTUP.A66 file contains the startup code for an 8xC166
target program. The START167.A66 file contains the startup code for all other 166
derivatives. These sourcefiles are located in the\ci166\L1B directory. You should
copy either of these files to your project directory and make changes to match your
hardware configuration.

The startup code executes immediately upon reset of the target system. It
optionally performs the following operations:

1. Initialize the SYSCON and BUSCON SFRs,

2. Initialize the ADDRSELx and BUSCONXx SFRs,

Reserve and initialize the hardware stack and stack overflow and underflow
SFRs,

Set DPPO - DPP3 and CP for memory and registerbank accesses,

w

Reserve and initialize the user stack area and user stack pointer (RO),
Clear data memory,

Initialize variables that are explicitly initialized in the C source code,

© N o g &

Transfer control to the main C function.

Selecting the Memory Model

When you assemble the startup code outside of pVision2, you must tell the
assembler which memory modd you use. You do this with the SET command and
the memory mode: TINY, SMALL, COMPACT, HCOMPACT, MEDIUM,
LARGE, or HLARGE. For example, if you usethe SMALL memory modd, use
the following command line to assemble the startup code:

A166 START167.A66 SET (SMALL)

Configuring the Startup Code

The STARTUP.A66 and START167.A66 files contain definitions at the beginning
which are used for the chip hardware configuration and for the C run-time system.
An overview of the groups of configuration statements is provided below.

154 Chapter 10. CPU and C Startup Code

Hardware Configuration

INEE) Description

SYSCON CPU system control register. This configures the chip parameters like basic bus
characteristics, power-down modes, chip select configuration, system clock
parameters, and so on.

SYSCON2 Power-down control registers, CPU clock control registers, and on-chip peripheral
SYSCON3 enable registers (available only on some devices).

BUSCONN Initialization registers for BUSCONO-BUSCON4. These registers define the
ADDRESSN starting address, range, and bus characteristics for different memory devices (like
RANGEnN FLASH, SRAM, EPROM, and I/O) accessed via the chip select outputs.

C Compiler Run-Time Configuration

Name Description

CLR_MEMORY Memory Zero Initialization of RAM areas. Default: enable the memory zero
initialization of RAM area. To disable the memory zero initialization enter “$SET
(CLR_MEMORY = 1)"; this reduces the code size of the startup code.

DPPUSE Allow re-assignment of DPP registers. Default: 1 to support the L166 DPPUSE
directive. To disable the DPP re-assignment enter “$SET (DPPUSE = 0)”; this
reduces the code size of the startup code.

INIT_VARS Variable Initialization of explicit initialized variables (The variables are to be defined
static or declared at file level). Default: initialize variables. To disable the variable
initialization enter “$SET (INIT_VARS = 0)"; this reduces the code size of the
startup code.

SSTSZ Set the actual stack space for the system stack, if you have selected 7 for the
STK_SIZE.
STK_SIZE STK_SIZE: Maximum System Stack Size selection initialization value. Default

value is 0 for 256 words stack size. This is also the reset value. Set STK_SIZE to
the following values for other stack sizes:

0 for 256 words system stack.

1 for 128 words system stack.

2 for 64 words system stack.

3 for 32 words system stack.

4 for 512 words system stack (not for 166)

7 for user defined size of the system stack

USTSZ Set the actual stack space for the user stack. The user stack is used for automatic
variables. The USTSZ variable allows you to set the size for the user stack.

WATCHDOG Hardware Watchdog control. Default: disable the hardware watchdog. To enable
the watchdog enter “$SET (WATCHDOG = 1)".

NOTE

Semens offers a configuration and programming utility called DAVE. Thisfree
utility helps you configure the CPU and create C source code to use the on-chip
peripherals of the various 166 derivatives.

Getting Started 155

Chapter 11. Using Monitor-166

The Keil Monitor-166 allows you to connect your 166/ST 10 hardware to the
uVision2 Debugger. You can use the powerful debugging interface to test
application programs in your target hardware.

The Monitor requires that the program you are debugging is located in RAM
space. To set breakpoints in your code, the Monitor inserts TRAP instructions at
all breakpoint locations. This operation is completely transparent, but may have
side effects when calculating program checksums.

The Monitor program requires two interrupt vectors: the NMI interrupt is used for
breakpoints. You may break program execution with a switch connect to the NM|
pin of the CPU. The serial interface requires and additional interrupt, to stop
program execution with the uVision2 HALT toolbar command.

The Keil Monitor-166 may be configured in three different operating modes:

Bootstrap Mode

In bootstrap mode, the Monitor program will be downloaded into RAM of the
target system. Thisistypical the best mode to start working with the Monitor,
sinceit auto-adjust baudrates and does not require to burn any EPROM's. The
Monitor communicates with the 166/ST 10 build-in UART ASCO.

UART Mode

In this configuration the Monitor program will be direct programmed to (Flash)
EPROM's. It also communicates viathe UART ASCO (or ASC1 for 8xC166
CPU) and requires exact configuration of the baudrate. Compared to the
Bootstrap mode, you save the time to download the Monitor program at system
startup.

Simulated Serial Mode

This configuration uses a simulated serial interface and does not require the
166/ST10 on-chip UART. You may usetwo unused I/O pins of the 166/ST10 to
establish the communication between uVision2 and your target hardware. This
mode does not use any of the on-chip peripherals, but has the restrictions that you
cannot use the uVision2 HALT toolbar command, since the serial interrupt is not
available.

156 Chapter 11. Using Monitor-166

Bootstrap Loader

Many derivatives of the 166 include a bootstrap loader (BSL) that uses the serial
port to download code to the on-chip RAM. The asynchronous serial port (ASCO)
is used to transfer the program code.

For example, the C167 device enters BSL mode when port pin POL .4 islow at the
end of the hardwarereset. After entering BSL mode, the C167 waitsto receive a
zero byte on the RXDO line. The zero byte must contain 1 start bit, eight zero
bits, and a stop bit. Oncethe zero byteis received, the BSL initialized the ASCO
interface with the appropriate baudrate and transmits an identification byte on
TXDO. This procedureis similar for other 166 derivatives.

The bootstrap loader is used by the Keil Monitor to download itsef and your
program for debugging. You target board does not require a monitor ROM. Only
RAM devices are required for testing your programs.

Hardware and Software Requirements
The following requirements must be met for Monitor-166 to operate correctly:

¢ Siemens 161/163/164/165/166/167 CPU or ST10 variant

¢ Serial interface for communication with the PC.

¢« Softwaretrap used for breakpoints (usually NMI trap).

¢« Additional 10 words stack spacein the user program to be tested.
¢ 256 bytes off-chip data memory (RAM).

¢+ 5 Kbytes of-chip code memory loaded with Monitor-166 software (ROM or
RAM in Bootstrap Mode).

All other hardware components can be used by the application.

Serial Transmission Line

Monitor-166 requires only the signals TRANSM T DATA, RECEI VE DATA and

SI GNAL GROUND from the RS232 or V.24 line. However, in most cases, some
additional connections are necessary in the serial connectors, to enable transmit
and receive data.

PIN connections of various computer systems

Getting Started 157

25 Pin Connector 9 Pin Connector
Signal Name Pin Description Signal Name Pin Description
RxD 3 receive data RxD 2 receive data
TxD 2 transmit data TxD 3 transmit data
Gnd 7 signal ground Gnd 5 signal ground

In addition to the above pins, connect pin 7 to pin 8 and pin 1 to pin 4 and pin 6.

uVision2 Monitor Driver

uVision2 interfaces to target systems when you sdect Use: Keil M onitor-166
Driver inthe dialog Options — Debug.

Options for Target 'Keil MCB167" [2]x]

Target | Output | Listing | G188 | A166 | L168 Locate | L1686 Misc Debug |

 Use Simulatar ‘(:,u IKE”MDNYDI”TEBDHVEV j Settings |

¥ Load Application at Startup W Go till maing) ¥ Load Application at Startup W Go till maing)

Click on Settings to opens the dialog Monitor Driver Settings that allows you to
configure various parameters such as COM port and baudrate. Refer to “ Sat
Debug Options’ on page 75 for more information about the Debug dialog.

Monitor Driver Settings
—Monitor Configuration———————— —Description
[keitticE167 =] || [Manitorfor Keil MCE167 Board B

Diata Area: 0x03E900 .. Ox03EAFF
Code Area: 0x03EB00 . 0x03FFFF

—PC Pan Settings
+ou need under Options - L166 Misc RESERWVE:

Faort ICOM 2 - 8H-0BH. 0ACH-0AFH. 0x3E900-0x3FFFF
Baudrate |1 5200 < Jumper setting for MCEB167 Y2.0 should be

13 J14 J15 J16 il Jz
s ok W Hok = K
— Stop Program Execution with
4 J5 JB J7 Jg Ja
 Serial Interrupt or M o s ¢ s sk s
@ ¥ ey b o Y L
11 A2 7 Nk 19

—Cache Options
The awailable RFAM: 0. 0<3FFFF

-
| | »

¥ Cache SFR Space p— | —

¥ Ignore Code Modifications

V¥ Cache Memory

158 Chapter 11. Using Monitor-166

The following table describes the Monitor Driver Settings page:

Dialog Item Description

Monitor Configuration List available Monitor configurations. You may add user configurations as
described under “Monitor-166 Configuration” on page 160. Select the Monitor
configuration for your target hardware.

Description Provides you with a quick description of you target hardware. It contains also
required configuration settings. You may use cut and paste to copy the settings
into other Options dialog pages.

PC Port Settings Select the PC COM port and the baudrate you want to use. If you have
problems with your target hardware, try the Baudrate 9600.

Stop Program When Serial interrupt or NMI is enabled, you can terminate a running

Execution with application program with the Stop toolbar button or the ESC key in the

Command page. To support this, the serial interface is not longer available for
the user program. In addition, it is not allowed to reset the global Interrupt
Enable Flag IE (bit in PSW) in your application.

In any case a high to low transition at the NMI# pin terminates a running

application.
Cache Options To speed up the screen updates, the Monitor driver implements several data
caches.
Ignore Code When enabled pVision2 duplicates the program code on the PC and never
Modifications reloads the code from your target system. You should disable this option to

debug self-modifying code.

Cache Memory enables the memory cache for data regions. When you single step trough
code, pVision2 will reload the data regions, even when memory cache is
enabled. You should disable this option to view changes on 10 ports or
peripherals when debugging is stopped.

Cache SFR space enables the memory cache for the SFR space of the CPU. When you single
step trough code, pVision2 will reload the SFR regions, even when SFR cache
is enabled. You should disable this option to view changes on 10 ports or
peripherals when debugging is stopped.

Restrictions of pVision2 when using Monitor-166

The memory mapping of a CPU board with Monitor-166 is selected with
hardware components and the Monitor configuration file. It is not possibleto use
Debug — Memory M ap to change the memory mapping of the target system.

The Performance Analyzer, Call Stack and Code Cover age features are not
available with Monitor-166.

Breakpoint Options are handled directly by Monitor-166. However, when access
or conditional breakpoints are set, the application is executed in single steps and
not inreal time. Single step execution is at least 1000 times slower.

Getting Started

159

Target Options when Using Monitor-166

When you are using Monitor-166,
the complete target application need
to be stored in RAM space. Thisis
required, since the Monitor changes
the program code to set breakpoints
inyour application. Thereforethe
ROM entriesin the dialog Options
— Target — External Memory
should refer to the RAM areas
where you warnt to store the
program code during debugging.

In the page Options— L 166 Misc
you should enter under Reserve the
memory regions used by your
Monitor configuration. The
required address ranges for pre-
configured Monitor variants can be
found under Options— Debug —
Settings — Description. For more
information refer to “Monitor-166
Configuration” on page.

Options for Target 'Keil MCB167"

Terget | ouiput | Listing | C166 | AT6E | L166 Locate | L168 Misc| Di

Siemens C167CR-16FM Clack (MHz): IEU 0 I
IR mall: 'near’ functions and data I
Operating System: INDI’]E j
Data Threshald: InearE
—hlear Memony
18 vl KB Rak |16 ~| KB ROM
— External Memony
Start: Size
#1 [ram 7| |uxzuuuu |szuunu
#2 [roM =] |uxu |szuunu
[ram] | |
0K | Cancel

Options for Target 'Keil MCB167"

Terget | Outout | Listing | €165 | A18E | L166Locote L166 Misc | oy

Disable Warning Nurmbers:

™ use linker contral file

—WWarnings

Create | Efaivee

™ Create Relocatable Output File (LINKONLY)

Assign I
RegBank I
Fesere IBH-DEIH. DACH-DAFH, 0x3EA00-0x3FFFF
Misc
Confrols
Linker 1o \Objectimeasure" REGFILE (4Objectimeasure. ORL
Control | PRINT(" iListingmeasure.mBE") RESERVE (8H-DBH. DA
Sting |CLASSES (ICODE (0x0-0xEFFF), NCODE (0x10000-0x1FFI

Cancel

o]

160 Chapter 11. Using Monitor-166

Monitor-166 Configuration

The Monitor-166 can be adapted to different hardware configurations. The
configuration works with a pVision2 project file and is described in thefile
C:\ KEI L\ C166\ MONI TOR\ README. TXT.

The following table describes the pVision2 project files used for the Monitor
configuration:

Folder and Project File Description

C:\KEIL\C166\MONITOR\U User configuration files for 8xC166 CPU and ST10-166.
SER166\USER 166.UV2

C:\KEIL\C166\MONITOR\U User configuration files for all other CPU variants, like 161/163/164/165

SER167\USER 167.UV2 and 167 CPU type and ST10
C:\KEIL\C166\MONITOR\ Other folders may contain pre-configured monitor variants for different
boards.

To configure a new Monitor variant, create a new folder under C:\K EIL\C166\M ONITOR
and copy all files from USER166 or USER167

Trouble Shooting

If the Monitor does start correctly it is typically a problem of the CPU startup or
Monitor code and data locations. Check carefully the settings in thefile
CONFIG.INC. InBOOTSTRAP mode, uVision2 check if the Monitor is
downloaded correctly. If the Monitor does not start, check if the Write
Configuration Control bit WRCFG matches your hardware.

If the Monitor stops working during the C startup code of your application your
are most likely using different settings in the CPU parameter section. Check
carefully if the settings of the STARTUP.A66 or START167.A66 file match the
settings in the CONFIG.INC.

During operation the Monitor might report the following errors:

Error Text Description

BAD SERIAL uVision2 has lost the serial connection to the Monitor program. This error might

TRANSMISSION occur because your program re-initializes the serial interface or changes the
PORT direction register for I/O lines used by the serial interface. This error
also occurs when you single step in the serial I/O routines of your application.

CANNOT WRITE TO You try to download code into ROM space or non-existing memory.
ROM AREA

CANNOT WRITE You try to set a breakpoint in ROM space or non-existing memary.
BREAKPOINT

Getting Started

161

Error Text

Description

CANNOT WRITE
BREAKPOINT
VECTOR

INVALID OPCODE

The Monitor program cannot install the interrupt vectors for the NMI trap or
Serial interface. This error occurs when the RAM at address 0 cannot be
accessed.

You try to execute invalid program code.

Getting Started 163

Chapter 12. Command Reference

This chapter briefly describes the commands and directives for the Keil 166/ST10
development tools. Commands and directives are listed in a tabular format along
with a description.

NOTE
Underlined characters denote the abbreviation for the particular command or
directive.

uVision 2 Command Line Invocation

The pVision2 IDE can directly execute operations on a project when it is called
from a command line. The command line syntax is as follows:

uv2 |[proj ectfil e]| |[cormand]|

projectfile isthenameof aproject file. uVision2 project files have the
extension .UV2. If no projectfileis specify, pVision2 opens the
last project file used.

command is one of the following commands. If no command is specified
uVision2 opens the projectfile in interactive Build Mode.

Command Description

-b Build the project and exit after the build process is complete.

-d Start pVision2 Debugging Mode. You can use this command together with a Debug
Initialization File to execute automated test procedures. pVision2 will exit after
debugging is completed with the EXIT command or stop debug session.

-r Re-translate the project and exit after the build process is complete.

-t targethame Open the project and set the specified target as current target. This option can be

used in combination with other pVision2 commands. Example:
UV2 PROJECT1. UWWV2 —t"Cl67CR Board" -b

builds the target “C167CR Board” as defined in the PROJECT1.UV2 file. If the —t
command option is not given pVision2 uses the target which was set as current
target in the last project session.

-0 outputfile copy output of the Output Window — Build page to the specified file. Example:
UV2 PRQJECT1. UV2 —-o0"li st make. prn" -r

164 Chapter 12. Command Reference

A166 Macro Assembler Directives

I nvocation: A166 sourcefile [directives]
A166 @omuandfile

sourcefile isthename of an assembler sourcefile

comundfile isthenameof afilewhich contains a complete command line for
the assembler including asourcefil e anddirecti ves.

directives arecontrol parameters described in the following table.

A166 Directive Description

CASE Enable case sensitive symbol names.

COND, NOCOND Enable or disable skipped sections to appear in the listing file.

DATE(date) Places date string in header (9 characters maximum).

DEBUG Includes debugging symbol information in the object file.

ERRORERINT[(fiIename)] Outputs error messages to filename.

EXPDECNUM Set the output format of the macro processor function %EVAL to
decimal format.

EXTMAC Enable extended ST10 MAC instructions.

INCLUDE(filename) Includes the contents of filename in the assembly.

GEN Generates a full listing of macro expansions in listing file.

NOGEN List only the original source text in listing file.

NOLINES Excludes line number information from the object file.

NOLIST Excludes the assembler source code from the listing file.

NOMPL Disables MPL macro processing.

NOMACRO Disables standard macro processing.

NOMOD166 Do not recognize the predefined special function registers.

MOD167 Enable the extended instruction set for 161/163/164/165/167.

NOSYMBOLS Excludes the symbol table from the listing file.

NOSYMLIST Do not list the following symbol definitions in the symbol table.

OBJECT](filename)], E_nables or disab'le_s object file output. The object file is saved as

NOOBJECT filename if specified.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing file.

PRINT]|(filename)], E_nables or disab'le_s listing file output. The listing file is saved as

NOPRINT filename if specified.

REGUSE Defines register usage of assembler functions for the C optimizer.

RESET (symbol, ...) Assigns a value of 0000h to the specified symbols.

RESTORE Restore control setting from SAVE stack.

SAVE Stores current control setting for GEN, LIST and SYMLIST.

SEGMENTED, Define the mode of CPU operation.

NOSEGMENTED

Getting Started 165

A166 Directive Description

SET (symbol, ...) Assigns a value of OFFFFh to the specified symbols.

TABS (number) Specifies the tab setting.

TITLE(title) Includes title in the listing file header.

TYPE, NOTYPE Defines whether type information is included in object file or not.

USEDEXTONLY Prevent A166 from generating external definitions for unused external
identifiers.

XREF Includes a symbol cross reference report in the listing file.

Chapter 12. Command Reference

C166 Optimizing C Cross Compiler Directives

| nvocation:

where
sourcefile

commandfil e

directives

C166 sourcefile [directives]|
C166 @onmmandfile

is the name of a C sourcefile.

is the name of a file which contains a complete command line for
the compiler including asour cefil e anddirecti ves.

are control parameters described in the following table.

C166 Directive Description

ASMEXPAND,

BROWSE
BYTEALIGN

0
(®]
9]
m

0 10 10 |
m m
mlg
5 6

EXTINS
FIXXXX
ELOAT64
HCOMPACT
HLARGE

NOEXTEND
NOFIXDPP
NOFRAME

ASM / ENDASM

NOASMEXPAND

DYNAMICUSRSTK

Merge assembler source text into the SRC file.

Enable or disable macro text expansion for assembler source text
sections.

Generate browse information.

Assume pointers to byte-aligned structures.

Includes an assembly listing in the listing file.

Selects the COMPACT memory model.

Includes debugging information in the object file.

Defines preprocessor names on the command line.

Enables dynamic modification of the user stack by a real-time OS.
Break EXT instruction sequences at C source line numbers.
Generate code with fixes for chip bugs.

Enabled double-precision floating-point numbers.

Selects the HCOMPACT memory model.

Selects the HLARGE memory model.

Specifies size limits for default placing of objects without explicit memory
types.

Specify additional path names for include files.

Enable or disabled zero initialization of variables.

Selects the LARGE memory model.

Includes the contents of include files in the listing file.

Selects the MEDIUM memory model.

Enable the extended instruction set for 161/163/164/165/167.
Disable alias checking for pointer access optimization.

Do not save the DPP registers in interrupt functions.

Excludes skipped conditional code from the listing file.

Disables 166 extensions and processes only ANSI C constructs.
Generate code without DPP register assumptions.

Suppress prolog and epilog for interrupt service routines

Getting Started

167

C166 Directive Description

OBJECT](filename)],

NOOBJECT
OPTIMIZE
ORDER

PACK
PAGELENGTH(n)
PAGEWIDTH(n)
PECDEF

PRINT[(filename)],
NOPRINT

REGEILE(filename)

RENAMECLASS
SAVESYS
SAVEUSR

SMALL

SRC

STATIC
SYMBOLS

TINY
UNSINGEDCHAR
USERSTACKDPP3
WARNING
WARNINGLEVEL (n)

PREPRINT][(filename)]

PREPRINTONLY/(file)]

Enables or disables object file output. The object file is saved as
filename if specified.
Specifies the level of optimization performed by the compiler.

Locates variables in memory in the same order in which they are
declared in the source file.

Generate BYTE aligned structures with word elements.

Sets maximum number of lines in each page of listing file.
Sets maximum number of characters in each line of listing file.
Reserve PEC channels.

Produce a preprocessor listing file with all macros expanded. The
preprocessor listing file is saved as filename if specified.

Produce a preprocessor listing and stop compilation.

Enables or disables listing file output. The listing file is saved as
filename if specified.

Specifies the name of the generated file to contain register usage
information.

Rename predefined class names in the object file.

Save temporary results and variables to system stack.

Save temporary results and saved-by-callee variables to user stack.

Selects the SMALL memory model.

Creates an assembly source file instead of an object file.
Allocate automatic variables to static memory addresses.
Includes a list of the symbols used in the listing file.

Selects the TINY memory model.

Treat plain char as unsigned char.

Assume user stack area in IDATA or SDATA memory class.
Change a Warning to an Error or disable a warning.

Controls the types and severity of warnings generated.

168 Chapter 12. Command Reference

L166 Linker/Locator Directives

The L166 Linker/Locator links your 166 object modules, locates them at absolute
addresses, and creates an absolute object module you may use for debugging or
creating an Intel HEX file. Invokethe linker using either of the following
command lines:

L166 @ommandfil e

L166 inputli st |[TO out putfil e] |[di recti ves]l

where

i nput | i st is a comma-separated list of the object files and libraries the
linker includes in the final absolute object module.

outputfile isthename of the absolute object modulethe linker creates.

comundfil e isthenameof afilewhich contains a complete command line for
thelinker. The command fileincludesani nput 1 i st,
out put fil e (if desired), and di recti ves. You may usea
command file to make linking your application easier or to include
more input files or directives than fit on the command line.

directives arelinker control parameters described in the following table.

L166 Directive Description

ASSIGN Define public symbols on the command line.

CINITTAB Locate C initialization data sections to specified address range.
CLASSES Define physical class address ranges and class locating order.
DISABLEWARNING Disable report of specified warning numbers.

DPPUSE Re-assign DPP registers for NCONST and NDATA groups.
GROUPS Define physical group addresses and group locating order.

IXREF Include a cross reference report in the listing file.

LINKONLY Suppress located process for incremental linkage.

NAME Specifies a module name for the object file.

NOCASE Disable case sensitivity of the linker.

NOCOMMENTS Excludes comment information from the listing file and the object file.
NODEFAULTLIBRARY Excludes modules from the run-time libraries.

NOLINES Excludes line number information from the listing file and object file.
NOMAP Excludes memory map information from the listing file.
NOPUBLICS Excludes public symbol information in listing and object file.
NOSYMBOLS Excludes local symbol information in listing and object file.
NOTYPES Excludes type information from the object file.

NOVECTAB Remove the interrupt vector table in the output file.

Getting Started 169

L166 Directive Description

OBJECTCONTROLS Excludes specific debugging information from the object file.
Subcontrols must be specified in parentheses. See NOCOMMENTS,
NOLINES, NOPUBLICS, NOSYMBOLS, and PURGE.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.
PAGEWIDTH(n) Sets maximum number of characters in each line of listing file.
PRINT Specifies the name of the listing file.

PRINTCONTROLS Excludes specific debugging information from the listing file.

Subcontrols must be specified in parentheses. See NOCOMMENTS,
NOLINES, NOPUBLICS, NOSYMBOLS, and PURGE.

PURGE Excludes all debugging information from the listing file and the object file.
REGBANK Define physical register bank addresses and locating order.
REGEFILE(filename) Specifies the name of the register usage information file.

RESERVE Reserve physical 166/ST10 memory areas.

RTX166 Includes support for the RTX166 Full real-time kernel.

RTX166TINY Includes support for the RTX166 Tiny real-time kernel.

SECSIZE Change the length of sections.

SECTIONS Define physical section addresses and section locating order.

VECTAB Specify a start address for the interrupt vector table.

WARNINGLEVEL (n) Controls the types and severity of warnings generated.

170 Chapter 12. Command Reference

LIB166 Library Manager Commands

TheLIB166 Library Manager lets you create and maintain library files of your
166 object modules. Invoke the library manager using the following command:

LI B166 |[commnd]|
LI B166 @onmandfil e

command is one of the following commands. |f no command is specified
LIB166 enters an interactive command mode.

comundfile isthenameof afilewhich contains a complete command line for
the library manager. The command file includes a single
comund that is executed by LIB166. You may use a command
fileto generate alarge library with at once.

LIB166 Command Description

ADD Adds an object module to the library file. For example,
LI B166 ADD GOODCODE. OBJ TO MYLIB. LI B

adds the GOODCODE.OBJ abject module to MYLIB.LIB.

CREATE Creates a new library file. For example,
LI B166 CREATE MyLIB. LI B

creates a new library file named MYLIB.LIB.

DELETE Removes an object module from the library file. For example,
LI B166 DELETE MyLIB. LI B ()

removes the GOODCODE module from MYLIB.LIB.

EXTRACT Extracts an object module from the library file. For example,
L1 B166 EXTRACT MyLIB. LI B (GOODCODE) TO GOOD. OBJ

copies the GOODCODE maodule to the object file GOOD.OBJ.

EXIT Exits the library manager interactive mode.

HELP Displays help information for the library manager.

LIST Lists the module and public symbol information stored in the library file. For
example,

LI B166 LI ST MyLIB.LIB TO MYLI B. LST PUBLI CS
generates a listing file (named MYLIB.LST) that contains the module names
stored in the MYLIB.LIB library file. The PUBLI CS directive specifies that
public symbols are also included in the listing.

REPLACE Replaces an existing object module to the library file. For example,
L1 B166 REPLACE GOODCODE. OBJ | N MyLI B.LIB

replaces the GOODCODE.OBJ object module in MYLIB.LIB. Note that
Replace will add GOODCODE.OBJ to the library if it does not exists.

TRANSFER Generates a complete new library and adds object modules. For example,
L1 B166 TRANSFER FI LE1. OBJ, FILE2. OBJ TO MYLIB. LIB

deletes the existing library MYLIB.LIB, re-creates it and adds the object
modules FILE1.OBJ and FILE2.0OBJ to that library.

Getting Started 171

OH166 Object-HEX Converter Commands

The OH166 object-HEX converter creates Intel HEX files from absolute object
modules. Invoke the HEX converter using the following command:

OH166 absfile |[H167MRANGE(st art - end)MCFFSET(offset)MFLASI-I(fi I'l byt e)]

where

absfile is the name of an absolute object file that the L 166 linker/locator
generated.

H167 specifies that an Intel HEX-386 fileis created. By defaullt,
OH166 creates a standard Intdd HEX-86 file.

RANGE specifies the address range of data in the absf i | e to convert and
storeinthe HEX file. The default range is 0x000000 to
OXFFFFFF.

start specifies the starting address of therange. This address must be
entered in C hexadecimal notation, for example: 0x010000.

end specifies the ending address of the range. This address must be
entered in C hexadecimal notation, for example: 0x FFFFFF.

OFFSET specifies an offset (of f set) added to the addresses from the
absfile.

FLASH The HEX fileis sorted in ascending order. Unused bytesin the

RANGE arefilled withthefi I 1 byt e specified with the FLASH
directive. The sorted HEX file can be downloaded to FLASH
devices.

The following command line creates a HEX file named MY CODE.HEX from the
absolute object module MY CODE. Records inthe HEX file are writtenin
HEX-386 format.

OH166 MYCCDE H167

172 Index
Index
Additional items, document
$ conventions iv
X ADEIC register 149
$ system variable 85 Analog/Digital converter 149
ANSI C 110
_ Assembler Instructions 68
_break system variable 85 Assembler kit 8
_getkey library routine 142 Assign directive
_idle_library routine 150 L 166 linker/locator 168
_pwrdn_library routine 150 Assistance 5
_sof _library routine 135
srvwdt library routine 145 B
Binary constants 83
H Bit addresses 94
pVision2 Debugger 67 Bit-fields 49
uVision2 IDE 6,13,36 Bold capital text, use of iv
Command line parameters 163 Bootstrap |loader 156
Debug Options 75 Braces, use of iv
Menu Commands 14 break 97
Options 40 Breakpoint Commands 81
Shortcuts 14 Breakpoints 69
Toolbars 14 Access Break 70
Toolbox 74 Conditional 70
Execution Break 70
1 Build Process 57
166 Devices 5 Build Project 41
166 microcontroller family 2
C
A C run-time configuration 154
AID converter 149 C startup code 153
A166 8 C166 compiler
A166 macro assembler 28 Commands 166
Commands 164 Directives 166
Directives 164 Language Extensions 20
Access Break 70 Memory Models 23
ADCIC register 149 CA166 _ 8
ADCON register 149 CAPREL register 140
Add command case _ 97
LI1B166 library manager 170 Changes to the documentation 3
ADDAT register 149 Character constant escape
ADDAT2 register 149 sequence 84

Getting Started 173
Character constants 84 CreateaLibrary 59
Choices, document conventions iv Createa Project File 36
Classes directive Create command

L. 166 linker/locator 168 L1B166 library manager 170
Classes of symbols 91 Create HEX File al
Code Coverage 77 Creating header files 128
Command reference 163 CRIC register 140

A166 macro assembler 164 Custom Translator 64

C166 compiler 166 cycles system variable 85

L 166 linker/locator 168

LIB166 library manager 170 D

OH166 hex converter 171
Comparison chart 9 Data Threshold 50
Compiler kit 8 Data Types 54
conditional assembly 28 DAVE tility 154
Conditional Break 70 Debug Comamnds
Configuration Program Execution 80

C run-time 154 Debug Commands 17,80

CPU 153 Memory 80

DAVE utility 154 Debug Functions 97

Hardware 154 Debug Menu 17,68,72

Memory model 153 Debug Mode 67

Run-time 154 Debugger 67

tool options 43 Decimal constants 83
Constant Expressions 82 Delete command
Constants 82 LIB166 library manager 170

Binary 83 Development cycle 6

Character 84 Development tools 13

Decimal 83 Device Database 58

Floating-point 83 Direct memory access

HEX 83 controllers 134

Octal 83 Directives

String 84 A166 macro assembler 164
continue 97 C166 compiler 166
Control Directives L 166 linker/locator 168

#pragma 26 LIB166 library manager 170
Copy Tool Settings 60 OH166 hex converter 171
Correct syntax errors 41 Directory structure 12
Counters 140 Disassembly Window 68
Courier typeface, use of iv Displayed text, document
CPU driver symbals 85 conventions ' iv
CPU initialization 153 DMA 134
CPU pin register See VTREG
CPU registers 73 do . 97
CPU Registers Document conventions iv

)) 73 Documentation changes 3
CPU Simulation 67 Double brackets, use of iv

Index

DPP registers 129
dScope functions 110
E
Edit Menu 15
Editor Commands 15
EK 166 evaluation kit 4
Ellipses, use of iv
Ellipses, vertical, use of iv
ese 97
Escape sequence 84
Evaluation board 155
Evaluation kit 4
Evaluation users 4
Example program
A/D converter 149
General purposetimers 140
Idle mode 150
Interrupt functions 131
Paralld port 1/0 139
PEC 137
Peripheral event controller 137
Power down mode 150
Pulse width modulation 147
PWM 147
Serial interface 142
Watchdog timer 145
Examples of expressions 95
exec
Function description 100
Predefined function 100
Execution Break 70
Exit command
LIB166 library manager 170
Experienced users 4
Expression components 82
Bit addresses 82,94
Constants 82
CPU driver symbals 85
Line numbers 82,93
Operators 82,94
Program variables 82,90
SFRs 85
Special function registers 85
Symbols 82,90
System variables 82,85

Type specifications 82,94

Variables 82,90

VTREGs 86
Expression examples 95
Expressions 82
External RAM 55,59
Extract command

LIB166 library manager 170
F
Feature check list 9
File Commands 14
File Extensions 65
File Menu 14
File specific Options 43,62
Filename, document

conventions iv

Files Groups 42
Findin Files 44
float

Predefined function 100
Floating-point constants 83
Folder for Listing Files 58
Folder for Object Files 58
FR166 9
Fully qualified symbols 91
Function classes

Predefined functions 99

Signal functions 99

User functions 99
Function Classes 99
Functions

uVision2 Debug Functions 97

Classes 99

Creating 97

Invoking 99

Predefined 100

Signal 106

User 104
G
General commands 81
General purposetimers 140

Example program 140

getfloat

Interrupt control registers 132

Getting Started 175
Function description 101 Layout 132
Predefined function 100 Layout for PEC 136

getint Interrupt enable flag 133
Predefined function 100 Interrupt functions 131
getlong Example program 131
Predefined function 100 Interrupt group level 133
Getting help 5 Interrupt priority level 133
Getting started immediately 3 Interrupt request flag 133
Global Register Optimization 50 Introduction 1
goto 97 Italicized text, use of iv
GPT1 140 itrace system variable 85
GPT2 140
Group specific Options K
for Groups 43,62
Key names, document
H conventions iv
Kit comparison 9
Hardware configuration 154
Hardware requirements 11 L
HCOMPACT Memory Mode 49 :
Header files 128 L 166 linker/locator 30
Help 5 Assign directive 168
Help command Classes directive 168
L1B166 library manager 170 Commands 168
Help Menu 18 Directives 168
HEX constants 83 Ixref directive 168
HEX File al Name di rectivctja 122
Nocomments directive 1
HLARGE Memory Model 49 Nodefaultlibrary directive 168
Last minute changes 3
| LIB166 library manager 34
1/0 ports 88,138 Add command 170
IDLE instruction 150 Commands 170
Idle mode 150 Create command 170
Example program 150 Delete command 170
IEN register 132,150 Exit command 170
if97 Extract command 170
Import pVisionl Projects 56 Help command 170
Include specific Library List command 170
Modules 64 Replace command 170
Installing the software 11 _ Transfer mmand 170
Instructions Library 63,64
IDLE 150 Line numbers 93
PWRDN 150 List command
RETI 150 LIB166 library manager 170
SRVWDT 145 Listing Files 58
Literal 91

Index

Literal symbols 91
Locate Sections 43,60
M
Macro Processing Language 28
Macros
standard macros 28
Manual topics 3
MEDIUM Memory Modd 48
Memory Map 78
Memory model 153
Memory Model 40,48
COMPACT 23
HCOMPACT 23
HLARGE 23
LARGE 23
MEDIUM 23
SMALL 23
TINY 23
Memory Models 23
Memory Type 40,48
Memory Types 22
Memory Window 73
memset
Function description 101
Predefined function 100
M odule names 90
Monitor Driver 157
Monitor-166 155
Configuration 160
Serial Transmission Line 156
MPL 28
N
Naming conventions for
symbols 90
New Proj ect 36
New users 4
NMI pin 150
Non-qualified symbols 92
@)
Object Files 58
Octal constants 83

OH166 hex converter 34
Command-line example 171
Commands 171

Omitted text, document

conventions iv

Operators 94

Optimum Code 48

Optional items, document

conventions iv

Options
for Files 43,62
for Groups 43,62

Output Window 41

P

Paralld port 138
Example program 139

Part numbers 8

PC-Lint 47

PEC 134
Control register layout 135
Example program 137
Interrupt control register

layout 136

Performance Analyzer 77

Peripheral event controller 134
Control register layout 135
Example program 137
Interrupt control register

layout 136

PK161 8

PK 166 8

Pointer 23

Port 1/0 138

Ports 88

Power down mode 150
Example program 150

Power reduction modes 150

PPx register 146

Predefined functions 100
exec 100
float 100
getfloat 100,101
getint 100
getlong 100

Getting Started 177
memset 100,101 ADDAT?2 149
printf 100,101 ADEIC 149
rand 100,102 CAPREL 140
twatch 100,102 CRIC 140

Printed text, document IEN 132,150
conventions iv PPx 146
printf PSW 132
Function description 101 PTx 146
Predefined function 100 PWMCONO 146
printf library routine 142 PWMCON1 146
Product link 8 PWMIC 146
Production kit 4 PWx 146
Professional Developer’s Kit 8 SOBG 142
Program counter systemvariable 85 SOCON 142
Project Commands 17 SOEIC 142
Project Menu 17 SORBUF 142
Project Targets 42 SORIC 142
PSW register 132 SOTBIC 142
PTX register 146 SOTBUF 142
Pulse width modulation 146 SOTIC 142
Example program 147 T2 140
putchar library routine 142 T2CON 140
PWM 146 T2IC 140
Example program 147 T3 140
PWMCONO register 146 T3CON 140
PWMCONL1 register 146 T3IC 140
PWMIC register 146 T4 140
PWRDN instruction 150 T4CON 140
PWXx register 146 T4IC 140
T5 140
Q T5CON 140
— T5IC 140
Qualified symbols 91 T6 140
T6CON 140
R TelC 140
radix system variable 85 WDTCON 145
rand Replace command
Function description 102 LI B:_L66 I|br_ary manager 170
Predefined function 100 Requ_&ctmg assistance 3
Real-time operating system 9 Requi rements_ 11
REG167.H header file 128 RETI instruction 150
Register banks 131 RS-232 142
Registers RS-232 ports 89
ADCIC 149 RTX166 9
ADCON 149 Run Program 72
ADDAT 149

Index

S
SOBG register 142
SOCON register 142
SOEIC register 142
SORBUF register 142
SORIC register 142
SOTBIC register 142
SOTBUF register 142
SOTIC register 142
Sans sexif typeface, use of iv
Saving power 150
scanf library routine 142
Select Text 16
Serial interface 142

Example program 142
Serial ports 89
Serial Window 76
SETUP program 11
SFRs 85
Siemens

DAVE utility 154
Signal functions 106
Simulating I/O ports 88
Simulating serial ports 89
Simulation 67
Simulator 67
Single Step Program 72
Single-board computers 155
SMALL Memory Modd 48
Software development cycle 6
Software requirements 11
Source Browser 44
Special function registers 85
SRVWDT instruction 145
ST10 Devices 2
Start pVision2 36
Start Debugging 67
Start External Tools 57
START167.A66 38,153
START167.A66 file 145
Startup code 128,145,153

Memory model 153
STARTUP.A66 153
String constants 84
switch 97

Symbol expressions 90
Symbols
Classification 91
CPU driver 85
Fully qualified 91
Literals 91
M odule names 90
Naming conventions 90
Non-qualified 92
Qualified names 91
SFRs 85
Special function registers 85
System variables 85
VTREGs 86
Symbols Window 79
Syntax errors 41
System variables 85
$85
_break 85
cycles 85
itrace 85
Program counter 85
radix 85
T
T2 register 140
T2CON register 140
T2IC register 140
T3 register 140
T3CON register 140
T3IC register 140
T4 register 140
TACON register 140
T4IC register 140
T5 register 140
T5CON register 140
T5IC register 140
T6 register 140
T6CON register 140
T6IC register 140
Target hardware 155
Target Tool Settings 60
Technical support 5
Timer 2 140
Timer 3 140
Timer 4 140

Getting Started 179

Timer 5 140 \V

Timer 6 140

Timers 140 Vaeno Pin 149

Tool Information 65 Varer pin . 149

tool options 43 Var!able expressions 90

Tools Menu 18,46 Variable values 72

Topics 3 Variables, document

Transfer command conventions iv
LIB166 library manager 170 Vertical bar, use of iv

Translate asm/endasm sections 63 Vertical dlipses, use of iv

twatch View memory contents 73
Function description 102 View Menu 16
Predefined function 100 VTREGs 86

Type specifications 94

Types of users 4 W

U Watch Window 72

Watchdog timer 145

UART 76 Example program 145

User Classes 61 WDTCON regjister 145

User functions 104 while 97

Users 4 Window Menu 18

Using Monitor 155 Windows-based tool

Utilities 44 requirements 11

Write Optimum Code 48

	Preface
	Contents
	Chapter€1. Introduction
	166/ST10 Microcontroller Family
	Manual Topics
	Changes to the Documentation
	Evaluation Kits and Production Kits
	Types of Users
	Requesting Assistance
	Software Development Cycle
	µVision2 IDE
	166 Compiler & Assembler
	LIB166 Library Manager
	L166 Linker/Locator
	µVision2 Debugger
	Monitor˚166
	RTX166 Real˚Time Operating System

	Product Overview

	PK166 Professional Developer™s Kit
	PK161 Professional Developer™s Kit
	CA166 Compiler Kit
	A166 Assembler Kit
	RTX166 Real˚Time Operating System (FR166)
	Comparison Chart
	Chapter€2. Installation
	System Requirements
	Installation Details
	Folder Structure

	Chapter€3. Development Tools
	µVision2 Integrated Development Environment
	About the Environment
	Menu Commands, Toolbars and Shortcuts
	File Menu and File Commands
	Edit Menu and Editor Commands
	Select Text Commands
	View Menu
	Project Menu and Project Commands

	Debug Menu and Debug Commands
	Tools Menu
	Window Menu

	Help Menu

	C166 Optimizing C Cross Compiler
	C166 Language Extensions
	Data Types
	Memory Types
	Memory Models
	Pointer

	Examples for using the memory type together with Pointers:
	Registerbanks
	Interrupt Functions
	PEC Support
	Parameter Passing
	Code Optimizing
	General Optimizations
	166/ST10 Specific Optimizations
	Program Invocation
	Example
	Sample Program
	A166 Macro Assembler
	Source˚Level Debugging
	Functional Overview
	Listing File

	L166 Linker/Locator
	Address Management
	Map File

	LIB166 Library Manager

	OH166 Object˚HEX Converter
	Chapter€4. Creating Applications
	Create a Project
	�� Start µVision2 and Create a Project File
	�� Create New Source Files
	Add and Configure the Startup Code
	�� Set Tool Options for Target
	�� Build Project and Create a HEX File

	Project Targets and File Groups
	Overview of Configuration Dialogs
	µVision2 Utilities
	�� Find in Files
	�� Source Browser
	Tools Menu
	Running PC-Lint

	Writing Optimum Code
	Memory Models and Memory Types
	Tips for SMALL and MEDIUM Memory Model
	Tips for HCOMPACT and HLARGE Memory Model

	Bit-field Structures
	Data Threshold
	Global Register Optimization
	Other C166 Compiler Directives
	Data Types

	Applications without external RAM Devices
	Tips and Tricks
	Import Project Files from µVision Version 1
	Start External Tools after the Build Process
	Specify a Separate Folder for Listing and Object Files
	Use a CPU that is not in the µVision2 Device Database
	Create a Library File
	Copy Tool Settings to a New Target
	Locate Sections to Absolute Memory Locations
	User Classes
	File and Group Specific Options Œ Properties Dialog
	Translate a C Module with asm/endasm Sections
	Include Always specific Library Modules
	Use a Custom Translator

	File Extensions
	Different Compiler and Assembler Settings
	Version and Serial Number Information

	Chapter€5. Testing Programs
	µVision2 Debugger
	CPU Simulation
	�� Start Debugging
	�� Disassembly Window
	�� Breakpoints
	�� Target Program Execution
	�� Watch Window
	� CPU Registers
	�� Memory Window
	�� Toolbox
	�� Set Debug Options
	�� Serial Window
	�� Performance Analyzer
	�� Code Coverage
	Memory Map
	View Œ Symbols Window

	Debug Commands
	Memory Commands
	Program Execution Commands
	Breakpoint Commands
	General Commands

	Expressions
	Components of an Expression
	Constants
	Binary, Decimal, HEX, and Octal Constants
	Floating˚Point Constants
	Character Constants
	String Constants

	System Variables
	On-chip Peripheral Symbols
	Special Function Registers (SFRs)
	CPU Pin Registers (VTREGs)
	Program Variables (Symbols)
	Module Names
	Symbol Naming Conventions
	Symbol Classification
	Literal Symbols

	Fully Qualified Symbols
	Non˚Qualified Symbols
	Line Numbers
	Bit Addresses
	Type Specifications
	Operators
	Differences Between µVision2 and C
	Expression Examples
	Chapter€6. µVision2 Debug Functions
	Creating Functions
	Invoking Functions
	Function Classes
	Predefined Functions
	void exec (ﬁcommand_stringﬂ)
	double getdbl (ﬁprompt_stringﬂ), int getint (ﬁprompt_stringﬂ),�long getlong (ﬁprompt_stringﬂ)

	void memset (start address, uchar value, ulong length)

	void printf (ﬁformat_stringﬂ, ...)
	int rand (int seed)
	void twatch (long states)
	uchar _RBYTE (address), uint _RWORD (address),�ulong _RDWORD (address), float _RFLOAT (address),�double _RDOUBLE (address)
	_WBYTE (addr, uchar value), _WWORD (addr, uint value),�_WDWORD (addr, ulong value), _WFLOAT (addr, float value,�_WDOUBLE (addr, double value)
	User Functions
	Example
	Restrictions
	Signal Functions
	Example
	Restrictions
	Managing Signal Functions
	Analog Example
	Differences Between Debug Functions and C
	Chapter€7. Sample Programs
	HELLO: Your First 166 C Program
	HELLO Project File
	Editing HELLO.C
	�� Compiling and Linking HELLO
	�� Testing HELLO

	Single˚Stepping and Breakpoints

	MEASURE: A Remote Measurement System
	Hardware Requirements
	MEASURE Project File
	�� Compiling and Linking MEASURE
	�� Browse Symbols
	�� Testing MEASURE
	Remote Measurement System Commands
	�� View Program Code
	��
�
	�� View Memory Contents

	��
�
	Program Execution
	�� Call Stack
	��
�
	�� Trace Recording
	��
�
	Breakpoints Dialog
	�� Watch Variables
	View and Modify On-Chip Peripherals
	Using Peripheral Dialog Boxes
	Using VTREG Symbols
	Using User and Signal Functions
	Using the Performance Analyzer
	Chapter€8. Using on-chip Peripherals
	Header Files and Startup Code
	DPP Registers
	Interrupts
	Interrupt Control Registers

	Peripheral Event Controller
	PEC Control Register
	Source and Destination Pointers
	Channel Selection
	PEC Example Program

	Parallel Port I/O
	General Purpose Timers
	Serial Interface
	Watchdog Timer
	Pulse Width Modulation
	A/D Converter

	Power Reduction Modes
	Idle Mode
	Power Down Mode

	Chapter€10. CPU and C€Startup Code
	Selecting the Memory Model
	Configuring the Startup Code
	Hardware Configuration
	C Compiler Run˚Time Configuration

	Chapter€11. Using Monitor-166
	Bootstrap Mode
	UART Mode
	Simulated Serial Mode
	Bootstrap Loader

	Hardware and Software Requirements
	Serial Transmission Line
	µVision2 Monitor Driver
	Restrictions of µVision2 when using Monitor-166

	Target Options when Using Monitor-166
	Monitor-166 Configuration
	Trouble Shooting
	Chapter€12. Command Reference
	µVision 2 Command Line Invocation
	A166 Macro Assembler Directives
	C166 Optimizing C Cross Compiler Directives
	L166 Linker/Locator Directives
	LIB166 Library Manager Commands
	OH166 Object˚HEX Converter Commands

	Index

