
Getting Started and
Create Applications

with µVision2 and 166/ST10
 Microcontroller Development Tools

User’s Guide 03.99

ii Keil Software

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure agreement
and may be used or copied only in accordance with the terms of the agreement. It
is against the law to copy the software on any medium except as specifically
allowed in the license or nondisclosure agreement. The purchaser may make one
copy of the software for backup purposes. No part of this manual may be
reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or information storage and retrieval systems,
for any purpose other than for the purchaser’s personal use, without written
permission.

Copyright © 1997-1999 Keil Elektronik GmbH and Keil Software, Inc.
All rights reserved.

NOTE
This manual assumes that you are familiar with Microsoft Windows and the
hardware and instruction set of the 166 and ST10 microcontrollers.

Keil C166™ and µVision™ are trademarks of Keil Elektronik GmbH.
Microsoft®, and Windows™ are trademarks or registered trademarks of Microsoft
Corporation.
PC® is a registered trademark of International Business Machines Corporation.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started iii

Preface
This manual is an introduction to the Keil Software development tools for the
Siemens 166 and ST Microelectronics ST10 family of microcontrollers. It
introduces new users and interested readers to our product line. With nothing
more than this book, you should be able to successfully run and use our tools.
This user’s guide contains the following chapters.

“Chapter 1. Introduction” gives an overview of this user’s guide and discusses the
different products that we offer for the 166 and ST10 microcontroller family.

 “Chapter 2. Installation” describes how to install the software and how to setup
an operating environment for the tools.

 “Chapter 3. Development Tools” describes the major features of the µVision2
IDE with integrated debugger, the C compiler, assembler, and utilities.

“Chapter 4. Creating Applications” describes how to create projects, edit source
files, compile and fix syntax errors, and generate executeable code.

 “Chapter 5. Testing Programs” describes how you use the µVision2 debugger to
simulate and test your entire application.

 “Chapter 6. µVision2 Debug Functions” discusses built-in, user, and signal
functions that extended the debug capabilities or generate I/O signals.

“Chapter 7. Sample Programs” shows how to use the Keil 166 development tools.

“Chapter 8. Using on-chip Peripherals” shows how to access the on-chip
166/ST10 peripherals within the C166 compiler.

 “Chapter 10. CPU and C Startup Code” provides information on setting up the
166/ST10 CPU for your application.

“Chapter 11. Using Monitor-166” discusses how to initialize the monitor and
install it on your target hardware.

“Chapter 12. Command Reference” briefly describes the commands and controls
available in the Keil 166 development tools.

iv Preface

Document Conventions
This document uses the following conventions:

Examples Description

README.TXT Bold capital text is used for the names of executable programs, data files,
source files, environment variables, and commands you enter at the command
prompt. This text usually represents commands that you must type in literally.
For example:

CLS DIR L166.EXE

Note that you are not required to enter these commands using all capital
letters.

Courier Text in this typeface is used to represent information that displays on screen
or prints at the printer.

This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents information that you must provide. For example,
projectfile in a syntax string means that you must supply the actual project file
name.

Occasionally, italics are also used to emphasize words in the text.

Elements that repeat… Ellipses (…) are used to indicate an item that may be repeated.

Omitted code
:
:

Vertical ellipses are used in source code listings to indicate that a fragment of
the program is omitted. For example:

Void main (void) {
:
:
while (1);

¤Optional Items¥ Optional arguments in command lines and optional fields are indicated by
double brackets. For example:

C166 TEST.C PRINT ¤(filename)¥
{ opt1 | opt2 } Text contained within braces, separated by a vertical bar represents a group

of items from which one must be chosen. The braces enclose all of the
choices and the vertical bars separate the choices. One item in the list must
be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard. For
example, “Press Enter to continue.”

Point Move the mouse until the mouse pointer rests on the item desired.

Click Quickly press and release a mouse button while pointing at the item to be
selected.

Drag Press the left mouse button while on a selected item. Then, hold the button
down while moving the mouse. When the item to be selected is at the desired
position, release the button.

Double-Click Click the mouse button twice in rapid succession.

Getting Started v

Contents

Chapter 1. Introduction .. 1
166/ST10 Microcontroller Family ..2
Manual Topics ...3
Changes to the Documentation ...3
Evaluation Kits and Production Kits...4
Types of Users..4
Requesting Assistance ..5
Product Overview...8

Chapter 2. Installation... 11
System Requirements ...11
Installation Details ...11
Folder Structure ...12

Chapter 3. Development Tools.. 13
µVision2 Integrated Development Environment ...13
C166 Optimizing C Cross Compiler...20
A166 Macro Assembler..28
L166 Linker/Locator ..30
LIB166 Library Manager..34
OH166 Object-HEX Converter ...34

Chapter 4. Creating Applications ... 35
Create a Project ..35
Project Targets and File Groups ...42
Overview of Configuration Dialogs ..43
µVision2 Utilities ...44
Writing Optimum Code..48
Applications without external RAM Devices ..55
Tips and Tricks ..56

Chapter 5. Testing Programs.. 67
µVision2 Debugger ..67
Debug Commands ..80
Expressions ..82

Chapter 6. µVision2 Debug Functions .. 97
Creating Functions ...97
Invoking Functions ..99
Function Classes ..99
Differences Between Debug Functions and C ...110

Chapter 7. Sample Programs ...111
HELLO: Your First 166 C Program...112
MEASURE: A Remote Measurement System ..117

vi Contents

Chapter 8. Using on-chip Peripherals.. 127
DPP Registers .. 129
Interrupts ... 131
Peripheral Event Controller ... 134
Parallel Port I/O... 138
General Purpose Timers... 140
Serial Interface .. 142
Watchdog Timer .. 145
Pulse Width Modulation .. 146
A/D Converter ... 149
Power Reduction Modes... 150

Chapter 10. CPU and C Startup Code .. 153
Selecting the Memory Model ... 153
Configuring the Startup Code .. 153

Chapter 11. Using Monitor-166... 155
µVision2 Monitor Driver ... 157
Target Options when Using Monitor-166... 159
Monitor-166 Configuration .. 160
Trouble Shooting ... 160

Chapter 12. Command Reference.. 163
µVision 2 Command Line Invocation... 163
A166 Macro Assembler Directives ... 164
C166 Optimizing C Cross Compiler Directives .. 166
L166 Linker/Locator Directives ... 168
LIB166 Library Manager Commands... 170
OH166 Object-HEX Converter Commands .. 171

Index ... 172

Getting Started 1

1
Chapter 1. Introduction
Thank you for allowing Keil Software to provide you with software development
tools for the 166 and ST10 family of microprocessors. With the Keil tools, you
can generate embedded applications for the C161, C163, C164, C165, 8xC166,
C167 and ST10 microcontrollers as well as future derivatives.

NOTE
Throughout this manual we refer to these tools as the 166 development tools.
However, they are not limited to just the 8xC166 devices.

The Keil Software 166 development tools listed below are the programs you use to
compile your C code, assemble your assembler source files, link your program
together, create HEX files, and debug your target program. Each of these
programs is described in more detail in “Chapter 3. Development Tools” on
page 13.

¢ µVision2 for Windows™ Integrated Development Environment: combines
Project Management, Source Code Editing, and Program Debugging in one
powerful environment.

¢ C166 ANSI Optimizing C Cross Compiler: creates relocatable object modules
from your C source code,

¢ A166 Macro Assembler: creates relocatable object modules from your 8xC166
or C167 assembler source code,

¢ L166 Linker/Locator: combines relocatable object modules created by the
compiler and assembler into the final absolute object module,

¢ LIB166 Library Manager: combines object modules into a library which may
be used by the linker,

¢ OH166 Object-HEX Converter: creates Intel HEX files from absolute object
modules,

¢ RTX-166 real-time operating system: simplifies the design of complex, time-
critical software projects.

The tools are combined into the kits described in “Product Overview” on page 8.
They are designed for the professional software developer, but any level of
programmer can use them to get the most out of the 166 hardware.

2 Chapter 1. Introduction

1
166/ST10 Microcontroller Family
The 166/ST10 family of microcontrollers has been available since the early
1990’s. With a wide variety of outstanding features and peripherals, the 166 CPU
core is destined to see service well into the next century. Many derivatives are
available and several are available from multiple sources (Siemens and
ST Microelectronics). As a 16-bit, high-performance embedded processor, the
166 family has no equal.

A typical 166/ST10 family member contains the 8xC166 or C167 CPU core, data
memory, code memory, and some versatile peripheral functions. A flexible
memory interface lets you expand the capabilities of the 166 using standard
peripherals and memory devices in either 8-bit or 16-bit configurations.

Overview of various 166 and ST10 derivatives

The 166/ST10 family covers today 30+ different CPU variants with extensive on-
chip peripheral and I/O. Many variants offer A/D converters, CAN interface,
Flash memory, and a rich set of timers, interrupts and I/O pins. Also included are
power management features, watchdogs and clock drivers. The memory interface
allows a mixture of 8 / 16-bit multiplexed / non-multiplex bus systems including
chip select pins on up to five memory areas. The following list provides only a
brief overview.

Basic Device
Code

max. CPU
Clock

Description

C161
(several Variants)

16 MHz low-cost controller. Variants with on-chip Flash memory and CAN
interface are available.

C163 25 MHz down-grade of the C165 CPU, less on-chip RAM.

C164 20 MHz with special capture/compare unit for high-speed signal generation
and event capturing. variants with on-chip OTP memory available.

C165 25 MHz down-grade of the C167 CPU, no A/D converter, less I/O.

8xC166 20 MHz The original 166 CPU; no extended instruction set and limited to
256 KB memory space. Variants with Flash memory available.

C167
(several Variants)

25 MHz The high-end 166 CPU with extensive peripherals and I/O
capabilities. Some variants have on-chip Flash program and data
memory.

ST10-272 50 MHz version with high speed CPU and on-chip MAC (DSP) co-
processor unit.

This list represents the devices available in January 1999. The 166/ST10 microcontroller family
constantly grows. Announcements for 1999: several new devices and improving of the CPU

speed.

Getting Started 3

1
Manual Topics
This manual discusses a number of topics including how to:

¢ Select the best tool kit for your application (see “Product Overview” on page
8),

¢ Install the software on your system (see “Chapter 2. Installation” on page 11),

¢ Overview and features of the 166 development tools (see “Chapter 3.
Development Tools” on page 13),

¢ Create full applications using the µVision2 integrated development
environment (see “Chapter 4. Creating Applications” on page 35),

¢ Debug programs and simulate target hardware using the µVision2 debugger
(see “Chapter 5. Testing Programs” on page 67),

¢ Access the on-chip peripherals and special features of the 166 variants using
the C166 compiler (see “Chapter 8. Using on-chip Peripherals” on page 127),

¢ Run the included sample programs (see “Chapter 7. Sample Programs” on
page 111).

NOTE
If you want to get started immediately, you may do so by installing the software
(refer to “Chapter 2. Installation” on page 11) and running the sample
programs (refer to “Chapter 7. Sample Programs” on page 111).

Changes to the Documentation
Last minute changes and corrections to the software and manuals are listed in the
RELEASE.TXT files. These files are located in the folders UV2 and
C166\HLP. Take the time to read this file to determine if there are any changes
that may impact your installation.

4 Chapter 1. Introduction

1
Evaluation Kits and Production Kits
Keil Software provides two types of kits in which our tools are delivered.

The EK166 Evaluation Kit includes evaluation versions of our 166 tools along
with this user’s guide. The tools in the evaluation kit let you generate applications
up to 4 Kbytes in size. You may use this kit to evaluate the effectiveness of our
166 tools and to generate small target applications.

The 166 Production Kits (discussed in “Product Overview” on page 8) include
the unlimited versions of our 166 tools along with this user’s guide and the full
manual set. The production kits also include 1 year of free technical support and
product updates. Updates are available on world wide web www.keil.com under
the update section.

Types of Users
This manual addresses three types of users: evaluation users, new users, and
experienced users.

Evaluation Users are those users who have not yet purchased the software but
have requested the evaluation package to get a better feel for what the tools do and
how they perform. The evaluation package includes evaluation tools that are
limited to 4 Kbytes along with several sample programs that provide real-world
applications created for the 166/ST10 microcontroller family. Even if you are
only an evaluation user, take the time to read this manual. It explains how to
install the software, provides you with an overview of the development tools, and
introduces the sample programs.

New Users are those users who are purchasing 166 development tools for the first
time. The included software provides you with the latest development tool
technology, manuals, and sample programs. If you are new to the 166 or the
tools, take the time to review the sample programs described in this manual. They
provide a quick tutorial and help new or inexperienced users quickly get started.

Experienced Users are those users who have previously used the Keil 166
development tools and are now upgrading to the latest version. The software
included with a product upgrade contains the latest development tools and sample
programs.

Getting Started 5

1
Requesting Assistance
At Keil Software, we are dedicated to providing you with the best embedded
development tools and documentation available. If you have suggestions or
comments regarding any of the printed manuals accompanying this product, please
contact us. If you think you have discovered a problem with the software, do the
following before calling technical support.

1. Read the sections in this manual that pertains to the job or task you are trying
to accomplish.

2. Make sure you are using the most current version of the software and utilities.
Check out the update section on www.keil.com to make sure that you have the
latest software version.

3. Isolate the problem to determine if it is a problem with the assembler, compiler,
linker, library manager, or another development tool.

4. Further isolate software problems by reducing your code to a few lines.

If, after following these steps, you are still experiencing problems, report them to
our technical support group. Please include your product serial number and
version number. We prefer that you send the problem via email. If you contact us
by fax, be sure to include your name and telephone numbers (voice and fax) where
we can reach you.

Try to be as detailed as possible when describing the problem you are having. The
more descriptive your example, the faster we can find a solution. If you have a
one-page code example demonstrating the problem, please email it to us. If
possible, make sure that your problem can be duplicated with the µVision2
simulator. Please try to avoid sending complete applications or long listings as
this slows down our response to you.

NOTE
You can always get technical support, product updates, application notes, and
sample programs from our world wide web site www.keil.com.

6 Chapter 1. Introduction

1
Software Development Cycle
When you use the Keil Software tools, the project development cycle is roughly
the same as it is for any other software development project.

1. Create a project to select the 166/ST10
device and the tool settings.

2. Create source files in C or assembly.

3. Build your application with the project
manager.

4. Correct errors in source files.

5. Test linked application.

The development cycle described above may be
best illustrated by a block diagram of the
complete 166 tool set.

µVision2 IDE

The µVision2 IDE combines project
management, a rich-featured editor with
interactive error correction, option setup, make
facility, and on-line help.

You use µVision2 to create your source files and organize them into a project that
defines your target application. µVision2 automatically compiles, assembles, and
links your embedded application and provides a single focal point for you
development efforts.

166 Compiler & Assembler

Source files are created by the µVision2 IDE and are passed to the C166 compiler
or A166 assembler. The compiler and assembler process source files and creates
relocatable object files. The Keil C166 compiler is a full ANSI implementation of
the C programming language. All standard features of the C language are
supported. In addition, numerous features for direct support of the 166
environment have been added. The Keil A166 macro assembler supports the
complete instruction sets of the 8xC166, C167 and ST10 derivatives.

µVision2 IDE with Editor & Make

ANSI C
Standard
Library

RTX166
Real-Time
Operating

System

LIB166
Library

Manager

L166 Linker/Locater

C166
ANSI C Compiler

A166
Macro Assembler

high-speed
CPU/Peripheral

Simulation

Monitor-166
Target Debugger

µVision2 Debugger
Emulator &

PROM Programmer

Advanced GDI
interface for
Emulators &

Target Debuggers

Getting Started 7

1
LIB166 Library Manager

Object files created by the compiler and assembler may be used by the LIB166
library manager to create object libraries which are specially formatted, ordered
program collections of object modules that the linker may process at a later time.
When the linker processes a library, only those object modules in the library that
are necessary to create the program are used.

L166 Linker/Locator

Object files and library files are processed by the linker into an absolute object
module. An absolute object file or module contains no relocatable code. All the
code in an absolute object file resides at fixed memory locations. The absolute
object file may be used to program EPROM or other memory devices. The
absolute object module may also be used with the µVision2 Debugger or with an
in-circuit emulator for the program test.

µVision2 Debugger

The µVision2 symbolic, source-level debugger is ideally suited for fast, reliable
program debugging. The debugger contains a high-speed simulator that let you
simulate an entire 166 system including on-chip peripherals and external
hardware. Via the integrated device database you can configure the µVision2
debugger to the attributes and peripherals of 166/ST10 device you are using.

For testing the software in a real hardware, you may connect the µVision2
Debugger with Monitor-166 or you can use the Advanced GDI interface to attach
the debugger front-end to a target system.

Monitor-166

The µVision2 Debugger supports target debugging using Monitor-166. The
monitor program is a program that resides in the memory of your target hardware
and communicates with µVision2 using the serial port of the 166 and a COM port
of your PC. With Monitor-166, µVision2 lets you perform source-level, symbolic
debugging on your target hardware.

RTX166 Real-Time Operating System

The RTX166 real-time operating system is a multitasking kernel for the 166
family. The RTX166 real-time kernel simplifies the system design, programming,

8 Chapter 1. Introduction

1
and debugging of complex applications where fast reaction to time critical events
is essential. The kernel is fully integrated into the C166 compiler and is easy to
use. Task description tables and operating system consistency are automatically
controlled by the L166 linker/locator.

Product Overview
Keil Software provides the premier development tools for the Siemens 166 and
ST Microelectronics ST10 microcontrollers. We bundle our software
development tools into different packages or tool kits. The “Comparison Chart” on
page 9 shows the full extent of the Keil Software 166 development tools. Each kit
and its contents are described below.

PK166 Professional Developer’s Kit

The PK166 Professional Developer’s Kit includes everything the professional
developer needs to create and debug sophisticated embedded applications for the
Siemens C161, C163, C164, C165, 8xC166, and C167 as well as the
ST Microelectronics ST10 series of microcontrollers. The professional
developer’s kit can be configured for all 166/ST10 derivatives.

PK161 Professional Developer’s Kit

The PK161 Professional Developer’s Kit is a reduced version of PK166 and can
be used only for the Siemens C161 derivatives. Other 166/ST10 family members
are not supported.

CA166 Compiler Kit

The CA166 Compiler Kit is the best choice for developers who need a C compiler
but not a debugging system. The CA166 package contains only the µVision IDE.
The µVision2 Debugger features are not available in CA166. The kit includes
everything you need to create embedded applications and can be configured for all
166/ST10 derivatives.

A166 Assembler Kit

The A166 Assembler Kit includes an assembler and all the utilities you need to
create embedded applications. It can be configured for all 166/ST10 derivatives.

Getting Started 9

1
RTX166 Real-Time Operating System (FR166)

The RTX166 Real-Time Operating Systems is a real-time kernel for the 166
family of microcontrollers. RTX166 Full provides a superset of the features
found in RTX166 Tiny and includes CAN communication protocol interface
routines.

Comparison Chart

The following table provides a check list of the features found in each package.
Tools are listed along the top and part numbers for specific kits are listed along
the side. Use this cross reference to select the kit that best suits your needs.

Support PK166 CA166 A166 PK161† FR166

µVision2 Project Management & Editor ü ü ü ü
A166 Assembler ü ü ü ü
C166 Compiler ü ü ü
L166 Linker/Locator ü ü ü ü
LIB166 Library Manager ü ü ü ü
µVision2 Debugger/Simulator ü ü
RTX166 Tiny ü ü ü
RTX166 Full ü
† PK161 supports only C161 derivatives; it does not include support for other 166/ST10 devices.

10 Chapter 1. Introduction

1

Getting Started 11

2

Chapter 2. Installation
This chapter explains how to setup an operating environment and how to install
the software on your hard disk. Before starting the installation program, you must
do the following:

¢ Verify that your computer system meets the minimum requirements.

¢ Make a copy of the installation diskette for backup purposes.

System Requirements
There are minimum hardware and software requirements that must be satisfied to
ensure that the compiler and utilities function properly.

For our Windows-based tools, you must have the following:

¢ PC with Pentium, Pentium-II or compatible processor,

¢ Windows 95, Windows-98, Windows NT 4.0, or higher

¢ 16 MB RAM minimum,

¢ 20 MB free disk space.

Installation Details
All of our products come with an installation program that allows easy installation
of our software. To install the 166 development tools:

¢ Insert the Keil Development Tools CD-ROM.

¢ Select Install Software from the Keil CD Viewer menu and follow the
instructions displayed by the setup program.

NOTE
Your PC should automatically launch the CD Viewer when you insert the CD. If
not, run the program KEIL\SETUP\SETUP.EXE from the CD to install the
software.

12 Chapter 2. Installation

2

Folder Structure
The setup program copies the development tools into sub-folders of the base
folder. The default base folder is: C:\KEIL. The following table lists the
structure of a complete installation that includes the entire line of 166 development
tools. Your installation may vary depending on the products you purchased.

Folder Description

C:\KEIL\C166\ASM Assembler SFR definition files and template source file.

C:\KEIL\C166\BIN Executable files of the 166 toolchain.

C:\KEIL\C166\CAN RTX166 Full CAN example programs.

C:\KEIL\C166\EXAMPLES Sample applications.

C:\KEIL\C166\RTX166 RTX166 Full files.

C:\KEIL\C166\RTX_TINY RTX166 Tiny files.

C:\KEIL\C166\INC C compiler include files.

C:\KEIL\C166\LIB C compiler library files, startup code, and source of I/O routines.

C:\KEIL\C166\MONITOR Target Monitor files and Monitor configuration for user hardware.

C:\KEIL\UV2 Generic µVision2 files.

Within this users guide we refer to the default folder structure. If you have installed your
software on a different folder, you have to adjust the pathnames to match with your installation.

Getting Started 13

3

Chapter 3. Development Tools
This chapter discusses the features and advantages of the 166 development tools
available from Keil Software. We have designed our tools to help you quickly and
successfully complete your job. They are easy to use and are guaranteed to help
you achieve your design goals.

µVision2 Integrated Development Environment
µVision2 is a standard Windows application. µVision2 is an integrated software
development platform that combines a robust editor, project manager, and make
facility. µVision2 supports all of the Keil tools for the 166 including the C
compiler, macro assembler, linker/locator, and object-HEX converter. µVision2
helps expedite the development process of your embedded applications by
providing the following:

¢ Full-featured source code editor,

¢ Device Database for pre-configuring the development tool setting,

¢ Project manager for creating and maintaining your projects,

¢ Integrated make facility for assembling, compiling, and linking your embedded
applications,

¢ Dialogs for all development tool settings,

¢ True integrated source-level Debugger with high-speed CPU and peripheral
simulator.

¢ Advanced GDI interface for software debugging in the target hardware and for
connection to Monitor-166.

¢ Links to development tools manuals, device datasheets & user’s guides.

NOTE
The µVision2 debugging features are only available in the PK166 and PK161
tool kits.

14 Chapter 3. Development Tools

3

About the Environment
The µVision2 screen provides you with a menu bar for command entry, a tool bar
where you can rapidly select command buttons, and windows for source files,
dialog boxes, and information displays. µVision2 lets you simultaneously open
and view multiple source files.

Menu Commands, Toolbars and Shortcuts
The menu bar provides you with menus for editor operations, project maintenance,
development tool option settings, program debugging, window selection and
manipulation, and on-line help. With the toolbar buttons you can rapidly execute
operations. Several commands can be reached also with keyboard shortcuts. The
following tables give you an overview of the µVision2 commands.

File Menu and File Commands

Toolbar File Menu Shortcut Description

New Ctrl+N Create a new source or text file

Getting Started 15

3

Toolbar File Menu Shortcut Description

Open Ctrl+O Open an existing file

Close Close the active file

Save Ctrl+S Create a new source or text file

Save all open source and text files

Save as… Save and rename the active file

Device Database Maintain the µVision2 device database

Print Setup… Setup the printer

Print Ctrl+P Print the active file

Print Preview Display pages in print view

1 .. 9 Open the most recent used source or text files

Exit Quit µVision2 and prompt for saving files

Edit Menu and Editor Commands

Toolbar Edit Menu Shortcut Description

Home Move cursor to beginning of line

End Move cursor to end of line

Ctrl+Home Move cursor to beginning of file

Ctrl+End Move cursor to end of file

Ctrl+ç Move cursor one word left

Ctrl+è Move cursor one word rigth

Ctrl+A Select all text in the current file

Undo Ctrl+Z Undo last operation

Redo Ctrl+Shift+Z Redo last undo command

Cut Ctrl+X Cut selected text to clipboard

Ctrl+Y Cut text in the current line to clipboard

Copy Ctrl+C Copy selected text to clipboard

Paste Ctrl+V Paste text from clipboard

Find Ctrl+F Search text in the active file

F3 Repeat search text forward

Shift+F3 Repeat search text backward

Ctrl+F3 Search word under cursor

Ctrl+] Find matching brace, parenthesis, or bracket

Find in Files… Search text in several files

Replace Ctrl+H Replace specific text

Indent selected text right one tab stop

Indent selected text left one tab stop

Ctrl+F2 Toggle bookmark at current line

F2 Move cursor to next bookmark

Shift+F2 Move cursor to previous bookmark

16 Chapter 3. Development Tools

3

Toolbar Edit Menu Shortcut Description

Clear all bookmarks in active file

Select Text Commands

In µVision2 you can select text by holding down Shift and pressing the key that
moves the cursor. For example, Ctrl+è moves the cursor to the next word, and
Ctrl+Shift+è selects the text from the current cursor position to the beginning of
the next word. With the mouse you can select text as follows:

Select Text With the Mouse

Any amount of text Drag over the text

A word Double-click the word

A line of text Move the pointer to the left of the line until it changes to a right-pointing
arrow, and then click

Multiple lines of text Move the pointer to the left of the lines until it changes to a right-pointing
arrow, and then drag up or down

A vertical block of text Hold down the ALT key, and then drag

View Menu

Toolbar View Menu Shortcut Description

Status Bar Show or hide the status bar

File Toolbar Show or hide the File toolbar

Build Toolbar Show or hide the Build toolbar

Debug Toolbar Show or hide the Debug toolbar

Project Window Show or hide the Project window

Output Window Show or hide the Output window

Source Browser Open the Source Browser window

Disassembly Window Show or hide the Disassembly window

Watch & Call Stack Window Show or hide the Watch & Call Stack window

Memory Window Show or hide the Memory window

Code Coverage Window Show or hide the Code Coverage window

Performance Analyzer Window Show or hide the Performance Analyzer window

Symbol Window Show or hide the Symbol window

Serial Window #1 Show or hide the Serial window #1

Serial Window #2 Show or hide the Serial window #2

Toolbox Show or hide the Toolbox

Periodic Window Update Updates debug windows while running the program

Workbook Mode Show workbook frame with windows tabs

Options… Select Colors & Fonts and Editor options

Getting Started 17

3

Project Menu and Project Commands

Toolbar Project Menu Shortcut Description

New Project … Create a new project

Open Project … Open an existing project

Close Project… Close current project

Targets, Groups, Files Maintain Targets, File Groups and Files of a proejct

Select Device for Target Select a CPU from the Device Database

Options… Alt+F7 Change tool options for Target, Group or File

Change options for current Target

Select current Target

File Extensions Select file extensions for different file types

Build Target F7 Translate modified files and build application

Rebuild Target Re-translate all source files and build application

Translate… Ctrl+F7 Translate current file

Stop Build Stop current build process

1 .. 9 Open the most recent used project files

Debug Menu and Debug Commands

Toolbar Debug Menu Shortcut Description

Start/Stop Debugging Ctrl+F5 Start or stop µVision2 Debug Mode

Reset CPU Set CPU to reset state

Go F5 Run (execute) until the next active breakpoint

Step F11 Execute a single-step into a function

Step over F10 Execute a single-step over a function

Step out of current
function

Ctrl+F11 Execute a step out of the current function

Stop Running ESC Stop program execution

Enable/Disable Trace Recording Enable trace recording for instruction review

View Trace Records Review previous executed instructions

Breakpoints… Open Breakpoint dialog

Toggle breakpoint on current line

Kill all breakpoints in the program

Enable/disable breakpoint on the current line

Disable all breakpoints in the program

Show next executeable statement/instruction

Memory Map… Open memory map dialog

Performance Analyzer… Open setup dialog for the Performance Analyzer

Inline Assembly… Stop current build process

Function Editor… Edit debug functions and debug INI file

18 Chapter 3. Development Tools

3

Toolbar Debug Menu Shortcut Description

[Interrupt … Watchdog] Open dialogs for on-chip peripherals, these dialogs
depend on the CPU selected from the device database

Tools Menu

The tools menu allows you to run custom programs. The menu is extended once
you have added customer programs with the option Customize Tools Menu…

Toolbar Tools Menu Shortcut Description

Target Environment Configure compiler and linker paths

PC-Lint Options Configure PC-Lint from Gimpel Software

Lint Run PC-Lint current editor file

Lint all C Source Files Run PC-Lint across the C source files of your project

Customize Tools Menu… Add user programs to the Tools Menu

Window Menu

Toolbar Window Menu Shortcut Description

Cascade Arrange Windows so they overlap

Tile Horizontally Arrange Windows so they no overlap

Tile Vertically Arrange Windows so they no overlap

Arrange Icons Arrange Icons at the bottom of the window

Split Split the active window into panes

1 .. 9 Activate the selected window

Help Menu

Toolbar Help Menu Shortcut Description

Help topics Open on-line help

About µVision Display version numbers and license information

Getting Started 19

3

µVision2 has two operating modes:

¢ Build Mode: allows you to translate all the application files and to generate
executable programs. The features of the Build Mode are described in
”Chapter 4. Creating Applications” on page 35.

¢ Debug Mode: provides you with a powerful debugger for testing your
application. The Debug Mode is described in “Chapter 5. Testing Programs”
on page 67.

In both operating modes you can use the source editor of µVision2 to modify your
source code.

20 Chapter 3. Development Tools

3

C166 Optimizing C Cross Compiler
For 166/ST10 microcontroller applications, the Keil C166 Cross Compiler offers
a way to program in C which truly matches assembly programming in terms of
code efficiency and speed. The Keil C166 is not a universal C compiler adapted
for the 166. It is a dedicated C compiler that generates extremely fast and
compact code. The Keil C166 Compiler implements the ANSI standard for the C
language.

Use of a high-level language such as C has many advantages over assembly
language programming:

¢ Knowledge of the processor instruction set is not required, rudimentary
knowledge of the memory structure of the 166/ST10 CPU is desirable (but not
necessary).

¢ Details like register allocation and addressing of the various memory types and
data types is managed by the compiler.

¢ Programs get a formal structure and can be divided into separate functions.
This leads to better program structure.

¢ The ability to combine variable selection with specific operations improves
program readability.

¢ Keywords and operational functions can be used that more nearly resemble the
human thought process.

¢ Programming and program test time is drastically reduced which increases
your efficiency.

¢ The C run-time library contains many standard routines such as: formatted
output, numeric conversions and floating point arithmetic.

¢ Existing program parts can be more easily included into new programs,
because of the comfortable modular program construction techniques.

¢ The language C is a very portable language (based on the ANSI standard) that
enjoys wide popular support, and can be easily obtained for most systems. This
means that existing program investments can be quickly adapted to other
processors as needed.

C166 Language Extensions
The C166 compiler is an ANSI compliant C compiler and includes all aspects of
the C programming language that are specified by the ANSI standard. A number

Getting Started 21

3

of extensions to the C programming language are provided to support the facilities
of the 166 microprocessor. The C166 compiler includes extensions for:

¢ Data Types,
¢ Memory Types,
¢ Memory Models,
¢ Pointers,
¢ Reentrant Functions,
¢ Interrupt Functions,
¢ Real-Time Operating Systems.

The following sections briefly describe these extensions.

Data Types
The C166 compiler supports the data types listed in the following table. In
addition to these scalar types, variables can be combined into structures, unions,
and arrays.

Data Type Size Range of values

bit 1 bit 0 or 1

signed char 1 byte -128 to +127

unsigned char 1 byte 0 to 255

signed int 2 bytes -32768 to +32767

unsigned int 2 bytes 0 to 65535

signed long 4 bytes -2147483648 to +2147483647

unsigned long 4 bytes 0 to 4294967295

float 4 bytes ±1,176E-38 to ±3,40E+38

double 8 bytes ±1,7E-308 to ±1,7E+308

pointer 2 / 4 bytes Address of objects

Data Types for SFR access:

sbit 1 bit 0 or 1

sfr 2 bytes 0 to 65535

The sbit and sfr data types are included to allow access to the special function
registers that are available on the 166. For example, the declaration: sfr P2 =
0xFFC0; declares the variable P2 and assigns it the special function register
address of 0xFFC0. This is the address of PORT 2 on the C167.

22 Chapter 3. Development Tools

3

Memory Types
The C166 compiler explicitly supports the architecture of all 166/ST10
derivatives completely. It has full access to all hardware components of the 166
system. Each variable can be explicitly assigned to various memory types.
Accessing the integrated RAM (on-chip RAM = idata) is considerably faster than
accessing off-chip (near, far, huge, or xhuge) memory. Therefore it is useful to
place often-used variables into on-chip memory, and to locate larger and less often
accessed data elements into the far or huge memory.

Memory Type 166/ST10 Address Space

near 16 bit pointer; 16 bit address calculation allows access to:

¢ 16 KB for variables in NDATA group,

¢ 16 KB for constants in NCONST group,

¢ 16 KB for system area in SDATA group.

Together with the L166 directive DPPUSE you can have even up to 64KB
NDATA/NCONST group.

If near is applied to a function a CALLA or CALLR (16 bit call) is generated
to this function.

idata on-chip RAM of the 166; fastest access to variables.

bdata bit-addressable on-chip RAM of the 166; supports mixed bit and byte
accesses (limited to 256 bytes).

sdata SYSTEM area (address space 0C000h-0FFFFh); this can be used for the
definition of PEC addressable objects.

far 32 bit pointer; 16 bit address calculation allows full access to the whole
address space. The size of a single object (array or structure) is limited to
16 KB. If far is applied to a function a CALLS (segmented call) instruction is
generated to this function. far is the optimum memory type on the 80C166
CPU for accessing the 256KB address space of this CPU.

huge 32 bit pointer; 16 bit address calculation supports objects which size up to 64
KB. huge is the optimum memory type on the newer 166 derivatives like the
C167 for accessing the 16MB address space

xhuge 32 bit pointer; 32 bit address calculation supports objects with unlimited size.

Examples of Variable Declarations with Memory Type:

The following examples illustrate the use of the memory type within variable
declarations:

char idata var1;
static unsigned long far array [100];
extern float near x, y, z;
extern unsigned int xhuge vector[50][100];
unsigned char sdata pec_buffer [100];

char bdata flags;
sbit flag0 = flags^0;

Getting Started 23

3

If the memory type is omitted in a variable declaration, the default or implicit
memory type is selected. The default memory type depends on the memory model.
For instance if a definition is made as char var1[10], the default memory model
SMALL, would define var1 to exist in near memory. If the HLARGE memory
model is selected the var1 would have been placed into huge memory.

Memory Models
C166 supports seven memory models. With the exception of the TINY model, the
166/ST10 operates always in the SEGMENTED mode. The memory model
determines the default memory type to be used for variable or function
declarations without explicit memory type. With an explicit memory type the
limits of the memory model in used can be by-passed. In the same way the access
to variables can be speed-up, if for example the memory type near is used in the
LARGE memory model.

Default Memory Type For…
Memory Model Variables Functions

TINY near near (up to 64KB code size)

SMALL near near (up to 64KB code size)

COMPACT far near (up to 64KB code size)

HCOMPACT (not for 8xC166 CPU) huge near (up to 64KB code size)

MEDIUM near far (unlimited code size)

LARGE far far (unlimited code size)

HLARGE (not for 8xC166 CPU) huge far (unlimited code size)

Pointer
The memory type near, far, huge and xhuge can also be applied to pointers. A
near pointer allows the accessing of all objects which are user stack based or
defined in the near, sdata, idata or bdata area. A far pointer can access all
objects in the 16MB address space, whereby the size of a single object is limited to
16KB. The memory type huge allows to access objects up to 64KB size. With
xhuge very large objects with unlimited size can be accessed.

Note
Pointer arithmetic on huge pointers modifies only the 16-bit offset of the pointer.
If you want to use a pointer to access the whole 16MB address space you must
define a xhuge pointer.

24 Chapter 3. Development Tools

3

Examples for using the memory type together with Pointers:

Variable Declaration Pointer Size Declaration of the Pointer

char c; 16/32 bit char *ptr; (Pointer size depends from the
memory model in use.)

int near nc; 16 bit int near *np;

unsigned long far l; 32 bit long far *lp;

char huge hc; 32 bit char huge *hc_ptr;

float xhuge xf; 32 bit char xhuge *xf_ptr;

void near func1 (void); 16 bit void (near *fp1) (void);

int far func2 (void); 32 bit int (far *fp2) (void);

Registerbanks
C166 supports up to 128 logical register banks. Register banks can be used for
example in connection with interrupt procedures. The code generated by C166
including all library functions is fully reentrant and independent from the register
bank currently selected. This allows that the main program and one or more
interrupt service routines can call simultaneously the same function.

Interrupt Functions
The C166 compiler gives you complete control over all aspects of interrupt and
register bank usage. Such support allows the system programmer to create
efficient effective interrupt procedures. The user need only be concerned with the
interrupt and necessary register bank switch over operation, in a general and high
level manner. The C166 compiler generates only the code necessary to effect the
most expedient handling. Refer to “Interrupt” on page 131 for example of an
interrupt function.

PEC Support
The Peripheral Event Controller (PEC) can be directly programmed in the C166
source. Areas for PEC data can be define with the memory type sdata or must be
explicitly located to SEGMENT 0 of the 166/ST10 memory. Refer to “Peripheral
Event Controller” on page 134 for an example of using the PEC.

Getting Started 25

3

Parameter Passing
Up to five parameters can be passed via CPU registers. This yields an efficient
parameter passing which compares to assembler programming. If all five registers
are used for parameters, the user stack is used for parameters. The user stack
holds also automatic variables and is accessed via the R0 register (user stack
pointer).

The return of function values takes place in fixed CPU registers, as listed in the
table below. In this way the interface to assembler subroutines is very easy.

Return value Register Description

bit R4.0

(unsigned) char RL4

(unsigned) int R4

(unsigned) long R4, R5 LSB in R4, MSB in R5

float R4, R5 32 bit IEEE format, exponent and sign in R5

double R4 to R7 64 bit IEEE format, exponent and sign in R7

near * R4

far * or huge * R4, R5 Offset in R4, Selector in R5

Code Optimizing
C166 optimizes the generated code with modern optimization techniques. The
user has the choice of eight OPTIMIZE levels. In addition the type of code
generation can be influenced with OPTIMIZE (SIZE) and OPTIMIZE
(SPEED). All optimizations executed by C166 are summarized below:

General Optimizations

¢ Constant Folding
¢ Jump Optimizing
¢ Dead Code Elimination
¢ Register Variables
¢ Parameter Passing Via Registers
¢ Global And Local Common Sub-expression Elimination
¢ Strength Reduction
¢ Loop Rotation
¢ Dead Code Elimination
¢ Common Tail Merging

26 Chapter 3. Development Tools

3

166/ST10 Specific Optimizations

¢ Peephole Optimization
¢ NOP and DPP Load Optimization
¢ Case/Switch Optimization

Program Invocation
Typically, the C166 compiler will be called from the µVision2 IDE when you
build your project. However, you may invoke the compiler also within a DOS box
by typing C166 on the command line. Additionally the name of the C source file
to compile is specified on the invocation line as well as any optional control
parameters to affect the way the compiler functions.

Example
>C166 MODULE.C COMPACT PRINT (E:M.LST) DEBUG SYMBOLS
C166 COMPILER V4.00

C166 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)

Control directives can also be entered via the #pragma directive, at the beginning
of the C source file. For a list of available C166 directives refer to “C166
Optimizing C Cross Compiler Directives” on page 166.

Sample Program
The following example shows some functional capabilities of C166. The C166
compiler produces object files in OMF-166 format, in response to the various C
language statements and other directives.

Additionally and optionally, the compiler can emit all the necessary information
such as; variable names, function names, line numbers, and so on to allow detailed
program debugging and analysis with the µVision2 Debugger or emulators.

The compilation phase also produces a listing file that contains source code,
directive information, an assembly listing, and a symbol table. An example for a
listing file created by the C166 compiler is shown on the next page.

Getting Started 27

3

C166 COMPILER V4.00, SAMPLE 12/01/99 10:31:08 PAGE 1

C166 COMPILER V4.00, COMPILATION OF MODULE SAMPLE
OBJECT MODULE PLACED IN SAMPLE.OBJ
COMPILER INVOKED BY: C:\KEIL\C166\BIN\C166.EXE SAMPLE.C CODE DEBUG

stmt level source

 1 #include <reg166.h> /* register definitions for 80166 CPU */
 2 #include <stdio.h> /* standard i/o definitions */
 3
 4 /* Convert to Upper Character */
 5 unsigned char toupper (unsigned char c) {
 6 1 if (c < ‘a’ || c > ‘z’) return ©;
 7 1 else return (c & ~0x20);
 8 1 }
 9
 10 sbit p310 = P3^10; /* Port 3.10 output latch */
 11 sbit dp310 = DP3^10; /* Port 3.10 direction control register */
 12 sbit dp311 = DP3^11; /* Port 3.11 direction control register */
 13
 14 /* Initialize the Serial Interface 0 */
 15 void init_serial (void) {
 16 1 p310 = 1; /* set Port 3.10 output latch (TxD) */
 17 1 dp310 = 1; /* set Port 3.10 direction control (TxD output) */
 18 1 dp311 = 0; /* reset Port 3.11 direction control (RxD input) */
 19 1 S0TIC = 0x80; /* set transmit interrupt flag */
 20 1 S0RIC = 0x00; /* delete receive interrupt flag */
 21 1 S0BG = 0x40; /* set baudrate to 9600 baud
 22 1 S0CON = 0x8011; /* set serial mode */
 23 1 }
 24
 25 /* Echo Upper Characters */
 26 main () {
 27 1 unsigned char c, buf[10];
 28 1
 29 1 init_serial ();
 30 1
 31 1 while (1) {
 32 2 P0 = P2; /* output hardware switch from Port2 */
 33 2
 34 2 gets (buf, sizeof (buf)); /* get input line */
 35 2 for (c = 0; buf[c] != 0; c++) {
 36 3 buf[c] = toupper (buf[c]); /* convert to capital */
 37 3 }
 38 2 printf (“%s\n”, buf); /* echo input line */
 39 2 P0 = 0; /* clear Output Port to signal ready */
 40 2 }
 41 1 }

ASSEMBLY LISTING OF GENERATED OBJECT CODE

 ; FUNCTION toupper (BEGIN RMASK = @0x0030)
 ; SOURCE LINE # 5
;---- Variable ‘c’ assigned to Register ‘R8’ ---
 ; SOURCE LINE # 6
0000 F048 MOV R4,R8
0002 C085 MOVBZ R5,RL4
 : :
 : :

MODULE INFORMATION: INITIALIZED UNINITIALIZED
 CODE SIZE = 130 ------
 NEAR-CONST SIZE = 4 ------
 FAR-CONST SIZE = ------ ------
 NEAR-DATA SIZE = ------ ------
 FAR-DATA SIZE = ------ ------
 IDATA-DATA SIZE = ------ ------
 SDATA-DATA SIZE = ------ ------
 BDATA-DATA SIZE = ------ ------
 BIT SIZE = ------ ------
 INIT’L SIZE = ------ ------
END OF MODULE INFORMATION.

C166 produces a
listing file with line
numbers as well as
the time and date of
the compilation.

Information about
compiler invocation
and the object file
generated is printed.

The listing contains
a line number before
each source line and
the instruction
nesting { } level.

If errors or possible
sources of errors
exist an error or
warning message is
displayed.

Enable under
µVision2 Options
for Target – Listing
- Assembly Code
the C166 CODE
directive. This gives
you an assembly
listing file with
embedded source
line numbers.

A memory overview
provides information
about the occupied
166/ST10 memory
areas.

The number of errors
and warnings in the

28 Chapter 3. Development Tools

3

C166 COMPILATION COMPLETE. 0 WARNING(S), 0 ERROR(S)
program are
included at the end
of the listing.

A166 Macro Assembler
A166 is a macro assembler for the 166/ST10 microcontroller family. A166
translates symbolic assembler language mnemonics into executable machine code.
A166 allows you to define each instruction in a 166/ST10 program and is used
where utmost speed, small code size and exact hardware control is essential. The
A166 macro facility saves development and maintenance time, since common
sequences need only be developed once.

Source-Level Debugging
A166 generates complete symbol and type information; this allows an exact
display of program variables. Even line numbers of the source file are available to
enable source level debugging for assembler programs with the µVision2
Debugger or emulators.

Functional Overview
A166 translates an assembler source file into a relocatable object module. A166
generates a listing file, optionally with symbol table and cross reference. A166
contains two macro processors:

¢ Standard Macros are simple to use and enable you to define and to use
macros in your 166/ST10 assembly programs. The standard macros are used
in many assemblers.

¢ The Macro Processing Language (MPL) is a string replacement facility. It is
fully compatible with Intel ASM86 and has several predefined macro processor
functions. These MPL processor functions perform many useful operations,
like string manipulation or number processing.

Another powerful feature of A166 macro assembler is conditional assembly
depending on command line directives or assembler symbols. Conditional
assembly of sections of code can help you to achieve the most compact code
possible or to generate different applications out of one assembly source file.

Listing File
On the following page is an example listing file generated by the assembler.

Getting Started 29

3

A166 MACRO ASSEMBLER SAMPLE 24/01/99 15:44:45 PAGE 1

A166 MACRO ASSEMBLER V4.00
OBJECT MODULE PLACED IN SAMPLE.OBJ
INVOKED BY: C:\KEIL\C166\BIN\A166.EXE SAMPLE.A66 SET(SMALL) XREF DEBUG

LOC OBJ LINE SOURCE

 1 $SEGMENTED
 2
 3 $IF MEDIUM OR LARGE
 Model LIT 'FAR'
 $ELSE
 6 Model LIT 'NEAR'
 7 $ENDIF
 8
 9 PUBLIC SERINIT, timerstop, timerstart
 10 ASSUME DPP3:SYSTEM
 11
 12 ?PR?SERINIT section code
 13
 14 SERINIT proc NEAR
 15
 16 ;*******************************
 17 ;*** INIT SERIAL INTERFACE 0 ***
 18 ;*******************************
 19
0000 AFE2 20 BSET P3.10 ; OUTPUT LATCH (TXD)
0002 AFE3 21 BSET DP3.10 ; DIR-CONTROL (TXD OUTPUT)
0004 BEE3 22 BCLR DP3.11 ; DIR-CONTROL (RXD INPUT)
0006 E7B68000 23 MOVB S0TIC,#080H ; TRANSMIT INTERRUPT FLAG
000A E7B70000 24 MOVB S0RIC,#000H ; RECEIVE INTERRUPT FLAG
000E E65A4000 25 MOV S0BG ,#0040H ; 9600 BAUD
0012 E6D81180 26 MOV S0CON,#8011H ; SET SERIAL MODE
0016 CB00 27 RET
 28 SERINIT endp
 29
 30
 31 timerstart proc NEAR
0018 E6A00000 32 MOV T2CON,#0
001C E6A10000 33 MOV T3CON,#0
0020 E6200000 34 MOV T2,#0
0024 E6210000 35 MOV T3,#0
0028 E6A14000 36 MOV T3CON,#0040H
002C E6A04F00 37 MOV T2CON,#004FH
0030 CB00 38 RET
 39 timerstart endp
 40
 41
 42 timerstop proc NEAR
0032 E6A00000 43 MOV T2CON,#0
0036 E6A10000 44 MOV T3CON,#0
003A F2F442FE 45 MOV R4,T3
003E F2F540FE 46 MOV R5,T2
0042 CB00 47 RET
 48 timerstop endp
 49
 50 ?PR?SERINIT ends
 51
 52 end

A166 MACRO ASSEMBLER SAMPLE 24/01/99 15:44:45 PAGE 2

XREF SYMBOL TABLE LISTING
---- ------ ----- -------

N A M E TYPE VALUE I ATTRIBUTES

?PR?SERINIT. . . . ---- ---- SECTION 12# 50
DP3. WORD FFC6H A SFR 21 22
DPP3 WORD FE06H A SFR 10
MODEL. LIT "NEAR" 6#
 : : : :
 : : : :

A166 produces a
listing file with line
numbers as well as
the time and date of
the translation.

Information about
assembler
invocation and the
object file generated
is printed.

A166 is procedure
oriented. All CPU
instructions need to
be placed with
PROC / ENDP
statements.

The listing contains
a source line number
and the object code
generated by each
source line.

If errors or possible
sources of errors
exist an error or
warning message is
displayed.

Enable under
µVision2 Options
for Target – Listing
– Cross Reference
to get a detailed
listing of all symbols
used in the
assembler source
file.

30 Chapter 3. Development Tools

3

 : : : :

ASSEMBLY COMPLETE. 0 WARNING(S), 0 ERROR(S)

The number of errors
and warnings in the
program are
included at the end
of the listing..

L166 Linker/Locator
The L166 linker/locator combines several program modules into one executable
166/167 program. In doing so the external and public references are resolved and
the relocatable program parts are assigned to absolute addresses. The modules to
be combined may have been written in C or assembler. L166 automatically selects
the appropriate run-time libraries and links only the library modules that are
required.

Address Management
The C166 compiler assigns each code and data section to a specific class name.
The class name refers to the different memory areas: for example the class
NCODE contains code which must be directed to ROM space; the class NDATA
contains variable sections which must be directed to RAM space.

During the link/locate process all sections with the same class name are located to
a specific memory area. The µVision2 IDE delivers the correct settings for L166
CLASSES directive from the selected CPU and specifications under Options –
Target for external memory and on-chip memory components.

CLASSES (FCODE (0x10000 – 0x1FFFF, 0x40000 – 0x5FFFF))

Above is an example for an L166 CLASSES directive. This instructs L166 to use
the address spaces 0x10000 - 0x1FFFF and 0x40000 – 0x5FFFF for the FCODE
class (= far code). L166 locates all sections with the class name FCODE to this
memory region, which is usually ROM space. You can enter address ranges for
user defined memory classes under Options – L166 Locate – Users Classes.

Exact placing of a section is also possible; enter in µVision2 dialog Options –
L166 Locate – User Sections the address specification for individual sections.
For example, ?XD?MYPROG%XDATA (0x20000) in this dialog field will
insert the L166 SECTIONS directive which locates the section with the name
?XD?MYPROG and the memory class XDATA to address 0x20000:

SECTIONS (?XD?MYPROG%XDATA (0x20000))

Getting Started 31

3

Map File
On the following page is an example listing file generated by L166.

32 Chapter 3. Development Tools

3

L166 LINKER/LOCATER V4.00 22/01/99 10:32:02 PAGE 1

L166 LINKER/LOCATER V4.00, INVOKED BY:
C:\KEIL\C166\BIN\L166.EXE SAMPLE.OBJ

CPU TYPE: C166
CPU MODE: SEGMENTED
MEMORY MODEL: SMALL

INPUT MODULES INCLUDED:
 SAMPLE.OBJ (SAMPLE)
 COMMENT TYPE 128: C166 V4.00
 C:\KEIL\C166\LIB\C166S.LIB (?C_STARTUP)
 COMMENT TYPE 128: A166 V4.00
 C:\KEIL\C166\LIB\C166S.LIB (PRINTF)
 COMMENT TYPE 128: A166 V4.00
 :
 :

INTERRUPT PROCEDURES OF MODULE: SAMPLE (SAMPLE)

INTERRUPT PROCEDURE INT INTERRUPT NAME
===
C_STARTUP 0 RESET

MEMORY MAP OF MODULE: SAMPLE (SAMPLE)

START STOP LENGHT TYPE ALIGN TGR GRP COMB CLASS SECTION NAME
==
00000H 00003H 00004H --- --- --- --- --- * INTVECTOR TABLE *
00004H 00085H 00082H CODE WORD --- 1 PUBL NCODE ?PR?SAMPLE
00086H 0044FH 003CAH CODE WORD --- 1 PRIV NCODE ?PR?printf
00450H 004BDH 0006EH CODE WORD --- 1 PUBL NCODE ?PR?GETS
 : : : :
 : : : :

GROUP LIST OF MODULE: SAMPLE (SAMPLE)

GROUP NAME TYPE TGR GRP CLASS SECTION NAME
===
NCODE CODE --- 1 NCODE ?PR?SAMPLE
 NCODE ?PR?printf
 NCODE ?PR?GETS
 : : :
 : : :

PUBLIC SYMBOLS OF MODULE: SAMPLE (SAMPLE)

VALUE PUBLIC SYMBOL NAME REP TGR CLASS SECTION NAME
===
00608H ?C_CLRMEMSECSTART VAR --- --- --
00606H ?C_INITSECSTART VAR --- --- --
00000H ?C_PAGEDPP1 CONST --- --- --
00001H ?C_PAGEDPP2 CONST --- --- --
 : : : :
 : : : :

SYMBOL TABLE OF MODULE: SAMPLE (SAMPLE)

VALUE TYPE REP LENGTH TGR SYMBOL NAME
==
0003AH GLOBAL LABEL --- --- main
00022H PUBLIC LABEL --- --- init_serial
00004H PUBLIC LABEL --- --- toupper

00004H BLOCK LVL=0 001EH --- toupper
00008H SYMBOL REG --- --- c
00004H LINE --- --- --- #5
00004H LINE --- --- --- #6
00018H LINE --- --- --- #7
00020H LINE --- --- --- #8
--- BLOCKEND LVL=0 --- ---
 : : : : : :
 : : : : : :

L166 produces a
MAP file (extension
.M66) with date and
time of the link/locate
run.

L166 displays the
invocation line,
memory model, CPU
type, and CPU
mode.

Each input module
and the library
modules included in
the application are
listed.

All interrupt
procedures with
assigned trap
numbers are listed.

The memory map
contains the usage
of the physical
80C166 memory.

The Group list
shows the group,
class and section
names used in the
application program.

All public symbols
together with their
values are listed.

A complete list of all
debug symbols is
printed.

Warning messages
and error messages
are listed at the end
of the MAP file.
These may point to

Getting Started 33

3

L166 RUN COMPLETE. 0 WARNING(S), 0 ERROR(S)
possible problems
encountered during
the link/locate run.

34 Chapter 3. Development Tools

3

LIB166 Library Manager
The LIB166 library manager lets you create and maintain library files. A library
file is a formatted collection of object modules (created by the C compiler and
assembler). Library files provide a convenient method of combining and
referencing a large number of object modules which may be accessed by the L166
linker/locator.

To build a library with the µVision2 project manager enable Options for Target
– Output – Create Library. You may also call LIB166 from a DOS box. Refer
to “LIB166 Library Manager Commands” on page 170 for command list.

There are a number of benefits to using a library. Security, speed, and minimized
disk space are only a few of the reasons to use a library. Additionally, libraries
provide a good vehicle for distributing a large number of useful functions and
routines without the need to distribute source code. For example, the ANSI C
library is provided as a set of library files.

It is easy to build your own library of useful routines like serial I/O, CAN, and
FLASH memory utilities that you may use over and over again. Once these
routines are written and debugged, you may merge them into a library. Since the
library contains only the object modules, the build time is shortened since these
modules do not require re-compilation for each project.

Libraries are used by the L166 linker when linking and locating the final
application. Modules in the library are extracted and added to the program only if
they are required. Library routines that are not specifically invoked by your
program are not included in the final output. The linker extracts the modules from
the library and processes them exactly as it does other object modules.

OH166 Object-HEX Converter
The OH166 object-HEX converter creates Intel HEX files from absolute object
modules which are created by the L166 linker/locator. Intel HEX files are ASCII
files that contain a hexadecimal representation of your application program. They
can be easily loaded into a device programmer for programming EPROMS. Both
HEX-86 (1 MB address range) and HEX-386 (16 MB address range) file formats
are supported. You may also create HEX files to program FLASH memory
devices. The data records in these files are sorted in ascending order. Unused
bytes are filled with a specified byte value.

Getting Started 35

4

Chapter 4. Creating Applications
To make it easy for you to evaluate and become familiar with our 166 product
line, we provide an evaluation version with sample programs and limited versions
of our tools. The sample programs are also included with our standard product
kits.

NOTE
The Keil C166 evaluation tools are limited in functionality and the code size of
the application you can create. Refer to the “Release Notes” for more
information on the limitations of the evaluation tools. For larger applications,
you need to purchase one of our development kits. Refer to “Product Overview”
on page 8 for a description of the kits that are available.

This chapter describes the Build Mode of µVision2 and shows you how to use the
user interface to create a sample program. Also discussed are options for
generating and maintaining projects. This includes output file options, the
configuration of the C166 compiler for optimum code quality, and the features of
the µVision2 project manager.

Create a Project
µVision2 includes a project manager which makes it easy to design applications
for the 166 family. You need to perform the following steps to create a new
project:

¢ Start µVision2, create a project file and select a CPU from the device database.

¢ Create a new source file and add this source file to the project.

¢ Add and configure the startup code for the 166/ST10 device

¢ Set tool options for target hardware.

¢ Build project and create a HEX file for PROM programming.

The description is a step-by-step tutorial that shows you how to create a simple
µVision2 project.

36 Chapter 4. Creating Applications

4

 Start µVision2 and Create a Project File
µVision2 is a standard Windows application and started by clicking on the
program icon. To create a new project file select from the µVision2 menu Project
– New Project… . This opens a standard Windows dialog that asks you for the
new project file name.

We suggest that you use a separate folder for each project. You can simply use the
icon Create New Folder in this dialog to get a new empty folder. Then select this
folder and enter the file name for the new project, i.e. Project1. µVision2 creates
a new project file with the name PROJECT1.UV2 which contains a default target
and file group name. You can see these names in the Project Window – Files.

Now use from the menu Project – Select Device for Target and select a CPU for
your project. The Select Device dialog box shows the µVision2 device database.
Just select the microcontroller you use. We are using for our examples the
Siemens C167CR-LM CPU. This selection sets necessary tool options for the
C167CR-LM device and simplifies in this way the tool configuration.

NOTE
On some devices, the µVision2 environment needs additional parameters that
you have to enter manually. Please carefully read the information provided
under Description in this dialog, since it might have additional instructions for
the device configuration.

Getting Started 37

4

Once you have selected a CPU from the device database you can open the user
manuals for that device in the Project Window – Books page. These user
manuals are part of the Keil Development Tools CD-ROM that should be present
in your CD drive.

 Create New Source Files
You may create a new source file with the menu option File – New. This opens
an empty editor window where you can enter your source code. µVision2 enables
the C color syntax highlighting when you save your file with the dialog File –
Save As… under a filename with the extension *.C. We are saving our example
file under the name MAIN.C.

Once you have created your source file you can add this file to your project.
µVision2 offers several ways to add source files to a project. For example, you
can select the file group in the Project Window – Files page and click with the
right mouse key to open a local menu. The option Add Files opens the standard
files dialog. Select the file MAIN.C you have just created.

38 Chapter 4. Creating Applications

4
Add and Configure the Startup Code
Typically, a 166/ST10 program requires a CPU initialization code that needs to
match the configuration of your hardware design. For most 166 / ST10
derivatives, you should use the START167.A66 file as startup code. Only the
8xC166 CPU variants are initialized with the STARTUP.A66 file. Since you need to
modify that file to match your target hardware, you should copy the START167.A66
file from the folder C:\KEIL\C166\LIB to your project folder.

It is a good practice to create a new file group for the CPU configuration files.
With Project – Targets, Groups, Files… you can open a dialog box where you
add a group named System Files to your target. In the same dialog box you can
use the Add Files to Group… button to add the START167.A66 file to your
project.

Another file that aids you in program debugging is TRAPS.C. This file contains
service routines for the various CPU hardware traps (interrupts) which are called
on hardware or software failures. Also TRAPS.C can be copied from the folder
C:\KEIL\C166\LIB to your project folder and added in the same way.

Getting Started 39

4

The Project Window – Files
lists all items of your project.

The µVision2 Project Window – Files should now show the above file structure.
Open START167.A66 in the editor with a double click on the file name in the project
window. Then you configure the startup code as described in “Chapter 10. CPU
and C Startup Code” on page 153. It is very important that the settings in the
startup code match the settings of the Options – Target dialog. This dialog is
discussed in the following.

40 Chapter 4. Creating Applications

4

 Set Tool Options for Target
µVision2 lets you set options for your target hardware. The dialog Options for
Target opens via the toolbar icon. In the Target tab you specify all relevant
parameters of your target hardware and the on-chip components of the device you
have selected. The following the settings for our example are shown.

The following table describes the options of the Target dialog:

Dialog Item Description

Clock specifies the internal CPU clock of your device. Most 166 designs are using
the on-chip PLL to generate the CPU clock, in most cases this value is not
identical with the XTAL frequency. Check your hardware design carefully to
determine the correct value.

Allocate On-chip … specifies the usage of the on-chip components which are typically enabled in
the CPU startup code. Make sure that the dialog settings are identical with the
START167.A66 settings.

Memory Model specifies the C166 compiler memory model. For starting new applications the
default SMALL is a good choice. Refer to “Memory Models and Memory
Types” on page 48 for a discussion of the various memory models.

Data Threshold
Near Memory

allows you to optimize the memory model settings. Refer to “Data Threshold”
on page 50 for more information.

Getting Started 41

4

External Memory here you specify all external memory areas of the target hardware. RAM
denotes the memory areas where variables are stored. ROM refers to areas
that store constants and program code (typical EPROM or Flash memory).
When using the Monitor-166, the program will run in RAM space. However you
have to specify ROM in this dialog, otherwise your application has no memory
for constants and program code. For more information, refer to “Target Options
when Using Monitor-166” on page 159.

 Build Project and Create a HEX File
Typical, the tool settings under Options – Target are all you need to start a new
application. You may translate all source files and line the application with a click
on the Build Target toolbar icon. When you build an application with syntax
errors, µVision2 will display errors and warning messages in the Output Window
– Build page. A double click on a message line opens the source file on the
correct location in a µVision2 editor window.

Once you have successfully generated your application you can start debugging.
Refer to “Chapter 5. Testing Programs” on page 67 for a discussion of the
µVision2 debugging features. After you have tested your application, it is
required to create an Intel HEX file to download the software into an EPROM
programmer or simulator. µVision2 creates HEX files with each build process
when Create HEX file under Options for Target – Output is enabled. The
FLASH Fill Byte, Start and End values direct the OH166 utility to generate a
sorted HEX files; sorted files are required for some Flash programming utilities.
You may start your PROM programming utility after the make process when you
specify the program under the option Run User Program #1.

42 Chapter 4. Creating Applications

4
Now you can modify existing source code or add new source files to the project.
The Build Target toolbar button translates only modified or new source files and
generates the executable file. µVision2 maintains a file dependency list and knows
all include files used within a source file. Even the tool options are saved in the
file dependency list, so that µVision2 rebuilds files only when needed. With the
Rebuild Target command, all source files are translated, regardless of
modifications.

Project Targets and File Groups
By using different Project Targets µVision2 lets you create several programs
from a single project. You may need one target for testing and another target for a
release version of your application. Each target allows individual tool settings
within the same project file.

Files Groups let you group associated files together in a project. This is useful
for grouping files into functional blocks or for identifying engineers in your
software team. We have already used file groups in our example to separate the
CPU related files from other source files. With these technique it is easily possible
to maintain complex projects with several 100 files in µVision2.

The Project – Targets, Groups, Files… dialog allows you to create project
targets and file groups. We have already used this dialog to add the system
configuration files. An example project structure is shown below.

Getting Started 43

4

The Project Windows shows all groups and the
related files. Files are built and linked in the same
order as shown in this window. You can move file
positions with Drag & Drop. You may select a
target or group name and Click to rename it. The
local menu opens with a right mouse Click and
allows you for each item:
• to set tool options
• to remove the item

• to add files to a group
• to open the file.

In the build toolbar you can quickly change the
current target to build.

Overview of Configuration Dialogs
The options dialog lets you set all the tool options. Via the local menu in the
Project Window – Files you may set different options for a file group or even a
single file; in this case you get only the related dialog pages. With the context help
button you get help on most dialog items. The following table describes the
options of the Target dialog.

Dialog Page Description

Target Specify the hardware of your application. See page 40 for details.

Output Define the output files of the tool chain and allows you to start user programs after the
build process. See page 56 for more information.

Listing Specify all listing files generated by the tool chain.

C166 Set C166 compiler specific tool options like code optimization or variable allocation.
Refer to “Other C166 Compiler Directives” on page 53 for information.

A166 Set assembler specific tool options like macro processing.

L166 Locate Define the location of memory classes and sections. Typical you will enable Use
Memory Layout from Target Dialog as show below to get automatic settings. Refer
to “Locate Sections to Absolute Memory Locations” on page 60 and “User Classes” on
page 61 for more information on this dialog.

L166 Misc Other linker related settings like Warning or memory Reserve directive. You need to
reserve some memory locations when you are using Monitor-166 for debugging. For
more informatino refer to “Target Options when Using Monitor-166 “ on page 159 for
more information.

Debug Settings for the µVision2 Debugger. Refer to page 74 for more information.

Properties File information and special options for files and groups refer to “File and Group
Specific Options – Properties Dialog” on page 62.

44 Chapter 4. Creating Applications

4

µVision2 Utilities
µVision2 contains many powerful functions that help you during your software
project. These utilities are discussed in the following section.

 Find in Files
The Edit – Find in Files dialog performs a global text search in all specified files.
The search results are displayed in the Find in Files page of the Output window.
A double click in the Find in Files page positions the editor to the text line with
matching string.

 Source Browser
The Source Browser displays information about program symbols in your
program. If Options for Target – Output – Browser Information is enabled
when you build the target program, the compiler includes browser information into
the object files. Use View – Source Browser to open the Browse window.

Getting Started 45

4
The Browse window lists the symbol name, class, type, memory space and the
number of uses. Click on the list item to sort the information. You can filter the
browse information using the options described in the following table:

Browse Options Description

Symbol specify a mask that is used to match symbol names. The mask may consist of
alphanumeric characters plus mask characters:

matches a digit (0 – 9)
$ matches any character
* matches zero or more characters.

Filter on select the definition type of the symbol

File Outline select the file where information should be listed for.

Memory Spaces specify the memory type for data and function symbols.

The following table provides a few examples of symbol name masks.

Mask Matches symbol names …

* Matches any symbol. This is the default mask in the Symbol Browser.

… that contain one digit in any position.

_a$#* … with an underline, followed by the letter a, followed by any character, followed by a
digit, ending with zero or more characters. For example, _ab1 or _a10value.

_*ABC … with an underline, followed by zero or more characters, followed by ABC.

46 Chapter 4. Creating Applications

4

The local menu in the Browse window opens with a right
mouse Click and allows you to open the editor on the
selected reference. For functions you can also view the
Call and Callers graph. The Definitions and References
view gives you additional information with the following
symbols:

Symbol Description

[D] Definition
[R] Reference
[r] read access
[w] write access
[r/w] read/write access
[&] address reference

You may use the browser information within an editor
window. Select the item that you want to search for and
open the local menu with a right mouse click or use the
following keyboard shortcuts:

Shortcut Description

F12 Goto Definition; place cursor to the symbol definition

Shift+F12 Goto Reference; place cursor to a symbol reference

Ctrl+Num+ Goto Next Reference or Definition

Ctrl+Num– Goto Previous Reference or Definition

Tools Menu
Via the Tools menu, you run external programs. You may add custom programs
to the Tools menu with the dialog Tools – Customize Tools Menu… . With this
dialog you configure the parameters of the user applications.

Using a key sequence in the Parameters Line you may pass arguments from the
µVision2 project manager to these user programs. A key sequence is a
combination of a Key Code and a File Code. The available Key Codes and File
Codes are listed in the tables below:

Key Code Specifies the path selected with the File Code

$ folder name of the file specified in the file code (C:\MYPROJECT)

filename with complete path specification (C:\MYPROJECT\PROJECT1.UV2)

% filename with extension, but without path specification (PROJECT1.UV2)

@ filename without extension and path specification (PROJECT1)

Getting Started 47

4

To use $, #, %, or @ in the user program command line, use $$, ##, %%, or @@
For example @@ gives a single @ in the user program command line.

File Code Specifies the file name inserted in the user program line

F current in focus editor file. (MEASURE.C)

P name of the current project file (PROJECT1.UV2)

X µVision2 executable program file (C:\KEIL\UV2\UV2.EXE)

H application HEX file (PROJECT1.H86)

L linker output file, typical the executeable file for debugging (PROJECT1)

Running PC-Lint

PC-Lint from Gimpel Software checks the syntax and semantics of C programs
across all modules of your application. PC-Lint flags possible bugs and
inconsistencies and locates unclear, erroneous, or non-sense C code. PC-Lint may
considerably reduce the debugging effort of your target application.

You need to install PC-
Lint on your PC and
specify various
parameters with the
dialog Tools – PC Lint
Options. The example
shows a typical PC-Lint
configuration. To get
correct output in the
Build page, you need to
use the configuration file
that is located in the
folder KEIL\C166\BIN.

After the setting the PC-Lint options, you may Lint your source code. Tools –
Lint … runs PC-Lint on the current in focus editor file. Tools – Lint All C
Source Files runs PC-Lint across all C source files of your project. The PC-Lint
messages are redirected to the Build – Output Window. A double click on a Lint
message line locates the editor to the source file position.

48 Chapter 4. Creating Applications

4

To get correct results in the Build – Output Window, PC-Lint needs the
following option lines in the configuration file:

-hsb_3 // 3 lines output, colom below
-format="*** LINT: %(%f(%l) %)%t %n: %m" // Change message output format
-width(0,10) // Don't break lines

The configuration file C:\KEIL\C166\BIN\CO-KC166.LNT contains already these
lines. It is strongly recommended to use this configuration file, since it contains
also other PC-Lint options required for the Keil C166 compiler.

Writing Optimum Code
Many configuration parameters have influence on the code quality of your 166
application. Although, for most applications the default tool setting generates very
good code, you should be aware of the parameters which improve code density and
execution speed. The code optimization techniques are described in this section.

Memory Models and Memory Types
The most significant impact on code size and execution speed has the memory
model. The memory model influences variable access and CALL/RET
instructions. Refer to “Memory Models” on page 23 for detailed information.
The following table allows you to determine the memory model that best fits your
application. The memory model is selected in the Options for Target – Target
dialog page.

Total Code Size Data and Constant Size of the Application
of the Application less then 64KB more than 64KB

less than 64 KB SMALL HCOMPACT

more than 64KB MEDIUM HLARGE

This table is valid for devices with extended instruction set (i.e. C161, C163, C164, C165, C167,
ST10-272, ST10-262) and SEGMENTED CPU mode. This is typical for all new applications.

Tips for SMALL and MEDIUM Memory Model

Even if your application exceeds the 64KB data/constant limit you may still use
the SMALL or MEDIUM memory model. To bypass the 64KB variable
limitation, you may direct some variables to huge or xhuge memory. However,
the address of such variables cannot be passed to C run-time library functions, like
printf or scanf. The program will not work since C run-time library functions
cannot access huge or xhuge variables in this memory models. The

Getting Started 49

4

HCOMPACT and HLARGE memory model does not have this limitation and
should be used instead. Another alternative is, that you copy variables to near
memory and pass the address of the near variable to the C library function.

Tips for HCOMPACT and HLARGE Memory Model

You may apply near memory type to optimize variable accesses in this memory
model. This generates 16-bit addressing instead of 32-bit addressing. Frequently
used variables should be located in the 166 on-chip memory with the idata
memory type. The C166 compiler HOLD directive may direct variables below a
specified size automatically to optional memory areas. For more information refer
to “Data Threshold” on page 50.

NOTE
The far memory type is provided for compatibility to the 8xC166 CPU and
support of existing C166 code. For new designs you should use huge instead of
far, since this memory type has an object size limit of 64KB and generates better
code for near pointer cast operations. This is why you should use HCOMPACT
instead of COMPACT or HLARGE instead of LARGE when you select a
memory model.

Bit-field Structures
C166 accesses bit-field struct members with size 1 bit directly with CPU BIT
instructions if the struct is located in the bdata space. You can also enter a Data
Threshold in the Options for Target – Target dialog to locate such bit-field
structures automatically to the bdata space. Refer also to “Data Threshold” later
in this section. The following shows and example:

struct test { // this structure contains some
 int bit0: 1; // fields with size 1 bit
 int bit1: 1;
 int bit2: 1;
 int value1: 4;
 int value2: 9;
};

struct test bdata t; // locate to bit-addressable space

void main (void) {
 t.bit0 = 1; // generates BSET instruction
 if (t.bit1) t.bit2 = t.bit0; // uses JB and BMOV instructions
}

50 Chapter 4. Creating Applications

4

Data Threshold
In the Options for Target – Target dialog you may enter a Data Threshold to
specify the default memory type for small objects. This entry generates directly
the C166 HOLD directive. If the LARGE, HLARGE or COMPACT,
HCOMPACT memory model is used together with the default near, 6 all variable
definitions without explicit memory type which occupied not more then 6 bytes are
place in the near area. Objects that require more then 6 Bytes are located in the
far or huge area.

Examples:

Locates variables with size < 10 Bytes
to sdata space. This is typically the
XRAM space in a 166 device. Other
variables without explicit memory
space are in the huge space.

Locates variables with size < 2 Bytes to
idata, bit-field structs with single bit
members to bdata and variables with
size < 6 Bytes to near. Other variables
without memory type are in huge.

NOTE
The C166 HOLD directive should be identical for all modules in an application.
A problem may arise when a module with an extern variable definition is
translated with a different data threshold setting than the module defining this
variable. In this case, the C166 compiler might have different memory type
settings for this variable. When you create libraries with global variables or
accesses to extern application variables, you should use the same data threshold
setting for the application using this library. As an alternative, you may specify
explicit memory types.

Global Register Optimization
The Keil 166 tools provide support for application wide register optimization
which is enabled in the Options for Target – C166 dialog with Global Register
Coloring. With the application wide register optimization, the C166 compiler
knows the registers used by external functions. Registers that are not altered in
external functions can be used to hold register variables. The code generated by
the C compiler needs less data and code space and executes faster. To improve

Getting Started 51

4

the register allocation, the µVision2 build process makes automatically iterative
re-translations of C source files.

In the following example the function func1 calls the external function func2.
func2 is using not all the CPU registers. Therefore func1 can use some CPU
register without saving it. Due to the global register optimization, the C166
compiler is aware of this situation and can take advantage of it.

52 Chapter 4. Creating Applications

4

With Global Register Optimization Without Global Register Optimization

char *func1 (void) {
 int a,b, c;
 char *s;

 b = c = 0;
 MOV R1,#0
;---- Variable 'c' assigned to 'R1'
 MOV R2,#0
;---- Variable 'b' assigned to 'R2'
 for (a = 0; a < 100; a++) {
 MOV R12,#0
;---- Variable 'a' assigned to 'R12'
?C0004:
 c += (b + 1);
 MOV R4,R2
 ADD R4,#1
 ADD R1,R4
 s = func2 ();
 CALL func2
 MOV R6,R4
 MOV R7,R5
;---- Variable 's' assigned to 'R6/R7'
 b = strlen (s);
 MOV R9,R5
 MOV R8,R4
 CALL strlen
 MOV R2,R4
 }
 CMPI1 R12,#063H
 JMPR cc_SLT,?C0004
 val = c;
 MOV val,R1
 return (s);
 MOV R4,R6
 MOV R5,R7
 RET
}

void func0 (void) {
 int j;

 for (j = 0; j < 100; j++) {
 MOV R3,#0
;---- Variable 'j' assigned to 'R3'
?C0010:
 func1 ();
 CALL func1
 }
 CMPI1 R3,#099
 JMPR cc_SLT,?C0010
}
 RET

char *func1 (void) {
 int a,b, c;
 char *s;

 PUSH R13
 PUSH R14
 PUSH R15
 SUB R0,#4
 b = c = 0;
 MOV R14,#0
;---- Variable 'c' assigned to 'R14'
 MOV R15,#0
;---- Variable 'b' assigned to 'R15'
 for (a = 0; a < 100; a++) {
 MOV R13,#0
;---- Variable 'a' assigned to 'R13'
?C0004:
 c += (b + 1);
 MOV R4,R15
 ADD R4,#1
 ADD R14,R4
 s = func2 ();
 CALL func2
 MOV [R0],R4 ; s
 MOV [R0+#02H],R5 ; s+2

 b = strlen (s);
 MOV R9,[R0+#02H] ; s+2
 MOV R8,[R0] ; s
 CALL strlen
 MOV R15,R4
 }
 CMPI1 R13,#063H
 JMPR cc_SLT,?C0004
 val = c;
 MOV val,R14
 return (s);
 MOV R5,[R0+#02H] ; s+2
 MOV R4,[R0] ; s
 RET
}

void func0 (void) {
 int j;
 PUSH R13
 for (j = 0; j < 100; j++) {
 MOV R13,#0
;---- Variable 'j' assigned to 'R3'
?C0010:
 func1 ();
 CALL func1
 }
 CMPI1 R13,#099
 JMPR cc_SLT,?C0010
}
 POP R13
 RET

Code Size: 60 Bytes Code Size: 86 Bytes

Getting Started 53

4

Other C166 Compiler Directives
There are several other C166 directives that improve the code quality. These
directives are enabled in the Options – C166 dialog page. You can translate the C
modules in an application with different compiler settings. You may check the
code quality of different compiler settings in the listing file.

The following table describes the options of the C166 dialog page:

Dialog Item Description

Define outputs the C166 DEFINE directive to enter preprocessor symbols.

Undefine is only available in the Group and File Options dialog and allows you to
remove DEFINE symbols that are specified at the higher target or group level.

Code Optimization
Level

specifies C166 OPTIMIZE level. Typical you will not alter the default. With the
highest level “7: Common Tail Merging” the compiler analyzes the code and
tries to locate common heads and tails. If the compiler detects common code
sequences, it will replace one code sequence by a jump instruction to the other
equivalent code sequence. While analyzing the code, the compiler also tries to
replace sequences with cheaper instructions. Since the compiler inserts JMP
instructions, the execution speed of the optimized code might be slower.
Typical this level is interesting to optimize the code density.

Code Optimization
Emphasis

You can optimize for execution speed or code size. With “Favor Code Size”,
the C166 compiler inserts for some C operations (like long shift) loops instead
of a faster replacement code. Also some intrinsic sequences (like struct copy)
are replace by a library call.

Global Register
Coloring

enables the “Global Register Optimization”. Refer to page 50 for details.

54 Chapter 4. Creating Applications

4

Dialog Item Description

Use Static Memory for
Non-register
Automatics

instructs C166 to use static memory locations for function automatics (not
parameters) which cannot be allocated in CPU registers. The code generated
is not longer reentrant, but code size and execution speed can be improved,
since the CPU can access static variables faster.

Alias Checking on
Pointer Accesses

when this option is disabled, C166 ignores pointer write operations during the
optimization phase. If a CPU register holds a variable it gets reused, even
when a pointer write could modify that variable.

Keep Variables in
Order

tells the C166 compiler to order the variables in memory according their
definition in the C source file. This option does not influence code quality.

Treat ‘char’ as
‘unsigned char’

instructs C166 to treat all variables declared with plain char as unsigned char
variables. This option does not influence code quality.

Save DPP on Interrupt
Entry

instructs C166 not to save DPP registers on interrupt entries. This directive
should not be used for the 8xC166 CPU and when you are sure that your
assembler code does not alter the DPP registers in any way. The C run-time
libraries and the RTX166 operating system never modifies these registers when
you are generating code with extended instruction set (MOD167 directive used),
this is typical for all new applications.

Double-Precision
Floating-Point

When this option is disabled, C166 uses single precision floating point
arithmetic even if the double keyword is used the C source file.

Save Temporary
Variables to User
Stack

directs the C compiler to save temporary results and saved-by-callee variables
to the User Stack. The default setting saves temporary results to the System
Stack; this is always fast on-chip RAM it is faster, but the size is limited.

Misc Controls allows you to enter special C166 directives. You may need such options when
you are using very new 166/ST10 devices with chip bugs, to enter compiler
FIXxxx directives.

Compiler Control
String

displays the C166 compiler invocation string. Allows you can verify the compiler
options currently for your source files.

Data Types
The 166/ST10 CPU is a 16-bit microcontroller. Operations that use 16-bit types
(like int and unsigned int) are more efficient than operations that use char or long
types. For this reason, it is typically better to use the int or unsigned int data type
for all automatic and parameter variables in your application instead of char or
unsigned char. This is exemplified in following code example:

Program with ‘int’ data type Program with ‘char’ data type

char array[100];

char test (int i) {
 int k;

 for (k = 0; k < 10; k++) {
 array[k] = 0;
 }
 return (array[I]);
}

char array[100];

char test (char i) {
 char k;

 for (k = 0; k < 10; k++) {
 array[k] = 0;
 }
 return (array[i]);
}

Getting Started 55

4

Generated Code: 18 Bytes Generated Code: 28 Bytes
;---- Variable 'i' assigned to 'R8'
 MOV R6,#00H
;---- Variable 'k' assigned to 'R6'
 MOVB RL5,#00H
?C0004:
 MOVB [R6+#array],RL5
 CMPI1 R6,#09H
 JMPR cc_SLT,?C0004

 MOVB RL4,[R8+#array]
 RET

;---- Variable 'i' assigned to 'R8'
 MOVB RL6,#00H
;---- Variable 'k' assigned to 'RL6'
 MOVB RL5,#00H
?C0004:
 MOVBS R4,RL6
 MOVB [R4+#array],RL5
 ADDB RL6,#01H
 CMPB RL6,#0AH
 JMPR cc_SLT,?C0004
 MOV R4,R8
 MOVBS R4,RL4
 RET

Applications without external RAM Devices
For single-chip applications or hardware with no external RAM devices the User
Stack and the System Stack size needs to be reduced in the CPU startup file. The
following values in the startup files are good choices when only on-chip RAM is
available in a system. Refer to “Configuring the Startup Code” on page 153 for
more information.

$SET (STK_SIZE = 2) ; for 64 words system stack size
USTSZ EQU 80H ; for 128 bytes user stack size.

The C166 directive USERSTACKDPP3 changes the assumption made by the
C166 compiler regarding the access of the User Stack area. The default User
Stack is allocated in the NDATA memory class and accessed with DPP2. The
USERSTACKDPP3 should be applied when DPP0, DPP1 and DPP2 are used to
access the NCONST class. You enter this directive under Misc Controls in the
Options for Target – C166 dialog. If USERSTACKDPP3 is used, the
?C_USERSTACK section definition must be modified in the STARTUP.A66 or
START167.A66 file as shown below:

 ?C_USERSTACK SECTION DATA PUBLIC 'IDATA'

 or ?C_USERSTACK SECTION DATA PUBLIC 'SDATA'

Also you need to change the line:

 MOV R0,#DPP2:?C_USERSTKTOP

 to MOV R0,#DPP2:?C_USERSTKTOP

56 Chapter 4. Creating Applications

4

Tips and Tricks
The following section discusses advanced techniques you may use with the
µVision2 project manager. You will not need the following features very often,
but readers of this section get a better feeling for the µVision2 capabilities.

Import Project Files from µVision Version 1
You can import project files from µVision1 with the following procedure:

1. Create a new µVision2 project file and select a CPU from the device database
as described on page 36. It is important to create the new µVision2 project file
in the existing µVision1 project folder.

2. Select the old µVision1 project file that exists in the project folder in the dialog
Project – Import µVision1 Project. This menu option is only available, if the
file list of the new µVision2 project file is empty.

3. This command imports the old µVision1 linker settings into the L166. But, we
recommend that you are using the µVision2 Options for Target – Target
dialog to define the memory structure of your target hardware. Once you have
done that, you should enable Use Memory Layout from Target Dialog in the
Options for Target – L166 Locate dialog and remove the settings for User
Classes and User Sections in this dialog.

4. Check carefully if all settings are copied correctly to the new µVision2 project
file.

5. You may now create file groups in the new µVision2 project as described
under “Project Targets and File Groups” on page 42. Then you can Drag &
Drop files into the new file groups.

NOTE
It is not possible to make a 100% conversion from µVision1 project files since
µVision2 differs in may aspects from the previous version. After you have
imported your µVision1 check carefully if the tool settings are converted correct.
Some µVision1 project settings, for example user translator, library module lists
and special compiler and linker controls like the C166 PECDEF and L166
OBJECTCONTROLS directive are not converted to the µVision2 project. Also
the dScope Debugger settings cannot be copied to the µVision2 project file.

Getting Started 57

4

Start External Tools after the Build Process
The Options for Target – Output dialog allows to enter up to two users
programs that are started after a successful build process. Using a key sequence
you may pass arguments from the µVision2 project manager to these user
programs. A key sequence is a combination of a Key Code and a File Code. The
available Key Codes and File Codes are listed in the tables below:

Key Code Specifies the path selected with the File Code

$ folder name of the file specified in the file code (C:\MYPROJECT)

filename with complete path specification (C:\MYPROJECT\PROJECT1.UV2)

% filename with extension, but without path specification (PROJECT1.UV2)

@ filename without extension and path specification (PROJECT1)

To use $, #, %, or @ in the user program command line, use $$, ##, %%, or @@
For example @@ gives a single @ in the user program command line.

File Code Specifies the file name inserted in the user program line

P name of the current project file (PROJECT1.UV2)

X µVision2 executable program file (C:\KEIL\UV2\UV2.EXE)

H application HEX file (PROJECT1.H86)

L linker output file, typical the executeable file for debugging (PROJECT1)

58 Chapter 4. Creating Applications

4

In the example above the User Program #1 is called with the Hex Output file and
the full path specification i.e. C:\MYPROJECT\PROJECT1.H86. The User
program #2 will get only the name of the linker output file PROJECT1 and as a
parameter -p the path specification to the project C:\MYPROJECT. You should
enclose the key sequence with quotes (“”) if you use folder names with special
characters, i.e. space, ~, #.

Specify a Separate Folder for Listing and Object Files
You can direct the output files of the tools to different folders:

¢ The Options for Target – Output dialog lets you Select a Folder for
Objects. When you use a separate folder for the object files of each project
target, µVision2 has still valid object files of the previous build process. Even
when you change your project target, a Build Target command will just re-
translate the modified files.

¢ The Options for Target – Listing dialog provides the same functionality for
all listing files with the Select Folder for List Files button.

Use a CPU that is not in the µVision2 Device Database
The µVision2 device database contains all 166 / ST10 standard products.
However, there are some custom devices and there will be future devices which are
currently not part of this database. If you need to work with an unlisted CPU you
have two alternatives:

¢ Select a device listed under the rubric Generic. The C166 (all Variants)
device supports all CPU’s with no extended instruction set. The C167 (all
Variants) is used for devices with extended instruction set. All new devices
are based on the extended instruction set. Therefore most likely you will need
to select this device. Specify the on-chip memory as External Memory in the
Options for Target – Target dialog.

¢ You may enter a new CPU into the µVision2 device database. Open the dialog
File – Device Database and select a CPU that comes close to the device you
want to use and modify the parameters. The CPU setting in the Options box
defines the basic the tool settings. The parameters are described in the
following table.

Getting Started 59

4

Parameter Specifies …

IRAM (range) Address location of the on-chip IRAM.

XRAM (range) Address location of the on-chip XRAM.

IROM (range) Address location of the on-chip (flash) ROM. The start address must be 0; the
part is split automatically into two sections, if the size is more than 32KB. The
range specifies the physical ROM size.

ICAN (range) Address location of the on-chip CAN module.

CLOCK (val) Default CPU clock used when you select the device.

MOD167 Use the extended instruction set.

Other Option variables specify CPU data books and µVision2 Debugging DLLs.
Leave this variables unchanged when adding a new device to the database.

Create a Library File
Select Create Library in the dialog Options for Target – Output. µVision2 will
call the LIB166 Library Manager instead of the L166 Linker/Locater. Since the
code in the Library will be not linked and located, the entries in the L166 Locate
and L166 Misc options page are ignored. Also the CPU and memory settings in
the Target page are not relevant. Select a CPU listed under the rubric Generic in
the device database, if you plan to use your code on different 166/ST10 directives.
Read the section “Data Threshold” on page 50 and check if you need to enter a
Target – Data Threshold value in the options dialog.

The directive NOFIXDPP should be entered under Options – C166 – Misc, if the
library is designed for a target application with one of the following
configurations:

¢ More than 16KB ROM or 16KB ROM are set for Target – Near Memory.
In this case the L166 DPPUSE directive will be applied. This directive
requires that the C166 compiler made no default assumptions for the DPP
registers.

¢ The User Stack is set to the memory class SDATA or IDATA as described
under “Applications without external RAM Devices” on page 55. You may
use the C166 directive USERSTACKDPP3 instead of NOFIXDPP, but
NOFIXDPP is more generic since no DPP register assumptions are made.

60 Chapter 4. Creating Applications

4

Copy Tool Settings to a New Target
Select Copy all Settings from Current Target when you add a new target in the
Project – Targets, Groups, Files… dialog. Copy tool settings from an existing
target to the current target in following way:

1. Use Remove Target to delete the current target.

2. Select the target with the tool settings you want to copy with Set as Current
Target.

3. Add the again removed target with Copy all Settings from Current Target
enabled.

Locate Sections to Absolute Memory Locations
Sometimes, it is required to locate sections to specific memory addresses. In the
following example, the structure called alarm_control should be located at
address 0x128000. This structure is defined in a source file named ALMCTRL.C
and this module contains only the declaration for this structure.

:
:
struct alarm_st {
 unsigned int alarm_number;
 unsigned char enable flag;
 unsigned int time_delay;
 unsigned char status;
};

#pragma NOINIT // disable zero initialization for alarm_control
struct alarm_st huge alarm_control;
:
:

The C166 compiler generates an object file for ALMCTRL.C and includes a section
for variables in the huge memory area. The variable alarm_control is the
located in the section ?HD?ALMCTRL. µVision2 allows you to specify the base
address of any section under Options for Target – L166 Locate – Users
Sections.

Getting Started 61

4
In this example L166 will locate the section named ?HD?ALMCTRL of the class
HDATA0 at address 0x128000 in the physical memory.

User Classes
User classes are useful when you need to locate many variables from different
source modules to special memory areas. In the following example we have a non-
volatile RAM starting at address 0x100000. You can use the C166 directive
RENAMECLASS to rename the standard C166 HDATA memory class to
NVRAM for several modules. With #pragma NOINIT the variable zero
initialization is disabled. µVision2 allows you to specify the base address of any
section under Options for Target – L166 Locate – Users Classes.

Source Module 1: Source Module 2:
#pragma RENAMECLASS (HDATA=NVRAM)
:
:
#pragma NOINIT
 int huge value1;
static int huge value2;
:

#pragma RENAMECLASS (HDATA=NVRAM)
:
:
#pragma NOINIT
static float huge value3;
 long huge value4;
:

62 Chapter 4. Creating Applications

4
In this example L166 will locate the user class section named NVRAM in the
physical memory address range 0x100000 - 0x107FFF.

File and Group Specific Options – Properties Dialog
µVision2 allows you to set file and group specific options via the local menu in the
Project Window – Files page as follows: select a file or group, click with the
right mouse key and choose Options for … . Then you can review information or
set special options for the item selected. The dialog pages have tri-state controls.
If a selection is gray or contains <default> the setting from the higher group or
target level is active. The following table describes the options of the Properties
dialog page:

Dialog Item Description

Path, Type, Size
Last Change

Outputs information about the file selected.

Include in Target Build Disable this option to exclude the group or source file in this target. If this
option is not set, µVision2 will not translate and not link the selected item into
the current targets. This is useful for configuration files, when you are using
the project file for several different hardware systems.

Always Build Enable this option to re-translate a source module with every build process,
regardless of modifications in the source file. This is useful when a file
contains __DATE__ and __TIME__ macros that are used to stored version
information in the application program.

Getting Started 63

4

Dialog Item Description

Generate Assembler
SRC File

Instructs the C166 compiler to generate an assembler source file from this C
module. Typical this option is used when the C source file contains #pragma
asm / endasm sections.

Assemble SRC File Use this option together with the Generate Assembler SRC File to translate
the assembler source code generated by C166 into an object file that can be
linked to the application.

Link Publics Only Instructs L166 to link only PUBLIC symbols from that module. Typical this
option when you want to use entry or variable addresses from a different
application. It refers in the most cases to an absolute object file which may be
part of the project.

Stop on Exit Code Specify an exit code when the build process should be stop on translator
messages. By default, µVision2 translates all files in a build process regardless
of error or warning messages.

Select Modules to
Always Include

Allows you to always include specific modules from a Library. Refer to “Include
Always specific Library Modules” on page 64 for more information.

Custom Arguments This line is required if your project contains files that need a different translator.
Refer to “Use a Custom Translator” on page 64 for more information.

In this example we have specified for FILE1.C that the build process is stopped
when there are translator warnings and that this file is translated with each build
process regardless of modifications.

Translate a C Module with asm/endasm Sections

If you use within your C source module assembler statements, the C166 compiler
requires you to generate an assembler source file and translate this assembler

64 Chapter 4. Creating Applications

4

source file. In this case enable the options Generate Assembler SRC File and
Assembler SRC File in the properties dialog.

NOTE
Check if you can use build-in intrinsic functions to replace the assembler code.
In general it better to avoid assembler code sections since you C source code
will not be portable to other platforms. The C166 compiler offers you many
intrinsic functions that allow you to access all special peripherals. Typically it
is not required to insert assembler instructions into C source code.

Include Always specific Library Modules

The Properties dialog page allows you to specify library modules that should be
always included in a project. This is sometimes required when you generate a
boot portion of an application that should contain generic routines that are used
from program parts that are reloaded later. In this case add the library that
contains the desired object modules, open the Options – Properties dialog via the
local menu in the Project Window – Files and Select Modules to Always
Include.

Just enable the modules you want
to include in any case into your
target application.

Use a Custom Translator

If you add a file with unknown file extension to a project, µVision2 requires you
to specify the file type for this file. You may select Custom File and use a custom
translator to process this file. The custom translator is specified along with its
command line in the Custom Arguments line of the Options – Properties dialog.
Typical the custom translator will generate a source file from the custom file. You
need to add this source file to your project to and use A166 or C166 to generate an
object file that can be linked to your application.

Getting Started 65

4
In this example we have specified for CUSTOM.PRE that the program
C:\UTILITIES\PRETRANS.EXE is used with the parameter –X to translate the file.
Note that we have used also the Always Build option to ensure that the file is
translated with every build process.

File Extensions
The dialog Project – File Extensions allows you to set the default file extension
for a project. You can enter several extensions when you separate them with semi-
colon characters. The file extensions are project specific.

Different Compiler and Assembler Settings
Via the local menu in the Project Window – Files you may set different options
for a file group or even a single file. The dialog pages have tri-state controls; if an
option is grayed the setting from higher level is taken. You can specify with this
technique different tools for a complete file group and still change settings on a
single source file within this file group.

Version and Serial Number Information
Detailed tool chain information is listed when you open Help – About. Please use
this information whenever you send us problem reports.

Getting Started 67

5

Chapter 5. Testing Programs

µVision2 Debugger
You can use µVision2 Debugger to test the applications you develop using the
C166 compiler and A166 macro assembler. The µVision2 Debugger offers two
operating modes that are selected in the Options for Target – Debug dialog:

Use Simulator allows to configure the µVision2 Debugger as software-only
product that simulates most features of the 166 / ST10 microcontroller family
without actually having target hardware. You can test and debug your embedded
application before the hardware is ready. µVision2 simulates a wide variety of
peripherals including the serial port, external I/O, and timers. The peripheral set is
selected when you select a CPU from the device database for your target.

Use Advance GDI drivers, like Keil Monitor 166 interface. With the Advanced
GDI interface you may connect the environment directly to emulators, OCDS
debugging systems or the Keil Monitor program. For more information refer to
“Chapter 11. Using Monitor-166” on page 155.

CPU Simulation
µVision2 simulates up to 16 Mbytes of memory from which areas can be mapped
for read, write, or code execution access. The µVision2 simulator traps and
reports illegal memory accesses.

In addition to memory mapping, the simulator also provides support for the
integrated peripherals of the various 166 / ST10 derivatives. The on-chip
peripherals of the CPU you have selected are configured from the Device
Database selection you have made when you create your project target. Refer to
page 36 for more information about selecting a device.

You may select and display the on-chip peripheral components using the Debug
menu. You can also change the aspects of each peripheral using the controls in
the dialog boxes.

 Start Debugging
You start the debug mode of µVision2 with the Debug – Start/Stop Debug
Session command. Depending on the Options for Target – Debug configuration,

68 Chapter 5. Testing Programs

5

µVision2 will load the application program and run the startup code. For
information about the configuration of the µVision2 debugger refer to page 74.
µVision2 saves the editor screen layout and restores the screen layout of the last
debug session. If the program execution stops, µVision2 opens an editor window
with the source text or shows CPU instructions in the disassembly window. The
next executable statement is marked with a yellow arrow.

During debugging, most editor features are still available. For example, you can
use the find command or correct program errors. Program source text of your
application is shown in the same windows. The µVision2 debug mode differs
from the edit mode in the following aspects:

¢ The “Debug Menu and Debug Commands” described on page 17 are available.
The additional debug windows are discussed in the following.

¢ The project structure or tool parameters cannot be modified. All build
commands are disabled.

 Disassembly Window
The Disassembly window lets you view your target program as mixed source and
assembly program or just assembly code. In addition, a trace history of previously
executed instructions can be displayed with Debug – View Trace Records. To
enable the trace history, set Debug – Enable/Disable Trace Recording.

If you select the Disassembly Window as the active window all program step
commands work on CPU instruction level rather than program source lines. You

Getting Started 69

5

can select a text line and set or modify code breakpoints using toolbar buttons or
the context menu commands.

You may use the dialog Debug – Inline Assembly… to modify the CPU
instructions. That allows you to correct mistakes or to make temporary changes to
the target program you are debugging.

 Breakpoints
µVision2 lets you define breakpoints in several different ways. You may already
set Execution Breaks during editing of your source text, even before the program
code is translated. Breakpoints can be defined and modified in the following ways:

¢ With the File Toolbar buttons. Just select the code line in the Editor or
Disassembly window and click on the breakpoint buttons.

¢ With the breakpoint commands in the local menu. The local menu opens with
a right mouse click on the code line in the Editor or Disassembly window.

¢ The Debug – Breakpoints… dialog lets you review, define and modify
breakpoint settings. This dialog allows you to define also access breakpoints
with different attributes. Refer to the examples below.

¢ In the Output Window – Command page you can use the BreakSet,
BreakKill, BreakList, BreakEnable, and BreakDisable commands.

The Breakpoint dialog lets you view and modify breakpoints. You can quickly
disable or enable the breakpoints with a mouse click on the check box in the
Current Breakpoints list. A double click in the Current Breakpoints list allows
you to modify the selected break definition.

70 Chapter 5. Testing Programs

5
You define a breakpoint by entering an Expression in the Breakpoint dialog.
Depending on the expression one of the following breakpoint types is defined:

¢ When the expression is a code address, an Execution Break (E) is defined that
becomes active when the specified code address is reached. The code address
must refer to the first byte of a CPU instruction.

¢ When a memory Access (Read, Write or both) is selected an Access Break (A)
is defined that becomes active when the specified memory access occurs. You
can specify the size of the memory access window in bytes or object size of the
expression. Expressions for an Access Break must reduce to a memory
address and memory type. The operators (&, &&, <. <=. >, >=, = =, and !=)
can be used to compare the variable values before the Access Break halts
program execution or executes the Command.

¢ When the expression cannot be reduced to an address a Conditional Break (C)
is defined that becomes active when the specified conditional expression
becomes true. The conditional expression is recalculated after each CPU
instruction, therefore the program execution speed may slow down
considerably.

When you specify a Command for a breakpoint, µVision2 executes the command
and resumes executing your target program. The command you specify here may
be a µVision2 debug or signal function. To halt program execution in a µVision2
function, set the _break_ system variable. For more information refer to “System
Variables” on page 85.

Getting Started 71

5

The Count value specifies the number of times the breakpoint expression is true
before the breakpoint is triggered.

Breakpoint Examples:

The following description explains the definitions in the Breakpoint dialog shown
above. The Current Breakpoints list summarizes the breakpoint type and the
physical address along with the Expression, Command and Count.

Expression: \Measure\143

Execution Break (E) that halts when the target program reaches the code line 143
in the module MEASURE.

Expression: main

Execution Break (E) that halts when the target program reaches the main
function.

Expression: timer0 Command: printf ("Timer0 Interrupt occurred\n")

Execution Break (E) that prints the text "Timer0 Interrupt occurred" in the
Output Window – Command page when the target program reaches the timer0
function. This breakpoint is disable in the above Breakpoint dialog.

Expression: save_measurements Count: 10

Execution Break (E) that halts when the target program reaches the function
save_measurements the 10th time.

Expression: mcommand == 1

Contional Break (C) that halts program execution when the expression
mcommand = = 1 becomes true. This breakpoint is disable in the above
Breakpoint dialog.

Expression: save_record[10] Access: Read Write Size: 3 Objects

Access Break (A) that halts program execution when an read or write access
occurs to save_record[10] and the following 2 objects. Since save_record is a
structure with size 16 bytes this break defines an access region of 48 bytes.

Expression: sindex == 10 Access: Write

Access Break (A) that halts program execution when the value 10 is written to the
variable sindex.

72 Chapter 5. Testing Programs

5

Expression: measure_display Command: MyStatus ()

Execution Break (E) that executes the µVision2 debug function MyStatus when
the target program reaches the function measure_display. The target program
execution resumes after the debug function MyStatus has been executed.

 Target Program Execution
µVision2 lets execute your application program in several different ways:

¢ With the Debug Toolbar buttons and the “Debug Menu and Debug
Commands” as described on page 17.

¢ With the Run till Cursor line command in the local menu. The local menu
opens with a right mouse click on the code line in the Editor or Disassembly
window.

¢ In the Output Window – Command page you can use the Go, Ostep, Pstep,
and Tstep commands.

 Watch Window
The Watch window lets you view and modify program variables and lists the
current function call nesting. The contents of the Watch Window are
automatically updated whenever program execution stops. You can enable View
– Periodic Window Update to update variable values while a target program is
running.

The Locals page shows all local function variables of the current function. The
Watch pages display user-specify program variables. You add variables in three
different ways:

Getting Started 73

5

¢ Select the text <enter here> with a mouse click and wait a second. Another
mouse click enters edit mode that allows you to add variables. In the same way
you can modify variable values.

¢ In an editor window open the context menu with a right mouse click and use
Add to Watch Window. µVision2 automatically selects the variable name
under the cursor position, alternatively you may mark an expression before
using that command.

¢ In the Output Window – Command page you can use the WatchSet
command to enter variable names.

To remove a variable, click on the line and press the Delete key.

The current function call nesting is shown in the Call Stack page. You can double
click on a line to show the invocation an editor window.

 CPU Registers
The CPU registers are displayed and Project Window – Regs page and can be
modified in the same way as variables in the Watch Window.

 Memory Window
The Memory window displays the contents of the various memory areas. Up to
four different areas can be review in the different pages. The context menu
allows you to select the output format.

In the Address field of the Memory Window, you can enter any expression that
evaluates to a start address of the area you want to display. To change the
memory contents, double click on a value. This opens an edit box that allows you

74 Chapter 5. Testing Programs

5

to enter new memory values. To update the memory window while a target
program is running enable View – Periodic Window Update.

 Toolbox
The Toolbox contains user-configurable buttons. Click on a Toolbox button to
execute the associated command. Toolbox buttons may be executed at any time,
even while running the test program.

Toolbox buttons are define the Output Window –
Command page with the DEFINE BUTTON
command. The general syntax is:
>DEFINE BUTTON "button_label", "command"

button_label is the name to display on the button
in the Toolbox.

command is the µVision2 command to execute
when the button is pressed.

The following examples show the define commands used to create the buttons in
the Toolbox shown above:

>DEFINE BUTTON "Decimal Output", "radix=0x0A"
>DEFINE BUTTON "Hex Output", "radix=0x10"
>DEFINE BUTTON "My Status Info", "MyStatus ()" /* call debug function */
>DEFINE BUTTON "Analog0..5V", "analog0 ()" /* call signal function */
>DEFINE BUTTON "Show R15", "printf (\"R15=%04XH\\n\")"

NOTE
The printf command defined in the last button definition shown above introduces
nested strings. The double quote (") and backslash (\) characters of the format
string must be escaped with \ to avoid syntax errors.

You may remove a Toolbox button with the KILL BUTTON command and the
button number. For example:

>Kill Button 5 /* Remove Show R15 button */

NOTE
The Update Windows button in the Toolbox is created automatically and cannot
be removed. The Update Windows button updates several debug windows
during program execution.

Getting Started 75

5

 Set Debug Options
The dialog Options for Target - Debug configures the µVision2 debugger.

The following table describes the options of the Debug dialog page:

Dialog Item Description

Use Simulator Select the µVision2 Simulator as Debug engine.

Use Keil Monitor-166
Driver

Select the Advanced GDI driver to connect to your debug hardware. The Keil
Monitor-166 Driver allows you to connect a target board with the Keil Monitor.
There are µVision2 emulator and OCDS drivers in preparation.

Settings Opens the configuration dialog of the selected Advanced GDI driver.

Other dialog options are available separately for the Simulator and Advanced GDI section.

Load Application at
Startup

Enable this option to load your target application automatically when you start
the µVision2 debugger.

Go till main () Start program execution till the main label when you start the debugger.

Initialization File Process the specified file as command input when starting a debug session.

Breakpoints Restore breakpoint settings from the previous debug session.

Toolbox Restore toolbox buttons from the previous debug session.

Watchpoints & PA Restore Watchpoint and Performance Analyzer settings from the previous
debug session.

Memory Display Restore the memory display settings from the previous debug session.

76 Chapter 5. Testing Programs

5

Dialog Item Description

CPU DLL
Driver DLL
Parameter

Configures the internal µVision2 debug DLLs. The settings are taken from the
device database. Please do not modify the DLL or DLL parameters.

 Serial Window
µVision2 provides two Serial Windows for serial input and output. Serial data
output from the simulated CPU is displayed in this window. Characters you type
in the Serial Window are input to the simulated CPU.

This lets you simulate the CPU’s UART without the need for external hardware.
The serial output may be also assigned to a PC COM port using the ASSIGN
command in the Output Window – Command page.

Getting Started 77

5

 Performance Analyzer
The µVision2 Performance Analyzer displays the execution time recorded for
functions and address ranges you specify.

The <unspecified> address range is automatically generated. It shows the amount
of time spent executing code that is not included in the specified functions or
address ranges.

Results display as bar graphs. Information such as invocation count, minimum
time, maximum time, and average time is displayed for the selected function or
address range. Each of these statistics is described in the following table.

Label Description

min time The minimum time spent in the selected address range or function.

max time The maximum time spent in the selected address range or function.

avg time The average time spent in the selected address range or function.

total time The total time spent in the selected address range or function.

% The percent of the total time spent in the selected address range or function.

count The total number of times the selected address range or function was executed.

To setup the Performance Analyzer use the menu command Debug –
Performance Analyzer. You may enter the PA command in the command
window to setup ranges or print results.

 Code Coverage
The µVision2 debugger provides a code coverage function that marks the code
that has been executed. In the debug window, lines of code that have been
executed are market green in the left column. You can use this feature when you

78 Chapter 5. Testing Programs

5

test your embedded application to determine the sections of code that have not yet
been exercised.

The Code Coverage dialog
provides information and
statistics. You can output
this information in the
Output Window –
Command page using the
COVERAGE command.

Memory Map
The Memory Map dialog box lets you specify the memory areas your target
program uses for data storage and program execution. You may also configure
the target program’s memory map using the MAP command.

When you load a target application, µVision2 automatically maps all address
ranges of your application. Typically it is not required to map additional address
ranges. You need to map only memory areas that are accessed without explicit
variable declarations, i.e. memory mapped I/O space.

The dialog opens via the menu
Debug – Memory Map…

As your target program runs,
µVision2 uses the memory map to
verify that your program does not
access invalid memory areas. For
each memory range, you may
specify the access method: Read,
Write, Execute, or a combination.

Getting Started 79

5

View – Symbols Window
The Symbols Window displays public symbols, local symbols or line number
information defined in the currently loaded application program. CPU-specific
SFR symbols are also displayed.

You may select the symbol type and filter the information with the options in the
Symbol Window:

Options Description

Mode select PUBLIC, LOCALS or LINE. Public symbols have application-wide scope.
The scope of local symbols is limited to a module or function. Lines refer to the
line number information of the source text.

Current Module select the source module where information should be displayed.

Mask specify a mask that is used to match symbol names. The mask may consist of
alphanumeric characters plus mask characters:

matches a digit (0 – 9)
$ matches any character
* matches zero or more characters.

Apply applies the mask and displays the update symbol list.

The following table provides a few examples of masks for symbol name.

Mask Matches symbol names …

* Matches any symbol. This is the default mask in the Symbol Browser.

… that contain one digit in any position.

_a$#* … with an underline, followed by the letter a, followed by any character, followed by a
digit, ending with zero or more characters. For example, _ab1 or _a10value.

80 Chapter 5. Testing Programs

5

Mask Matches symbol names …

_*ABC … with an underline, followed by zero or more characters, followed by ABC.

Debug Commands
You interact with the µVision2 debugger by entering commands from the
keyboard in the Command page of the Output Window. You can enter nearly all
debug commands. In the following all available µVision2 debug commands are
listed in categories.

NOTE
Use the underlined characters in the command names to enter commands. For
example, the WATCHSET command must be entered as WS.

Memory Commands
The following memory commands let you display and alter memory contents.

Command Description

ASM Assembles in-line code.

DEFINE Defines typed symbols that you may use with µVision2 debug functions.

DISPLAY Display the contents of memory.

ENTER Enters values into a specified memory area.

EVALUATE Evaluates an expression and outputs the results.

MAP Specifies access parameters for memory areas.

UNASSEMBLE Disassembles program memory.

WATCHSET Adds a watch variable to the Watch window.

Program Execution Commands
Program commands let you run code and step through your program one
instruction at a time.

Command Description

Esc Stops program execution.

GO Starts program execution.

PSTEP Steps over instructions but does not step into procedures or functions.

OSTEP Steps out of the current function.

TSTEP Steps over instructions and into functions.

Getting Started 81

5

Breakpoint Commands
µVision2 provides breakpoints you may use to conditionally halt the execution of
your target program. Breakpoints can be set on read operations, write operations
and execution operations.

Command Description

BREAKDISABLE Disables one or more breakpoints.

BREAKENABLE Enables one or more breakpoints.

BREAKKILL Removes one or more breakpoints from the breakpoint list.

BREAKLIST Lists the current breakpoints.

BREAKSET Adds a breakpoint expression to the list of breakpoints.

General Commands
The following general commands do not belong in any other particular command
group. They are included to make debugging easier and more convenient.

Command Description

ASSIGN Assigns input and output sources for the Serial window.

COVERAGE List code coverage statistics.

DEFINE BUTTON Creates a Toolbox button.

DIR Generates a directory of symbol names.

EXIT Exits the µVision2 debug mode.

INCLUDE Reads and executes the commands in a command file.

KILL Deletes µVision2 debug functions and Toolbox buttons.

LOAD Loads CPU drivers, object modules, and HEX files.

LOG Creates log files, queries log status, and closes log files for the Debug
window.

MODE Sets the baud rate, parity, and number of stop bits for PC COM ports.

PerformanceAnalyze Setup the performance analyzer or list PA information.

RESET Resets CPU, memory map assignments, Performance Analyzer or
predefined variables.

SAVE Saves a memory range in an Intel HEX386 file.

SCOPE Displays address assignments of modules and functions of a target program.

SET Sets the string value for predefined variable.

SETMODULE Assigns a source file to a module.

SIGNAL Displays signal function status and removes active signal functions.

SLOG Creates log files, queries log status, and closes log files for the Serial
window.

82 Chapter 5. Testing Programs

5

You can interactively display and change variables, registers, and memory
locations from the command window. For example, you can type the following
text commands at the command prompt:

Text Effect

MDH Display the MDH register.

R7 = 12 Assign the value 12 to register R7.

time.hour Displays the member hour of the time structure.

time.hour++ Increments the member hour of the time structure.

index = 0 Assigns the value 0 to index.

Expressions
Many debug commands accept numeric expressions as parameters. A numeric
expression is a number or a complex expressions that contains numbers, debug
objects, or operands.

Components of an Expression
An expression may consist of any of the following components.

Component Description

Bit Addresses Bit addresses reference bit-addressable data memory.

Constants Constants are fixed numeric values or character strings.

Line Numbers Line numbers reference code addresses of executable programs.
When you compile or assemble a program, the compiler and
assembler include line number information in the generated object
module.

Operators Operators include +, -, *, and /. Operators may be used to combine
subexpressions into a single expression. You may use all operators
that are available in the C programming language.

Program Variables (Symbols) Program variables are those variables in your target program. They
are often called symbols or symbolic names.

System Variables System variables alter or affect the way µVision2 operates.

Type Specifications Type specifications let you specify the data type of an expression or
subexpression.

Constants

The µVision2 accepts decimal constants, HEX constants, octal constants, binary
constants, floating-point constants, character constants, and string constants.

Getting Started 83

5

Binary, Decimal, HEX, and Octal Constants

By default, numeric constants are decimal or base ten numbers. When you enter
10, this is the number ten and not the HEX value 10h. The following table shows
the prefixes and suffixes that are required to enter constants in base 2 (binary),
base 8 (octal), base 10 (decimal), and base 16 (HEX).

Base Prefix Suffix Example

Binary: None Y or y 11111111Y

Decimal: None T or none 1234T or 1234

Hexadecimal: 0x or 0X H or h 1234H or 0x1234

Octal: None Q, q, O, or o 777q or 777Q or 777o

Following are a few points to note about numeric constants.

n Numbers may be grouped with the dollar sign character (“$”) to make them
easier to read. For example, 1111$1111y is the same as 11111111y.

n HEX constants must begin prefixed with a leading zero when the first digit in
the constant is A-F.

n By default, numeric constants are 16-bit values. They may be followed with
an L to make them long, 32-bit values. For example: 0x1234L, 1234L, 1255HL.

n When a number is entered that is larger than the range of a 16-bit integer , the
number is promoted automatically to a 32-bit integer.

Floating-Point Constants

Floating-point constants are entered in one of the following formats.

number . number

number e¤+|-¥ number

number . number ¤e¤+|-¥ number¥
For example, 4.12, 0.1e3, and 12.12e–5. In contrast with the C programming
language, floating-point numbers must have a digit before the decimal point. For
example, .12 is not allowed. It must be entered as 0.12.

84 Chapter 5. Testing Programs

5

Character Constants

The rules of the C programming language for character constants apply to the
µVision2 debugger. For example, the following are all valid character constants.

'a', '1', '\n', '\v', '\x0FE', '\015'

Also escape sequences are supported as listed in the following table:

Sequence Description Sequence Description

\\ Backslash character (“\”). \n Newline.

\" Double quote. \r Carriage return.

\' Single quote. \t Tab.

\a Alert, bell. \0nn Octal constant.

\b Backspace. \Xnnn HEX constant.

\f Form feed.

String Constants

The rules of the C programming language for string constants also apply to
µVision2. For example:

"string\x007\n" "value of %s = %04XH\n"

Nested strings may be required in some cases. For example, double quotes for a
nested string must be escaped. For example:

"printf (\"hello world!\n\")"

In contrast with the C programming language, successive strings are not
concatenated into a single string. For example, "string1+" "string2" is not
combined into a single string.

Getting Started 85

5

System Variables
System variables allow access to specific functions and may be used anywhere a
program variable or other expression is used. The following table lists the
available system variables, the data types, and their uses.

Variable Type Description

$ unsigned long represents the program counter. You may use $ to display and change
the program counter. For example,
 $ = 0x4000
sets the program counter to address 0x4000.

break unsigned int lets you stop executing the target program. When you set _break_ to a
non-zero value, µVision2 halts target program execution. You may use
this variable in user and signal functions to halt program execution.
Refer to “Chapter 6. µVision2 Debug Functions” on page 97 for more
information.

traps unsigned int when you set _traps_ to a non-zero value, µVision2 display messages
for the 166 hardware traps: Undefined Opcode, Protected Instruction
Fault, Illegal Word Operand Access, Illegal Instruction Access, Stack
Underflow and Stack Overflow.

states unsigned long current value of the CPU instruction state counter; starts counting from
0 when your target program begins execution and increases for each
instruction that is executed.
NOTE: states is a read-only variable.

itrace unsigned int indicates whether or not trace recording is performed during target
program execution. When itrace is 0, no trace recording is performed.
When itrace has a non-zero value, trace information is recorded. Refer
to page 68 for more information.

radix unsigned int determines the base used for numeric values displayed. radix may be
10 or 16. The default setting is 16 for HEX output.

On-chip Peripheral Symbols
µVision2 automatically defines a number of symbols depending on the CPU you
have selected for your project. There are two types of symbols that are defined:
special function registers (SFRs) and CPU pin registers (VTREGs).

Special Function Registers (SFRs)

µVision2 supports all special function registers of the microcontroller you have
selected. Special function registers have an associated address and may be used in
expressions.

86 Chapter 5. Testing Programs

5

CPU Pin Registers (VTREGs)

CPU pin registers, or VTREGs, let you use the CPU’s simulated pins for input
and output. VTREGs are not public symbols nor do they reside in a memory
space of the CPU. They may be used in expressions, but their values and
utilization are CPU dependent. VTREGs provide a way to specify signals coming
into the CPU from a simulated piece of hardware. You can list these symbols with
the DIR VTREG command.

The following table describes the VTREG symbols. The VTREG symbols that
are actually available depend on the selected CPU.

VTREG Description

AINx An analog input pin on the chip. Your target program may read values you write to AINx
VTREGs.

PORTx A group of I/O pins for a port on the chip. For example, PORT2 refers to all 8 or 16 pins of
P2. These registers allow you to simulate port I/O.

SxIN The input buffer of serial interface x. You may write 8-bit or 9-bit values to SxIN. These
are read by your target program. You may read SxIN to determine when the input buffer is
ready for another character. The value 0xFFFF signals that the previous value is
completely processed and a new value may be written.

SxOUT The output buffer of serial interface x. µVision2 copies 8-bit or 9-bit values (as
programmed) to the SxOUT VTREG.

SxTIME Defines the baudrate timing of the serial interface x. When SxTIME is 1, µVision2
simulates the timing of the serial interface using the programmed baudrate. When
SxTIME is 0 (the default value), the programmed baudrate timing is ignored and serial
transmission time is instantaneous.

CLOCK The clock frequency of the simulated CPU as defined in the Options – Target dialog.

NOTE
You may use the VTREGs to simulate external input and output including
interfacing to internal peripherals like interrupts and timers. For example, if
you toggle bit 2 of PORT3 (on the 8051 drivers), the CPU driver simulates
external interrupt 0.

For the C167 CPU the following VTREG symbols for the on-chip peripheral
registers are available:

CPU-pin Symbol Description

AIN0 Analog input line AIN0 (floating-point value)

AIN1 Analog input line AIN1 (floating-point value)

AIN2 Analog input line AIN2 (floating-point value)

Getting Started 87

5

CPU-pin Symbol Description

AIN3 Analog input line AIN3 (floating-point value)

AIN4 Analog input line AIN4 (floating-point value)

AIN5 Analog input line AIN5 (floating-point value)

AIN6 Analog input line AIN6 (floating-point value)

AIN7 Analog input line AIN7 (floating-point value)

AIN8 Analog input line AIN8 (floating-point value)

AIN9 Analog input line AIN9 (floating-point value)

AIN10 Analog input line AIN10 (floating-point value)

AIN11 Analog input line AIN11 (floating-point value)

AIN12 Analog input line AIN12 (floating-point value)

AIN13 Analog input line AIN13 (floating-point value)

AIN14 Analog input line AIN14 (floating-point value)

AIN15 Analog input line AIN15 (floating-point value)

EA Status of the EA pin (1 bit). This configuration pin is necessary for
calculating the execution time of a program. You must invoke the
RESET command after changing the value of EA.

EBC External Bus Configuration after reset (2 bits). EBC may have one of
the following values:

 Value Description
0 8-bit data bus, non-multiplexed
1 8-bit data bus, multiplexed
2 16-bit data bus, non-multiplexed
3 16-bit data bus, multiplexed

Bus configuration pins are necessary for calculating the execution time
of a program. Bit 0 of EBC represents EBC0. Bit 1of EBC represents
EBC1. When EBC is 3, EBC0 and EBC1 are both set. You must
invoke the RESET command after changing the value of EBC.

PORT0H Digital I/O lines of PORT 0H (8-bit)

PORT0L Digital I/O lines of PORT 0L (8-bit)

PORT1H Digital I/O lines of PORT 1H (8-bit)

PORT1L Digital I/O lines of PORT 1L (8-bit)

PORT2 Digital I/O lines of PORT 2 (16-bit)

PORT3 Digital I/O lines of PORT 3 (16-bit)

PORT4 Digital I/O lines of PORT 4 (8-bit)

PORT5 Digital/analog Input Lines of PORT 5 (16-bit)

PORT6 Digital I/O lines of PORT 6 (8-bit)

PORT7 Digital I/O lines of PORT 7 (8-bit)

PORT8 Digital I/O lines of PORT 8 (8-bit)

S0IN Serial input for SERIAL CHANNEL 0 (9 bits)

S0OUT Serial output for SERIAL CHANNEL 0 (9 bits)

S0TIME Serial timing enable for SERIAL CHANNEL 0

S1IN Serial input for SERIAL CHANNEL 1 (9 bits)

S1OUT Serial output for SERIAL CHANNEL 1 (9 bits)

88 Chapter 5. Testing Programs

5

CPU-pin Symbol Description

S1TIME Serial timing enable for SERIAL CHANNEL 1

CLOCK Clock frequency

The following examples show how VTREGs may be used to aid in simulating
your target program. In most cases, you use VTREGs in signal functions to
simulate some part of your target hardware.

I/O Ports

µVision2 defines a VTREG for each I/O port: i.e. PORT2. Do not confuse these
VTREGs with the SFRs for each port (i.e. P2). The SFRs can be accessed inside
the CPU memory space. The VTREGs are the signals present on the pins.

With µVision2, it is easy to simulate input from external hardware. If you have a
pulse train coming into a port pin, you can use a signal function to simulate the
signal. For example, the following signal function inputs a square wave on P2.1
with a frequency of 1000Hz.

signal void one_thou_hz (void) {
 while (1) { /* repeat forever */
 PORT2 |= 1; /* set P1.2 */
 twatch ((CLOCK / 2) / 2000); /* delay for .0005 secs */
 PORT2 &= ~1; /* clear P1.2 */
 twatch ((XCLOCK / 2) / 2000); /* delay for .0005 secs */
 } /* repeat */
}

The following command starts this signal function:

one_thou_hz ()

Refer to “Chapter 6. µVision2 Debug Functions” on page 97 for more
information about user and signal functions.

Simulating external hardware that responds to output from a port pin is only
slightly more difficult. Two steps are required. First, write a µVision2 user or
signal function to perform the desired operations. Second, create a breakpoint that
invokes the user function.

Suppose you use an output pin (P2.0) to enable or disable an LED. The following
signal function uses the PORT2 VTREG to check the output from the CPU and
display a message in the Command window.

Getting Started 89

5

signal void check_p20 (void) {
 if (PORT2 & 1)) { /* Test P2.0 */
 printf ("LED is ON\n"); } /* 1? LED is ON */
 else { /* 0? LED is OFF */
 printf ("LED is OFF\n"): }
}

Now, you must add a breakpoint for writes to port 1. The following command
line adds a breakpoint for all writes to PORT2.

BS WRITE PORT2, 1, "check_p20 ()"

Now, whenever your target program writes to PORT2, the check_P20 function
prints the current status of the LED. Refer to page 69 for more information about
setting breakpoints.

Serial Ports

The on-chip serial port is controlled with: S0TIME, S0IN, and S0OUT. S0IN
and S0OUT represent the serial input and output streams on the CPU. S0TIME
lets you specify whether the serial port timing instantaneous (STIME = 0) or the
serial port timing is relative to the specified baudrate (SxTIME = 1). When
S0TIME is 1, serial data displayed in the Serial window is output at the specified
baudrate. When S0TIME is 0, serial data is displayed in the Serial window much
more quickly.

Simulating serial input is just as easy as simulating digital input. Suppose you
have an external serial device that inputs specific data periodically (every second).
You can create a signal function that feeds the data into the CPU’s serial port.

signal void serial_input (void) {
 while (1) { /* repeat forever */
 twatch (CLOCK); /* Delay for 1 second */

 S0IN = 'A'; /* Send first character */
 twatch (CLOCK / 900); /* Delay for 1 character time */
 /* 900 is good for 9600 baud */
 S0IN = 'B'; /* Send next character */
 twatch (CLOCK / 900);
 S0IN = 'C'; /* Send final character */
 } /* repeat */
}

When this signal function runs, it delays for 1 second, inputs ‘A’, ‘B’, and ‘C’ into
the serial input line and repeats.

Serial output is simulated in a similar fashion using a user or signal function and a
write access breakpoint as described above.

90 Chapter 5. Testing Programs

5

Program Variables (Symbols)
µVision2 lets you access variables, or symbols, in your target program by simply
typing their name. Variable names, or symbol names, represent numeric values
and addresses. Symbols make the debugging process easier by allowing you to use
the same names in the debugger as you use in your program.

When you load a target program module and the symbol information is loaded into
the debugger. The symbols include local variables (declared within functions), the
function names, and the line number information. You must enable Options for
Target – Output – Debug Information. Without debug information, µVision2
cannot perform source-level and symbolic debugging.

Module Names

A module name is the name of an object module that makes up all or part of a
target program. Source-level debugging information as well as symbolic
information is stored in each module.

The module name is derived from the name of the source file. If the target
program consists of a source file named MCOMMAND.C and the C compiler
generates an object file called MCOMMAND.OBJ, the module name is
MCOMMAND.

Symbol Naming Conventions

The following conventions apply to symbols.

n The case of symbols is ignored: SYMBOL is equivalent to Symbol.

n The first character of a symbol name must be: ‘A’-’Z’, ‘a’-’z’, ‘_’, or ‘?’.

n Subsequent characters may be: ‘A’-’Z’, ‘a’-’z’, ‘0’-’9’, ‘_’, or ‘?’.

NOTE
When using the ternary operator (“?:”) in µVision2 with a symbol that begins
with a question mark (“?”), you must insert a space between the ternary
operator and the symbol name. For example, R5 = R6 ? ?symbol : R7.

Getting Started 91

5

Symbol Classification

µVision2 recognizes two classes of symbols:

n Program Symbols are defined in the target program.

n Reserved Words are predefined in µVision2. Debug commands & options,
data type names, register names, system variables, CPU symbols, and
VTREGs are all reserved words.

Literal Symbols

Often you may find that your program symbols duplicate reserved words. When
this occurs, you must literalize your program symbol using the back quote
character (`) to differentiate them from reserved words.

For example, if you define a variable named R5 in your program and you attempt
to access it, you will actually access the R5 register. To access the R5 variable,
you must prefix the variable name with the back quote character.

Accessing the R5 Register Accessing the R5 Variable
>R5 = 121 >`R5 = 212

Normally, µVision2 searches for reserved words then for target program symbols.
When you literalize a symbol, µVision2 only searches for target program symbols.

Fully Qualified Symbols

Symbols may be entered using the only name of the variable or function they
reference. Symbols may also be entered using a fully qualified name that includes
the name of the module and name of the function in which the symbol is defined.

A fully qualified symbol name may include any of the following components:

n Module Name identifies the module where a symbol is defined.

n Line Number identifies the address of the code generated for a particular line
in the module.

n Function Name identifies the function in a module where a local symbol is
defined.

n Symbol Name identifies the name of the symbol.

92 Chapter 5. Testing Programs

5

You may combine names as shown in the following table:

Symbol Components Full Qualified Symbol Name addresses …

\ModuleName\LineNumber … line number LineNumber in ModuleName.

\ModuleName\FunctionName … FunctionName function in ModuleName.

\ModuleName\SymbolName … global symbol SymbolName in ModuleName.

\ModuleName\FunctionName\SymbolName … local symbol SymbolName in the FunctionName
function in ModuleName.

Examples of fully qualified symbol names:

Full Qualified Symbol Name Identifies …

\MEASURE\clear_records\idx … local symbol idx in the clear_records function in the
MEASURE module.

\MEASURE\MAIN\cmdbuf … cmdbuf local symbol in the MAIN function in the MEASURE
module.

\MEASURE\sindx … sindx symbol in the MEASURE module.

\MEASURE\225 … line number 225 in the MEASURE module.

\MCOMMAND\82 … line number 82 in the MCOMMAND module.

\MEASURE\TIMER0 … the TIMER0 symbol in the MEASURE module. This symbol
may be a function or a global variable.

Non-Qualified Symbols

When you enter a fully qualified symbol name, µVision2 determines if the symbol
exists and reports an error if it does not. For symbols that are not fully qualified,
µVision2 searches a number of tables until a matching symbol name is found.
This search works as follows:

1. Local Variables in the Current Function in the target program. The current
function is determined by the value of the program counter.

2. Global or Static Variables in the Current Module. As with the current
function, the current module is determined by the value of the program counter.
Symbols in the current module represent variables that were declared in the
module but outside a function. This includes file-scope or static variables.

3. Symbols Created with the µVision2 DEFINE Command. These symbols
are used for debugging and are not a part of the target program.

4. System Variables provide a way to monitor and change debugger
characteristics. They are not a part of the target program. Refer to “System
Variables” on page 85 for more information. If a global variable in your target

Getting Started 93

5

program shares the same name as a system variable, you may access the global
variable using a literal symbol name. Refer to “Literal Symbols” on page 91
for more information.

5. Global or Public Symbols of your target program. SFRs defined by µVision2
are considered to be public symbols and are also searched.

6. CPU Driver Symbols (VTREGs) defined by the CPU driver. Refer to “CPU
Pin Registers (VTREGs)” on page 86 for a description of VTREG symbols.

NOTE
The search order for symbols changes when creating user or signal functions.
µVision2 first searches the table of symbols defined in the user or signal
function. Then, the above list is searched. Refer to “Chapter 6. µVision2
Debug Functions” on page 97 for more information about user and signal
functions.

Line Numbers
Line numbers enable source-level debugging and are produced by the compiler or
assembler. The line number specifies the physical address in the source module of
the associated program code. Since a line number represents a code address,
µVision2 lets you use in an expression. The syntax for a line number is shown in
the following table.

Line Number Symbol Code Address …

\LineNumber … for line number LineNumber in the current module.

\ModuleName\LineNumber … for line number LineNumber in ModuleName.

Example
\measure\108 /* Line 108 in module "MEASURE" */
\143 /* Line 143 in the current module */

94 Chapter 5. Testing Programs

5

Bit Addresses
Bit addresses represent bits in the memory. This includes bits in special function
registers. The syntax for a bit address is expression . bit_position

Examples
R6.2 /* Bit 2 of register R6 */
0xFD00.15 /* Value of the 166 bit space */

Type Specifications
µVision2 automatically performs implicit type casting in an expression. You may
explicitly cast expressions to specific data types. Type casting follows the
conventions used in the C programming language. Example:

(unsigned int) 31.2 /* gives unsigned int 31 from the float value */

Operators
µVision2 supports all operators of the C programming language. The operators
have the same meaning as their C equivalents.

Differences Between µVision2 and C
There are a number of differences between expressions in µVision2 and
expressions in the C programming language:

n µVision2 does not differentiate between uppercase and lowercase characters
for symbolic names and command names.

n µVision2 does not support converting an expression to a typed pointer like
char * or int *. Pointer types are obtained from the symbol information in the
target program. They cannot be created.

n Function calls entered in the µVision2 Output Window – Command page refer
to debug functions. You cannot invoke functions in your target from the
command line. Refer to “Chapter 6. µVision2 Debug Functions” on page 97
for more information.

n µVision2 does not support structure assignments.

Getting Started 95

5

Expression Examples
The following expressions were entered in the Command page of the Output
Window. All applicable output is included with each example. The MEASURE
example program were used for all examples.

Constant
>0x1234 /* Simple constant */
0x1234 /* Output */
>EVAL 0x1234
4660T 11064Q 1234H '...4' /* Output in several number bases */

Register
>R1 /* Interrogate value of register R1 */
0x000A /* Address from ACC = 0xE0, mem type = D: */
>R1 = --R7 /* Set R1 and R7 equal to value R7-1 */

Function Symbol
>main /* Get address of main() from MEASURE.C */
0x00233DA /* Reply, main starts at 0x233DA */

>&main /* Same as before */
0x00233DA

>d main /* Display: address = main, mem type = C: */
0x0233DA: 76 E2 00 04 76 E3 00 04 - 66 E3 FF F7 E6 B6 80 00 v...v...f......
0x0233EA: E6 B7 00 00 E6 5A 40 00 - E6 D8 11 80 E6 2A 3C F6Z@......*<
0x0233FA: E6 28 3C F6 E6 CE 44 00 - BF 88 E6 A8 40 00 BB D8 .(<...D.....@..
0x02340A: E6 F8 7A 40 CA 00 CE 39 - E6 F8 18 44 CA 00 CE 39 ..z@...9...D...

Address Utilization Examples
>&\measure\main\cmdbuf[0] + 10 /* Address calculation */
0x23026

>_RBYTE (0x233DA) /* Read byte from code address 0x233DA */
0x76 /* Reply */

Symbol Output Examples
>dir \measure\main /* Output symbols from main() in module MEASURE */
 R14 idx . . . uint /* Output */
 R13 i . . . uint
 0x0002301C cmdbuf . . . array[15] of char

Program Counter Examples
>$ = main /* Set program counter to main() */
>dir /* points to local mem sym. from main() */
R14 idx . . . uint /* Output */
 R13 i . . . uint
 0x0002301C cmdbuf . . . array[15] of char

Program Variable Examples

96 Chapter 5. Testing Programs

5

>cmdbuf /* Interrogate address from cmdbuf */
0x0002301C /* Output of address due to aggregate type (Array)*/
>cmdbuf[0] /* Output contents of first array element */
0x00
>i /* Output contents from i */
0x00
>idx /* Output contents from idx */
0x0000
>idx = DPP2 /* Set contents from index equal to register DPP2 */
>idx /* Output contents from idx */
0x0008

Line Number Examples
>\163 /* Address of the line number #104 */
0x000230DA /* Reply */
>\MCOMMAND\91 /* A line number of module "MCOMMAND" */
0x000231F6

Operator Examples
>--R5 /* Auto-decrement also for CPU registers */
0xFE
>mdisplay /* Output a PUBLIC bit variable */
0
>mdisplay = 1 /* Change */
>mdisplay /* Check result */
1

Structure Examples
>save_record[0] /* Address of a record */
0x002100A
>save_record[0].time.hour = DPP3 /* Change struct element of records */

>save_record[0].time.hour /* Interrogation */
0x03

µVision2 Debug Function Invocation Examples
>printf ("uVision2 is coming!\n") /* String constant within printf() */
uVision2 is coming! /* Output */
>_WBYTE(0x20000, _RBYTE(0x20001) /* Read & Write Memory Byte */
> /* example useful in debug functions */
>interval.min = getint ("enter integer: ");

Fully Qualified Symbol Examples
>--\measure\main\idx /* Auto INC/DEC valid for qualified symbol */
0xFFFF

Getting Started 97

6

Chapter 6. µVision2 Debug Functions
This chapter discusses a powerful aspect of the µVision2: debug functions. You
may use functions to extend the capabilities of the µVision2 debugger. You may
create functions that generate external interrupts, log memory contents to a file,
update analog input values periodically, and input serial data to the on-chip serial
port.

NOTE
Do note confuse µVision2 debug functions with functions of your target
program. µVision2 debug functions aids you in debugging of your application
and are entered or with the Function Editor or on µVision2 command level.

µVision2 debug functions utilize a subset of the C programming language. The
basic capabilities and restrictions are as follows:

n Flow control statements if, else, while, do, switch, case, break, continue, and
goto may be used in debug functions. All of these statements operate in
µVision2 debug functions as they do in ANSI C.

n Local scalar variables are declared in debug functions in the same way they are
declared in ANSI C. Arrays are not allowed in debug functions.

For a complete description of the “Differences Between Debug Functions and C”
refer to page 110.

Creating Functions
µVision2 has a built-in debug function editor which opens with Debug – Function
Editor. When you start the function editor, the editor asks for a file name or
opens the file specified under Options for Target – Debug – Initialization File.
The debug function editor works in the same way as the build-in µVision2 editor
and allows you to enter and compile debug functions.

98 Chapter 6. µVision2 Debug Functions

6

Options Description

Open open an existing file with µVision2 debug functions or commands.

New create a new file

Save save the editor content to file.

Save As specify a file for saving the debug functions.

Compile send current editor content to the µVision2 command interpreter. This compiles
all debug functions.

Compile Errors shows a list of all errors. Choose an error, this locates the cursor to the
erroneous line in the editor window.

Once you have created a file with µVision2 debug functions, you may use the
INCLUDE command to read and process the contents of the text file. For
example, if you type the following command in the command window, µVision2
reads and interprets the contents of MYFUNCS.INI.

>INCLUDE MYFUNCS.INI

MYFUNCS.INI may contain debug commands and function definitions. You
may enter this file also under Options for Target – Debug - Initialization File.
Every time you start the µVision2 debugger, the contents of MYFUNCS.INI will
be processed.

Functions that are no longer needed may be deleted using the KILL command.

Getting Started 99

6

Invoking Functions
To invoke or run a debug function you must type the name of the function and any
required parameters in the command window. For example, to run the printf
built-in function to print “Hello World,” enter the following text in the command
window:

>printf ("Hello World\n")

The µVision2 debugger responds by printing the text “Hello World” in the
Command page of the Output Window.

Function Classes
µVision2 supports the following three classes of functions: Predefined Functions,
User Functions, and Signal Functions.

n Predefined Functions perform useful tasks like waiting for a period of time or
printing a message. Predefined functions cannot be removed or redefined.

n User Functions extend the capabilities of µVision2 and can process the same
expressions allowed at the command level. You may use the predefined
function exec, to execute debug commands from user and signal functions.

n Signal Functions simulate the behavior of a complex signal generator and lets
you create various input signals to your target application. For example,
signals can be applied on the input lines of the CPU under simulation. Signal
functions run in the background during your target program’s execution.
Signal functions are coupled via CPU states counter which has a resolution of
instruction state. A maximum of 64 signal functions may be active
simultaneously.

As functions are defined, they are entered into the internal table of user or signal
functions. You may use the DIR command to list the predefined, user, and signal
functions available.

DIR BFUNC displays the names of all built-in functions. DIR UFUNC displays
the names of all user functions. DIR SIGNAL displays the names of all signal
functions. DIR FUNC displays the names of all user, signal, and built-in
functions.

100 Chapter 6. µVision2 Debug Functions

6

Predefined Functions
µVision2 includes a number of predefined debug functions that are always
available for use. They cannot be redefined or deleted. Predefined functions are
provided to assist the user and signal functions you create.

The following table lists all predefined µVision2 debug functions.

Return Name Parameter Description

void exec (“command_string”) Execute Debug Command

double getdbl (“prompt_string”) Ask the user for a double number

int getint (“prompt_string”) Ask the user for a int number

long getlong (“prompt_string”) Ask the user for a long number

void memset (start_addr, value, len) fill memory with constant value

void printf (“string”, ...) works like the ANSI C printf function

int rand (int seed) return a random number in the range -32768
to +32767

void twatch (ulong states) Delay execution of signal function for specified
number of CPU states

uchar _RBYTE (address) Read char on specified memory address

uint _RWORD (address) Read int on specified memory address

ulong _RDWORD (address) Read long on specified memory address

float _RFLOAT (address) Read float on specified memory address

double _RDOUBLE (address) Read double on specified memory address

void _WBYTE (address, uchar val) Write char on specified memory address

void _WWORD (address, uint val) Write int on specified memory address

void _WDWORD (address, ulong val) Write long on specified memory address

void _WFLOAT (address, float val) Write float on specified memory address

void _WDOUBLE (address, double val) Write double on specified memory address

The predefined functions are described below.

void exec (“command_string”)

The exec function lets you invoke µVision2 debug commands from within your
user and signal functions. The command_string may contain several commands
separated by semicolons.

Getting Started 101

6

The command_string is passed to the command interpreter and must be a valid
debug command.

Example
>exec ("DIR PUBLIC; EVAL R7")
>exec ("BS timer0")
>exec ("BK *")

double getdbl (“prompt_string”), int getint (“prompt_string”),
long getlong (“prompt_string”)

This functions prompts you to enter a number and, upon entry, returns the value of
the number entered. If no entry is made, the value 0 is returned.

Example
>age = getint ("Enter Your Age")

void memset (start address, uchar value, ulong length)

The memset function sets the memory specified with start address and length to
the specified value.

Example
>MEMSET (0x20000, 'a', 0x1000) /* Fill 0x20000 to 0x20FFF with "a" */

void printf (“format_string”, ...)

The prinf function works like the ANSI C library function. The first argument is
a format string. Following arguments may be expressions or strings. The
conventional ANSI C formatting specifications apply to printf.

Example
>printf ("random number = %04XH\n", rand(0))
random number = 1014H

>printf ("random number = %04XH\n", rand(0))
random number = 64D6H

>printf ("%s for %d\n", "uVision2", 166)
uVision2 for 166

>printf ("%lu\n", (ulong) -1)
4294967295

102 Chapter 6. µVision2 Debug Functions

6

int rand (int seed)

The rand function returns a random number in the range -32768 to +32767. The
random number generator is reinitialized each time a non-zero value is passed in
the seed argument. You may use the rand function to delay for a random number
of clock cycles or to generate random data to feed into a particular algorithm or
input routine.

Example
>rand (0x1234) /* Initialize random generator with 0x1234 */
0x3B98

>rand (0) /* No initialization */
0x64BD

void twatch (long states)

The twatch function may be used in a signal function to delay continued execution
for the specified number of CPU states. µVision2 updates the state counter while
executing your target program.

Example

The following signal function toggles the INT0 input (P3.2) every second.

signal void int0_signal (void) {
 while (1) {
 PORT3 |= 0x04; /* pull INT0(P3.2) high */
 PORT3 &= ~0x04; /* pull INT0(P3.2) low and generate interrupt */
 PORT3 |= 0x04; /* pull INT0(P3.2) high again */
 twatch (CLOCK); /* wait for 1 second */
 }
 }

NOTE
The twatch function may be called only from within a signal function. Calls
outside a signal function are not allowed and result in an error message.

Getting Started 103

6

uchar _RBYTE (address), uint _RWORD (address),
ulong _RDWORD (address), float _RFLOAT (address),
double _RDOUBLE (address)

These functions return the content of the specified memory address.

Example
>_RBYTE (0x20000) /* return the character at 0x20000 */
>_RFLOAT (0xE000) /* return the float value at 0xE000 */
>_RDWORD (0x1000) /* return the long value at 0x1000 */

_WBYTE (addr, uchar value), _WWORD (addr, uint value),
_WDWORD (addr, ulong value), _WFLOAT (addr, float value,
_WDOUBLE (addr, double value)

These functions write a value to the specified memory address.

Example
>_WBYTE (0x20000, 0x55) /* write the byte 0x33 at 0x20000 */
>_RFLOAT (0xE000, 1.5) /* write the float value 1.5 at 0xE000 */
>_RDWORD (0x1000, 12345678) /* write the long value 12345678 at 0x1000 */

104 Chapter 6. µVision2 Debug Functions

6

User Functions
User functions are functions you create to use with the µVision2 debugger. You
may enter user functions directly in the function editor or you may use the
INCLUDE command to load a file that contains one or more user functions.

NOTE
µVision2 provides a number of system variables you may use in your user
functions. Refer to “System Variables” on page 85 for more information.

User functions begin with FUNC keyword and are defined as follows:

FUNC return_type fname (parameter_list) {
 statements
}

return_type is the type of the value returned by the function and may be: bit,
char, float, int, long, uchar, uint, ulong, void. You may use
void if the function does not return a value. If no return type is
specified the type int is assumed.

fname is the name of the function.

parameter_list is the list of arguments that are passed to the function. Each
argument must have a type and a name. If no arguments are
passed to the function, use void for the parameter_list. Multiple
arguments are separated by commas.

statements are instructions the function carries out.

{ is the open curly brace. The function definition is complete when
the number of open braces is balanced with the number of the
closing braces (“}”).

Example

The following example shows a user function that displays the contents of the
registers R0 through R7. For more information about “Creating Functions” refer
to page 97.

FUNC void MyRegs (void) {
 printf ("---------- MyRegs() ----------\n");
 printf (" R4 R8 R9 R10 R11 R12\n");
 printf (" %04X %04X %04X %04X %04X %04X\n",
 R4, R8, R9, R10, R11, R12);
 printf ("------------------------------\n");
}

Getting Started 105

6

To invoke this function, type the following in the command window.

MyRegs()

When invoked, the MyRegs function displays the contents of the registers and
appears similar to the following:

---------- MyRegs() ----------
 R4 R8 R9 R10 R11 R12
 B02C 8000 0001 0000 0000 0000

Restrictions

n µVision2 checks user functions to ensure they return values that correspond to
the function return type. Functions with a void return type must not return a
value. Functions with a non-void return type must return a value. Note that
µVision2 does not check each return path for a valid return value.

n User functions may not invoke signal functions or the twatch function.

n The value of a local object is undefined until a value is assigned to it.

n Remove user functions using the KILL FUNC command.

106 Chapter 6. µVision2 Debug Functions

6

Signal Functions
A Signal function let you repeat operations, like signal inputs and pulses, in the
background while µVision2 executes your target program. Signal functions help
you simulate and test serial I/O, analog I/O, port communications, and other
repetitive external events.

Signal functions execute in the background while µVision2 simulates your target
program. Therefore, a signal function must call the twatch function at some point
to delay and let µVision2 run your target program. µVision2 reports an error for
signal functions that never call twatch.

NOTE
µVision2 provides a number of system variables you may use in your signal
functions. Refer to “System Variables” on page 85 for more information.

Signal functions begin with the SIGNAL keyword and are defined as follows:

SIGNAL void fname (parameter_list) {
 statements
 }

fname is the name of the function.

parameter_list is the list of arguments that are passed to the function. Each
argument must have a type and a name. If no arguments are
passed to the function, use void for the parameter_list. Multiple
arguments are separated by commas.

statements are instructions the function carries out.

{ is the open curly brace. The function definition is complete when
the number of open braces is balanced with the number of the
closing braces (“}”).

Example

The following example shows a signal function that puts the character ‘A’ into the
serial input buffer once every 1,000,000 CPU states. For more information about
“Creating Functions” refer to page 97.

SIGNAL void StuffS0in (void) {
 while (1) {
 S0IN = 'A';
 twatch (1000000);
 }
}

Getting Started 107

6

To invoke this function, type the following in the command window.

StuffS0in()

When invoked, the StuffS0in signal function puts and ASCII character ‘A’ in the
serial input buffer, delays for 1,000,000 CPU states, and repeats.

Restrictions

The following restrictions apply to signal functions:

n The return type of a signal function must be void.

n A signal function may have a maximum of eight function parameters.

n A signal function may invoke other predefined functions and user functions.

n A signal function may not invoke another signal function.

n A signal function may be invoked by a user function.

n A signal function must call the twatch function at least once. Signal functions
that never call twatch do not allow the target program time to execute. Since
you cannot use Ctrl+C to abort a signal function, µVision2 may enter an
infinite loop.

Managing Signal Functions

µVision2 maintains a queue for active signal functions. A signal function may
either be either idle or running. A signal function that is idle is delayed while it
waits for the number of CPU states specified in a call to twatch to expire. A
signal function that is running is executing statements inside the function.

When you invoke a signal function, µVision2 adds that function to the queue and
marks it as running. Signal functions may only be activated once, if the function
is already in the queue, a warning is displayed. View the state of active signal
functions with the command SIGNAL STATE. Remove active signal functions
form the queue with the command SIGNAL KILL.

When a signal function invokes the twatch function, it goes in the idle state for the
number of CPU states passed to twatch. After the user program has executed the
specified number of CPU states, the signal function becomes running. Execution
continues at the statement after twatch.

108 Chapter 6. µVision2 Debug Functions

6

If a signal function exits, because of a return statement, it is automatically
removed from the queue of active signal functions.

Analog Example

The following example shows a signal function that varies the input to analog
input 0 on a C167. The function increases and decreases the input voltage by 0.5
volts from 0V and an upper limit that is specified as the signal function’s only
argument. This signal function repeats indefinitely, delaying 200,000 states for
each voltage step.

signal void analog0 (float limit) {
 float volts;

 printf ("Analog0 (%f) entered.\n", limit);
 while (1) { /* forever */
 volts = 0;
 while (volts <= limit) {
 ain0 = volts; /* analog input-0 */
 twatch (200000); /* 200000 states Time-Break */
 volts += 0.1; /* increase voltage */
 }
 volts = limit;
 while (volts >= 0.0) {
 ain0 = volts;
 twatch (200000); /* 200000 states Time-Break */
 volts -= 0.1; /* decrease voltage */
 }
 }
}

The signal function analog0 can then be invoked as follows:

>ANALOG0 (5.0) /* Start of 'ANALOG()' */
ANALOG0 (5.000000) ENTERED

The SIGNAL STATE command to displays the current state of the analog0:

>SIGNAL STATE
 1 idle Signal = ANALOG0 (line 8)

µVision2 lists the internal function number, the status of the signal function: idle
or running, the function name and the line number that is executing.

Since the status of the signal function is idle, you can infer that analog0 executed
the twatch function (on line 8 of analog0) and is waiting for the specified number
of CPU states to elapse. When 200,000 states pass, analog0 continues execution
until the next call to twatch in line 8 or line 14.

Getting Started 109

6

The following command removes the analog0 signal function from the queue of
active signal functions.

>SIGNAL KILL ANALOG0

110 Chapter 6. µVision2 Debug Functions

6

Differences Between Debug Functions and C
There are a number of differences between ANSI C and the subset of features
support in µVision2 debug user and signal functions.

n µVision2 does not differentiate between uppercase and lowercase. The names
of objects and control statements may be written in either uppercase or
lowercase.

n µVision2 has no preprocessor. Preprocessor directives like #define, #include,
and #ifdef are not supported.

n µVision2 does not support global declarations. Scalar variables must be
declared within a function definition. You may define symbols with the
DEFINE command and use them like you would use a global variable.

n In µVision2, variables may not be initialized when they are declared. Explicit
assignment statements must be used to initialize variables.

n µVision2 functions only support scalar variable types. Structures, arrays, and
pointers are not allowed. This applies to the function return type as well as the
function parameters.

n µVision2 functions may only return scalar variable types. Pointers and
structures may not be returned.

n µVision2 functions cannot be called recursively. During function execution,
µVision2 recognizes recursive calls and aborts function execution if one is
detected.

n µVision2 functions may only be invoked directly using the function name.
Indirect function calls via pointers are not supported.

n µVision2 supports the new ANSI style of function declaration for functions
with a parameter list. The old K&R format is not supported. For example, the
following ANSI style function is acceptable.
func test (int pa1, int pa2) { /* ANSI type, correct */
 /* ... */
}

The following K&R style function is not acceptable.
func test (pa1, pa2) /* Old K&R style is */
int pa1, pa2; /* not supported */
{
 /* ... */
}

Getting Started 111

7

Chapter 7. Sample Programs
This section describes the sample programs that are included in our tool kits. The
sample programs are ready for you to run. You can use the sample programs to
learn how to use our tools. Additionally, you can copy the code from our samples
for your own use.

The sample programs are found in the C:\KEIL\C166\EXAMPLES\ folder. Each
sample program is stored in a separate folder along with project files that help you
quickly build and evaluate each sample program.

The following table lists the sample programs and their folder names.

Example Description

BADCODE Program with syntax errors and warnings. You may use the µVision2 editor to
correct these.

CSAMPLE Simple addition and subtraction calculator that shows how to build a multi- module
project with µVision2.

DHRY Dhrystone benchmark. Calculates the dhrystones factor for the target CPU.

HELLO Hello World program. Try this first when you begin using µVision2. It prints Hello
World on the serial interface and helps you confirm that the development tools
work correctly. Refer to “HELLO: Your First 166 C Program” on page 112 for
more information about this sample program.

MEASURE Data acquisition system that collects analog and digital signals. Refer to
“MEASURE: A Remote Measurement System” on page 117 for more information
about this sample program.

RTX_EX1 Demonstrates round-robin multitasking using RTX-166 Tiny.

RTX_EX2 Demonstrates an RTX-166 Tiny application that uses signals.

SIEVE Benchmark that calculates prime numbers.
TRAFFIC Shows how to control a traffic light using the RTX-166 Tiny real-time executive.

WHETS Benchmark program that calculates the whetstones factor for the target CPU.

To begin using one of the sample projects, use the µVision2 menu Project – Open
Project and load the project file.

The following sections in this chapter describe how to use the tools to build the
following sample programs:

¢ HELLO: Your First C51 Program

¢ MEASURE: A Remote Measurement System

112 Chapter 7. Sample Programs

7

HELLO: Your First 166 C Program
The HELLO sample program is located in C:\KEIL\C166\EXAMPLES\HELLO\ .
HELLO does nothing more than print the text “Hello World” to the serial port.
The entire program is contained in a single source file HELLO.C.

This small application helps you confirm that you can compile, link, and debug an
application. You can perform these operations from the DOS command line,
using batch files, or from µVision for Windows using the provided project file.

The hardware for HELLO is based on the standard C167 CPU. The only on-chip
peripheral used is the serial port. You do not actually need a target CPU because
µVision2 lets you simulate the hardware required for this program.

HELLO Project File
In µVision, applications are
maintained in a project file.
A project file has been
created for HELLO. To
load this project, select
Open Project from the
Project menu and open
HELLO.UV2 from the folder
… \C166\EXAMPLES\HELLO.

Editing HELLO.C
You can now edit HELLO.C. Double click on HELLO.C in the Files page of the
Project Window. µVision2 loads and displays the contents of HELLO.C in an
editor window.

Getting Started 113

7

 Compiling and Linking HELLO
When you are ready to compile and link your project, use the Build Target
command from the Project menu or the Build toolbar. µVision2 begins to
translate and link the source files and creates an absolute object module that you
can load into the µVision2 debugger for testing. The status of the build process is
listed in the Build page of the Output Window.

NOTE
You should encounter no errors when you use µVision2 with the provided sample
projects.

114 Chapter 7. Sample Programs

7

 Testing HELLO
Once the HELLO program is compiled and linked, you can test it with the
µVision2 debugger. In µVision2, use the Start/Stop Debug Session command
from the Debug menu or toolbar. µVision2 initializes the debugger and starts
program execution till the main function. The following screen displays.

Open Serial Window #1 that displays the serial output of the application
with the Serial Window #1 command from the View menu or the Debug
toolbar.

Run HELLO with the Go command from the Debug menu or toolbar. The
HELLO program executes and displays the text “Hello World” in the serial
window. After HELLO outputs “Hello World,” it begins executing an
endless loop.

Stop Running HELLO with the Halt command from the Debug menu or
the toolbar. You may also type ESC in the Command page of the Output
window.

Getting Started 115

7

During debugging µVision2 will show the following output:

Single-Stepping and Breakpoints

Use the Insert/Remove Breakpoints command from the toolbar or the local
editor menu that opens with a right mouse click and set a breakpoint at the
beginning of the main function.

Use the Reset CPU command from the Debug menu or toolbar. If you have
halted HELLO start program execution with Run. µVision2 will stop the
program at the breakpoint.

You can single-step through the HELLO program using the Step buttons in
the debug toolbar. The current instruction is marked with a yellow arrow.
The arrow moves each time you step

Place the mouse cursor over a variable to view their value.

You may stop debugging at any time with Start/Stop Debug Session

116 Chapter 7. Sample Programs

7

command.

Getting Started 117

7

MEASURE: A Remote Measurement System
The MEASURE sample program is located in the \C166\EXAMPLES\MEASURE\
folder. MEASURE runs a remote measurement system that collects analog and
digital data like a data acquisition systems found in a weather stations and process
control applications. MEASURE is composed of three source files: GETLINE.C,
MCOMMAND.C, and MEASURE.C.

This implementation records data from one 16-bit digital port and four A/D
inputs. A timer controls the sample rate. The sample interval can be configured
from 1 millisecond to 60 minutes. Each measurement saves the current time and
all of the input channels to a RAM buffer.

Hardware Requirements
The hardware for MEASURE is based on the C167 CPU. This microcontroller
provides analog and digital input capability. Port 2 is used for the digital inputs
and AN0 through AN3 are used for the analog inputs. You do not actually need a
target CPU because µVision2 lets you simulate all the hardware required for this
program.

MEASURE Project File
The project file for the MEASURE sample program
is called MEASURE.UV2. To load this project file,
use Open Project from the Project menu and select
MEASURE.UV2 in the folder
C:\KEIL\C166\EXAMPLES\MEASURE.

The Files page in the Project Window shows the
source files that compose the MEASURE project.
The three application related source files that are
located in the Main Files group. The function of the
source files is described below. To open a source
file, double-click on the filename.

The project contains several targets for different test
environments. For debugging with the simulator
select the target Small Model in the Build toolbar.

118 Chapter 7. Sample Programs

7

MEASURE.C contains the main C function for the measurement system and the
interrupt routine for timer 0. The main function initializes all
peripherals of the C167 and performs command processing for the
system. The timer interrupt routine, timer0, manages the real-time
clock and the measurement sampling of the system.

MCOMMAND.C processes the display, time, and interval commands. These
functions are called from main. The display command lists the
analog values in floating-point format to give a voltage between
0.00V and 5.00V.

GETLINE.C contains the command-line editor for characters received from the
serial port.

 Compiling and Linking MEASURE
When you are ready to compile and link MEASURE, use the Build Target
command from the Project menu or the toolbar. µVision2 begins to compile and
link the source files in MEASURE and displays a message when the build is
finished.

Once the project is build, you are ready to browse the symbol information or begin
testing the MEASURE program.

 Browse Symbols
The MEASURE project is configured to generate full browse and debug
information. To view the information, use the Source Browse command from the
View menu or the toolbar. For more information refer to “Source Browser” on
page 44.

 Testing MEASURE
The MEASURE sample program is designed to accept commands from the on-
chip serial port. If you have actual target hardware, you can use a terminal
simulation to communicate with the C167 CPU. If you do not have target
hardware, you can use µVision2 to simulate the hardware. You can also use the
serial window in µVision2 to provide serial input.

Getting Started 119

7

Once the MEASURE program is build, you can test it. Use the Start/Stop Debug
Session command from the Debug menu to start the µVision2 debugger.

Remote Measurement System Commands

The serial commands that MEASURE supports are listed in the following table.
These commands are composed of ASCII text characters. All commands must be
terminated with a carriage return. You can enter these commands in the Serial
Window #1 during debugging.

Command Serial Text Description

Clear C Clears the measurement record buffer.

Display D Displays the current time and input values.

Time T hh:mm:ss Sets the current time in 24-hour format.

Interval I mm:ss.ttt Sets the interval time for the measurement samples. The interval
time must be between 0:00.001 (for 1ms) and 60:00.000 (for 60
minutes).

Start S Starts the measurement recording. After receiving the start
command, MEASURE samples all data inputs at the specified
interval.

Read R [count] Displays the recorded measurements. You may specify the
number of most recent samples to display with the read
command. If no count is specified, the read command transmits
all recorded measurements. You can read measurements on the
fly if the interval time is more than 1 second. Otherwise, the
recording must be stopped.

Quit Q Quits the measurement recording.

120 Chapter 7. Sample Programs

7

 View Program Code

µVision2 lets you view
the program code in the
Disassembly Window
that opens with the View
menu or the toolbar
button. The Disassembly
Window shows
intermixed source and
assembly lines. You may
change the view mode or
use other commands
from the local menu that
opens with the right
mouse button.

 View Memory Contents

µVision2 displays
memory in various
formats. The Memory
Window opens via the
View menu or the toolbar
button. You can enter
the address of four
different memory areas in
the pages. The local
menu allows you to
modify the memory
contents or select
different output formats.

Program Execution

Before you begin simulating MEASURE, open the Serial Window #1 that
displays the serial output with the View menu or the Debug toolbar. You
may disable other windows if your screen is not large enough.

Getting Started 121

7

You can use the Step toolbar buttons on assembler instructions or source code
lines. If the Disassembly Window is active, you single step at assembly
instruction basis. If an editor window with source code is active, you single step
at source code level.

The StepInto toolbar button lets you single-step through your application
and into function calls.

StepOver executes a function call as single entity and is not interrupt unless
a breakpoint occurs.

On occasion, you may accidentally step into a function unnecessarily. You
can use StepOut to complete execution of that function and return to the
statement immediately following the function call.

A yellow arrow marks the current assembly or high-level statement. You
may use the you may accidentally step into a function unnecessarily. You
can use StepOut to complete execution of that function and return to the
statement immediately following the function call.

The toolbar or local menu command Run till Cursor Line lets you use the
current cursor line as temporary breakpoint.

With Insert/Remove Breakpoints command you can set or remove
breakpoints on high-level source lines or assembler statements.

 Call Stack

µVision2 internally tracks
function nesting as the program
executes. The Call Stack page
of the Watch Window shows
the current function nesting. A
double click on a line displays
the source code that called the
selected function.

122 Chapter 7. Sample Programs

7

 Trace Recording

It is common during debugging
to reach a breakpoint where
you require information like
register values and other
circumstances that led to the
breakpoint. If Enable/Disable
Trace Recording is set you
can view the CPU instructions
that were executed be reaching
the breakpoint. The Regs page
of the Project Window shows
the CPU register contents for
the selected instruction.

Breakpoints Dialog
µVision2 also supports complex breakpoints as discussed on page 69. You may
want to halt program execution when a variable contains a certain value. The
example shows how to stop when the value 3 is written to current.time.sec.

Open the Breakpoints dialog from the Debug menu. Enter as expression
current.time.sec==3. Select the Write check box (this option specifies that the
break condition is tested only when the expression is written to). Click on the
Define button to set the breakpoint.

Getting Started 123

7

To test the breakpoint condition perform the following steps:

Reset CPU.

If program execution is halted begin executing the MEASURE program.

After a few seconds, µVision2 halts execution. The program counter line in the
debug window marks the line in which the breakpoint occurred.

 Watch Variables
You may constantly view the contents of variables, structures, and arrays. Open
the Watch Window from the View menu or with the toolbar. The Locals page
shows all local symbols of the current function. The Watch #1 and Watch #2
pages allow you to enter any program variables as described in the following:

¢ Select the text <enter here> with a mouse click and wait a second. Another
mouse click enters edit mode that allows you to add variables. In the same way
you can modify variable values.

¢ Select a variable name in an Editor Window and open the local menu with a
right mouse click and use the command Add to Watch Window.

¢ You can enter WatchSet in the Output Window – Command page.

To remove a variable, click on the
line and press the Delete key.

Structures and arrays open on
demand when you click on the [+]
symbol. Display lines are indented to
reflect the nesting level.

The Watch Window updates at the end of each execution command. You enable
may enable Periodic Window Update in the View menu to update the watch
window during program execution.

124 Chapter 7. Sample Programs

7

View and Modify On-Chip Peripherals
µVision2 provides several ways to view and modify the on-chip peripherals used
in your target program. You may directly view the results of the example below
when you perform the following steps:

Reset CPU and kill all defined breakpoints.

If program execution is halted begin executing the MEASURE program.

Open the Serial Window #1 and enter the ‘d’ command for the MEASURE
application. MEASURE shows the values from I/O Port2 and A/D input 0
– 3. The Serial Window shows the following output:

You may now use the following procedures to supply input to the I/O pins:

Using Peripheral Dialog Boxes

µVision2 provides dialogs for: I/O Ports, Interrupts, Timers, A/D Converter,
Serial Ports, and chip-specific peripherals. These dialogs can be opened from the
Debug menu. For the MEASURE application you may open I/O Ports:Port2 and
A/D Converter. The dialogs show the current status of the peripherals and you
may directly change the input values.

Getting Started 125

7

Each of these dialogs lists the related
SFR symbols and shows the current
status of the peripherals. To change the
inputs, change the values of the Pins or
Analog Input Channels.

Using VTREG Symbols

You may use the “CPU Pin Registers (VTREGs)” described on page 86 to change
input signals. In the Command page of the Output Window, you may make
assignments to the VTREG symbols just like variables and registers. For
example:

PORT2=0xDA00 set digital input PORT2 to 0xDA00.
AIN1=3.3 set analog input AIN1 to 3.3 volts.

Using User and Signal Functions

You may combine the use of VTREG symbols defined
by the CPU driver and µVision2 user and signal
functions to create a sophisticated method of providing
external input to your target programs. The “Analog
Example” on page 108 shows a signal function that
provides input to AIN0. The signal function is
included in the MEASURE example and may be
quickly invoked with the Toolbox button Analog0..5V
and changes constantly the voltage on the input AIN0.

Using the Performance Analyzer
µVision2 lets you perform timing analysis of your applications using the
integrated performance analyzer. To prepare for timing analysis, halt program
execution and open the Setup Performance Analyzer dialog with the Debug
menu.

126 Chapter 7. Sample Programs

7

You may specify the function names dialog box available from the Setup menu.

Perform the following steps to see the performance analyzer in action:

Open the Performance Analyzer using the View menu or toolbar.

Reset CPU and kill all breakpoints.

If program execution is halted begin executing the MEASURE program.

Select the Serial Window #1 and type the commands S Enter D Enter

The Performance Analyzer
shows a bar graph for each
range. The bar graph shows
the percent of the time spent
executing code in each range.
Click on the range to see
detailed timing statistics.
Refer to page 77 for more
information.

Getting Started 127

8

Chapter 8. Using on-chip Peripherals
There are a number of techniques you must know to create programs that utilize
the various on-chip peripherals and features of the 8xC166 and C167 family.
Many of these are described in this chapter. You may use the code examples
provided here to quickly get started working with the 166.

The on-chip peripherals of the C167 are quite sophisticated and offer numerous
configuration options. The code examples in this chapter only present one or two
methods of using each peripheral. Be aware that there are more configuration
options than are presented in this text.

Topic Page

“

Header Files”

128

“DPP Registers” 129

“Interrupt” 131

“Peripheral Event Controller” 134

“Parallel Port I/O” 138

“General Purpose Timers” 140

“Serial Interface” 142

“Watchdog Timer” 145

“Pulse Width Modulation” 146

“A/D Converter” 149

“Power Reduction Modes” 150

NOTE
The code examples presented
here were tested with the
C167CR microcontroller. It is a
simple procedure to convert
them to work with your
particular device. Make sure
that the on-chip peripherals you
attempt to use actually exist in
your device.

128 Chapter 8. Using on-chip Peripherals

8

Header Files and Startup Code
The on-chip peripherals of the 166/ST10 are accessed using the special function
registers located in the system area of the on-chip memory. The Keil development
tools provide include files or header files that define these registers. You must
include the provided header files or you may create and include your own header
files to access the on-chip peripherals.

Many of the example programs presented in this chapter begin with:

#include <reg167.h>

The REG167.H include file is located in the folder C:\KEIL\C166\INC. It defines
the special function registers for the Siemens C167 device series. The following
excerpt from that file shows the definitions for the parallel I/O ports.

/* I/O Ports */
sfr DP0L = 0xF100;
sfr DP0H = 0xF102;
sfr DP1L = 0xF104;
sfr DP1H = 0xF106;
sfr DP2 = 0xFFC2;
sfr DP3 = 0xFFC6;
sfr DP4 = 0xFFCA;
sfr DP6 = 0xFFCE;
sfr DP7 = 0xFFD2;
sfr DP8 = 0xFFD6;

It is easy to create your own custom header files for new chips or for you own
projects.

The following table gives you an overview of the 166/ST10 derivatives currently
available and the required startup and SFR definition files.

Derivatives Instruction Set Startup File Include File

8xC166 / ST10x166 Standard 166 STARTUP.A66 REG166.H

C161 Enhanced 167 START167.A66 REG161.H

C163 / ST10x163 Enhanced 167 START167.A66 REG163.H

C164 Enhanced 167 START167.A66 REG164.H

C165 / ST10x165 Enhanced 167 START167.A66 REG165.H

C167 / ST10x167 Enhanced 167 START167.A66 REG167.H

Many devices include CAN peripherals. The CAN.H header file supports these peripherals.

Getting Started 129

8

DPP Registers
In the segmented mode of the 166, the C166 compiler uses the four DPP registers
(DPP0 - DPP3) to efficiently access memory with 16-bit near addresses. This is
faster than full 32-bit memory accesses.

NOTE
Except for the TINY memory model, the C166 Compiler always uses the
segmented mode of the 166/ST10.

By default, DPP registers are allocated according to the following table.

DPP Register By default, used in C programs

DPP0 To access far, huge, and xhuge objects code for the 8xC166 is generated.
For CPU with extended instruction set, the compiler accesses far, huge and
xhuge objects with EXTP and EXTS instructions instead of using the DPP0
register.

DPP1 The access the NCONST group (variables defined with const near).

DPP2 The access the NDATA group (variables defined with near).

DPP3 The access the SDATA or SYSTEM group (variables defined with sdata, idata
or bdata).

In µVision2, you may specify under Options – Target - Near Memory the size
for RAM (= NDATA group) and ROM (= NCONST group). If you specify
more than 16KB for RAM or ROM, µVision2 inserts the C166 NOFIXDPP and
the L166 DPPUSE directive. DPPUSE reassigns the DPP registers for NDATA
and NCONST. With DPPUSE the NDATA and NCONST groups can be
expanded to a total of 64 Kbytes.

NOTES
The DPP3 register is also used when generating 166 code to speed-up memory
and string copy and compare functions, if two far or huge objects are accessed.

When C166 is invoked with the MOD167 directive the DPP registers are never
altered by C code or the run-time library.

Typically, the 166 microcontroller family uses 16KB pages to access data. The
DPP registers contain the base address for four different data pages. This has the
advantage that the CPU instructions require only 16-bit address fields for memory
accessing. Except the 8xC166 CPU, all 166/ST10 microcontrollers are using the
extended instruction set which offer EXTS and EXTP instructions to overwrite the
DPP addressing mode.

130 Chapter 8. Using on-chip Peripherals

8

When using the C166 near addressing, the CPU gets a 14-bit offset and a 2-bit
DPP selector. The top tow bits of a 16-bit near address indicate the DPP which
holds the base address for the 14-bit offset. For example, the assembler
instructions below will use the DPP2 to form the physical address, since the top
two bits of the instruction address 8042H are 10 indicating that DPP2 holds the
base address for the 14-bit offset 0042H.

MOV R1,0x8042 ; load R1 with memory location (DPP2*0x4000) + 0x0042

If DPP2 contains 2, the base will be 2*0x4000 = 0x8000. Thus R1 will be loaded
with the content of the memory address 0x8042. However, if DPP2 = 8, the
instruction accesses the address: 8*0x4000 + 0x0042H = 0x20042.

The same address calculations are performed for indirect addressing modes:

; R2 contains the value 0x4010H which indicates DPP1:
MOV R1,[R2] ; load R1 with memory location (DPP1*4000H) + 0010H

The EXTS and EXTP instructions overwrite the DPP addressing mode. In EXTS
code sequences, the CPU uses linear 24-bit addresses; the upper 8-bits are
specified by the EXTS instruction, the lower 16-bits are given by the executed
instructions. An EXTP instruction sequence specifies a 10-bit page address; thus
the CPU ignores the DPP contents and uses the base address given by the EXTP
instruction instead. This is exemplified in the following code example:

EXTS 0x10,#1 ; use segment address 0x10 for the next instruction
MOV R1,0x8042 ; load R1 with memory location 0x108042

; R2 contains 0x180, R3 contains 5:
EXTP R3,#2 ; use page address in R3 for next two instructions
MOV R4,[R2] ; load R4 with location (4*0x4000+0x180) = 0x14180
MOV R5,[R2+#2] ; load R5 with location (4*0x4000+0x180+2) = 0x14182

The C166 compiler and the L166 Linker/Locater handles all the CPU addressing
modes for you. Therefore the different CPU address calculations are totally
transparent to the C programmer. Only during the debugging phase you need to
know about DPP registers and EXTP / EXTS CPU instructions when you view
pointer values or assembly code. You are faced with the 14-bit offset / 2-bit DPP
selector format when near pointer values are displayed. A far pointer contains a
14-bit offset and a 10-bit page address. Only during debugging, you need to
calculate the physical memory address for near and far pointer values as shown in
the above examples. The huge and xhuge pointer values are representing directly
physical memory addresses.

Getting Started 131

8

Interrupts
The C166 compiler lets you write interrupt service routines in C. The compiler
generates very efficient entry and exit code and accommodates register bank
switching. Interrupt routines are declared as follows:

void function (void) interrupt vector ¤using rbank¥
function is the name of the interrupt function.

vector is the interrupt vector definition.

rbank is the register bank name.

Typical interrupt routines are define as follows:

¢ The vector is only a trap number without any symbolic name.
void isr (void) interrupt 42 using RBANK1

¢ The vector is a symbolic name followed by the trap number it references.
void isr (void) interrupt S0TINT=42 using RBANK1

The rbank is a symbolic register bank name you define for a new register bank.
The linker automatically reserves space for the register bank and the compiler
automatically switches register bank contexts inside the interrupt routine. You
may use the same register bank for interrupt routines which cannot interrupt each
other. For example, you may define RBANK1 for interrupt priority level 1
(ILVL 1), RBANK2 for ILVL 2, and so on.

The following example code shows the interrupt code for the serial transmit
interrupt routine.

 1 void serial_TX_irq (void) interrupt S0TINT=42 using rbank1 {
 2 1
 3 1 if (tx_in != tx_out) /* buffer not empty? */
 4 1 S0TBUF = tx_buf [tx_out++]; /* transmit next character */
 5 1 else
 6 1 tx_restart = 1; /* re-start transmit */
 7 1 }

The following listing shows the code generated by the C166 compiler for the
above interrupt routine. Note that the register bank context is swapped on entry to
the interrupt routine and is restored on exit.

132 Chapter 8. Using on-chip Peripherals

8

 ; SOURCE LINE # 1
0000 C6030300 SCXT DPP3,#03H
0004 CC00 NOP
0006 F6F00000 R MOV rbank1,R0
000A C60800C0 R SCXT CP,#rbank1 ; *** Switch to rbank1 ***
000E CC00 NOP
 ; SOURCE LINE # 3
0010 F3F80002 R MOVB RL4,tx_out
0014 43F80202 R CMPB RL4,tx_in
0018 2D0B JMPR cc_Z,?C0001
 ; SOURCE LINE # 4
001A F3FA0002 R MOVB RL5,tx_out
001E 258F0002 R SUBB tx_out,ONES
0022 C0A4 MOVBZ R4,RL5
0024 F4840000 R MOVB RL4,[R4+#tx_buf]
0028 C084 MOVBZ R4,RL4
002A F6F4B0FE MOV S0TBUF,R4
002E 0D01 JMPR cc_UC,?C0002
0030 ?C0001:
 ; SOURCE LINE # 6
0030 0F00 R BSET tx_restart
0032 ?C0002:
 ; SOURCE LINE # 7
0032 FC08 POP CP ; *** Restore Register Bank ***
0034 FC03 POP DPP3
0036 FB88 RETI

NOTE
If interrupt routines are small, it may be more efficient to exclude the using
attribute and allow the compiler to push the registers used onto the stack.
Therefore you should compare the assembler code generated by C166 for simple
interrupt functions with and without using attribute.

Interrupt Control Registers
The C167 provides interrupt services for nearly every on-chip peripheral.
Interrupts are globally enabled and disabled using the IEN bit of the PSW. When
IEN is set to 1, interrupts are enabled. When IEN is set to 0, interrupts are
disabled.

Interrupts are individually controlled through the interrupt control register for each
interrupt source. All interrupt control registers of the C167 have the same format
as shown in the following figure.

Interrupt Control Register Layout

Reserved xxIR xxIE ILVL GLVL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Getting Started 133

8

Bits 15-8 are unused while bits 7-0 contain four fields that control different
aspects of the interrupt. These fields are described in the following table.

Field Description

xxIR The interrupt request flag indicates whether or not an interrupt request is pending.
A value of 1 indicates that an interrupt is pending while a value of 0 indicates that
no interrupt is pending. This bit is written by hardware when the interrupt occurs
and is cleared automatically by the hardware when the interrupt service routine
exits. It may be set by software to trigger an interrupt service routine.

xxIE The interrupt enable bit enables or disables an individual interrupt source. If set to
1, the interrupt is enabled. If set to 0, the interrupt is disabled.

ILVL The interrupt priority level defines the priority level of the interrupt request. It may
be a number from 0 to 15. Higher numbers represent higher priority levels. Note
that an ILVL of 0 never gets serviced! However, priority level 0 may be used to
awaken the CPU from IDLE mode. See “Idle Mode” on page 150 for more
information.

GLVL The group level defines the order in which simultaneous interrupts with the same
priority level are services. The group level may be from 0 to 3. Higher numbers
represent higher priority levels.

NOTE
The ILVL and GLVL fields may not be the same for more than one interrupt
source. Each enabled interrupt source must have its own unique combination of
ILVL and GLVL.

Since all interrupt control registers share the same format, you may define C
macros to initialize the fields for the interrupt. The following code exemplifies the
setup of the interrupt control registers.

#define IC_IE(x) (((x) == 0) ? 0x0000 : 0x0040)
#define IC_ILVL(x) (((x) << 2) & 0x003C))
#define IC_GLVL(x) ((x) & 0x0003)

T3IC = IC_IE(1) | IC_ILVL(1) | IC_GLVL(0); /* Interrupt Enabled, Level 1 */

134 Chapter 8. Using on-chip Peripherals

8

Peripheral Event Controller
The 166 devices provide an 8-channel peripheral event controller or PEC that you
can program to automatically move data (8-bit bytes or 16-bit words) when an
interrupt occurs. The benefit of using the PEC is that the memory transfers are
fast (only 1 CPU cycle) and the setup required is trivial.

The number of uses for the PEC is virtually unlimited. For example, you can
program the PEC to…

¢ Read data from the A/D converter and store it in a buffer,

¢ Transfer data from a static buffer out to the serial port,

¢ Periodically read A/D input values and output them to the serial port.

Basically, the PEC works just like direct memory access (DMA) controllers. But,
it is easier to program and it works much faster.

PEC transfers may occur only in page 0— the first 64K address space
(0x000000-0x00FFFF). The PEC can read from and write to the special function
registers of the CPU as well as to internal RAM.

Each PEC channel includes a PEC control register (PECC0-PECC7), a source
pointer register (SRCP0-SRCP7), and a destination pointer register
(DSTP0-DSTP7).

There are 4 steps you must follow to properly initialize and use the PEC.

1. Initialize the PEC Control Register.

2. Initialize the Source Pointer.

3. Initialize the Destination Pointer.

4. Initialize the Interrupt Control Register for the interrupt source.

Each of these steps is described in detail in the following sections.

PEC Control Register
The PEC control register provides three fields that let you select whether bytes or
words are moved (BWT field); whether the source pointer, destination pointer, or
neither pointer are incremented after the move (INC field); and the number of

Getting Started 135

8

times to move the data (COUNT field). The layout of the control register is
shown in the following figure.

PEC Control Register Layout

Reserved INC BWT COUNT

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits 15-11 of each PEC control register are unused. Bits 10-0 contain three fields
that control several aspects of the interrupt and PEC channel. These fields are
described in the following table.

Field Description

INC The INC field selects the pointer that is incremented after the PEC transfer.
Either the source pointer or the destination pointer may be incremented.
Incrementing both pointers is not supported. Valid values are:
0 0: Neither pointer is modified.
0 1: Destination pointer (DSTPx) is incremented by 1 (BWT=1) or by 2 (BWT=0).
1 0: Source pointer (SRCPx) is incremented by 1 (BWT=1) or by 2 (BWT=0).

BWT Selects whether bytes (when 1) or words (when 0) are transferred.

COUNT Selects the number of transfers. When COUNT is 0xFF, continuous moves are
made. When COUNT is a non-zero value, that number of moves are made.
When COUNT is 0, the interrupt service routine is invoked instead of a PEC
transfer.

Source and Destination Pointers
The source and destination pointers are initialized directly in the C source code.
The address is a 16-bit address that corresponds to the lower 64K of the C167.
For example, the following line of code:

DSTP0 = (unsigned int) &S0TBUF; /* Destination is the serial output */

Assigns the value 0xFEB0 to the destination pointer for PEC channel 0. This
address is the address of the S0TBUF register (which is the serial 0 transmit
buffer).

The following line of code:

SRCP0 = _sof_ (string1); /* Source is STRING1 */

Assigns the address of string1 to the source pointer for PEC channel 0.

NOTE
Use the _sof_ intrinsic library routine to obtain the page 0 offset of variables
used with the PEC source and destination pointers.

136 Chapter 8. Using on-chip Peripherals

8

Channel Selection
A PEC channel is selected for a particular interrupt source through the interrupt
control register. At most, 8 interrupts can use the PEC (since there are only 8
PEC channels). The interrupt control registers of the C167 use the format shown
in the following figure when the PEC is enabled.

Interrupt Control Register Layout for PEC

Reserved xxIR xxIE 1 1 1 PEC Channel

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits 15-8 of each interrupt control register are unused. Bits 7-0 contain three
fields that control several aspects of the interrupt and PEC channel. These fields
are described in the following table.

Field Description

xxIR The interrupt request flag indicates whether or not an interrupt request is pending.
A value of 1 indicates that an interrupt is pending while a value of 0 indicates that
no interrupt is pending. This bit is written by hardware when the interrupt occurs
and is cleared automatically by the hardware when the interrupt service routine
exits. It may be set by software to trigger an interrupt service routine.

xxIE The interrupt enable bit enables or disables an individual interrupt source. If set to
1, the interrupt is enabled. If set to 0, the interrupt is disabled.

PEC Channel The PEC channel defines which PEC channel is used for the interrupt source.

Since all interrupt control registers share the same format for the PEC, you may
define C macros to setup the fields. The following code exemplifies the setup of
the interrupt control register for PEC channel transfers.

#define IC_IE(x) (((x) == 0) ? 0x0000 : 0x0040)
#define IC_PEC(x) (((x) & 0x0007) | 0x0038)

S0TIC = IC_IE(1) | IC_PEC(0); /* Interrupt Enabled, PEC Channel 0 */

Getting Started 137

8

PEC Example Program
The following example program shows how to program PEC channel 0 for data
transfers to the serial port transmit buffer. It transmits the string “0123456789\n”
out the serial port and then generates a transmit interrupt (serial_TX_IRQ). This
interrupt function resets the PEC 0 transfer and the string is sent again.

#include <reg167.h>
#include <intrins.h>

#pragma PECDEF (0) /* Reserve space for PEC channel 0 pointers */

const char string1 [] = "0123456789\n";

/* This function initializes PEC Channel 0 to move the data from */
/* STRING1 to the serial transmit buffer. */

void serial_PEC0_setup (void) {
 PECC0 = 0x0500 /* Move Bytes, Inc Src Ptr */
 | ((sizeof (string1) / sizeof (string1 [0])) - 1);

 SRCP0 = _sof_ (string1); /* Source is STRING1 */
 DSTP0 = (unsigned int) &S0TBUF; /* Destination is the serial output */
}

/* The Serial TX interrupt just resets PEC 0 and transfers another */
/* copy of STRING 1. */

void serial_TX_irq (void) interrupt S0TINT = 42 {
 serial_PEC0_setup ();
}

/* The setup routine for the serial port also initialized the PEC 0 */
/* transfer and sets a TX interrupt request */

void serial_setup (unsigned int baud) {
 /* Calculate reload value for baudrate generator */
 S0BG = (20000000UL / (32UL * (unsigned long) baud)) -1;
 DP3 |= 0x0400; /* Set TXD for output */
 DP3 &= ~0x0800; /* Set RXD for input */
 P3 |= 0x0400; /* Set TXD high */
 S0CON = 0x8011;
 S0TIC = 0x00F8; /* Serial TX IRQ = Level 14, Priority 0 (PEC 0) */
 serial_PEC0_setup ();
 IEN = 1; /* Enable interrupts */
}

void main (void) {
 serial_setup (19200);

 while (1) {
 }
}

138 Chapter 8. Using on-chip Peripherals

8

Parallel Port I/O
The C167 provides a number of parallel I/O ports you may use for your target
application. Many may be used for general purpose I/O. However, some ports
have alternate uses that may prevent their generic use by your application.

Port Direction Width Alternate Use

P0L I/O 8 bits Mux’d. 16-bit bus: A0-A7 & D0-D7
Mux’d. 8-bit bus: A0-A7 & D0-D7
Non-Mux’d. 16-bit bus: D0-D7
Non-Mux’d. 8-bit bus: D0-D7

P0H I/O 8 bits Mux’d. 16-bit bus: A8-A15 & D8-D15
Mux’d. 8-bit bus: A8-A15
Non-Mux’d. 16-bit bus: D8-D15
Non-Mux’d. 8-bit bus: Available for user I/O

P1L I/O 8 bits Mux’d. 16-bit bus: Available for user I/O
Mux’d. 8-bit bus: Available for user I/O
Non-Mux’d. 16-bit bus: A0-A7
Non-Mux’d. 8-bit bus: A0-A7

P1H I/O 8 bits Mux’d. 16-bit bus: Available for user I/O
Mux’d. 8-bit bus: Available for user I/O
Non-Mux’d. 16-bit bus: A8-A15
Non-Mux’d. 8-bit bus: A8-A15
P1H.4-P1H.7: Compare/Capture I/O

P2 I/O 16 bits P2.0-P2.15: Compare/Capture I/O

P3 I/O 15 bits P3.1: Timer 6 Output
P3.2: CAPIN
P3.3: Timer 3 Output
P3.4: Timer 3 Ext. Up/Down
P3.5: Timer 4 Input
P3.6: Timer 3 Input
P3.7: Timer 2 Input
P3.10: Serial Chan. 0 Transmit
P3.11: Serial Chan. 0 Receive
P3.12: /BHE or /WRH
P3.13: SSC Master Clock Output
P3.14: Not Implemented
P3.15: System Clock Output

P4 I/O 8 bits P4.0-P4.7: A16-A23
P4.4: CAN2_RxD
P4.5: CAN1_RxD
P4.6: CAN1_TxD
P4.7: CAN2_TxD

P5 I 16 bits P5.0-P5.15: A/D Analog Inputs
P5.10: Timer 6 Ext. Up/Down
P5.11: Timer 5 Ext. Up/Down
P5.12: Timer 6 Input
P5.13: Timer 5 Input
P5.14: Timer 4 Ext. Up/Down
P5.15: Timer 2 Ext. Up/Down

Getting Started 139

8

Port Direction Width Alternate Use

P6 I/O 8 bits P6.0-P6.4: CS0-CS4 Output
P6.5: External Master Hold Req. Intput
P6.6: Hold Acknowledge Output
P6.7: Bus Request Output

P7 I/O 8 bits P7.0-P7.3: PWM Outputs 0-3
P7.4-P7.7: Compare/Capture I/O

P8 I/O 8 bits P8.0-P8.7: Compare/Capture I/O

Most ports have data direction registers you must properly initialize to specify
whether each port pin is an input or an output. The pins of Port 2, Port 3, Port 6,
Port 7, and Port 8 may be programmed for push-pull operation or open-drain
operation via control registers. The following table specifies the names for these
registers.

Port Register
Direction

Control Register
Push-Pull/Open-Drain

Control Register

P0L DP0L

P0H DP0H

P1L DP1L

P1H DP1H

P2 DP2 ODP2

P3 DP3 ODP3

P4 DP4

P6 DP6 ODP6

P7 DP7 ODP7

P8 DP8 ODP8

The following example program shows how to output values to Port 7 in
open-drain configuration.

#include <reg167.h>

void main (void) {
 unsigned int i;

 DP7 = 0xFF; /* Setup P7.7-P7.0 for output */
 ODP7 = 0xFF; /* Setup P7.7-P7.0 for open-drain */

 while (1) {
 for (i = 0x01; i <= 0x80; i <<= 1) {
 P7 = i; /* Write new value to P7 */
 }
 }
}

Write a 1 to a direction
control register bit to
configure the
corresponding port bit or
pin as an output. Write a 0
to configure the port bit or
pin as an input.

Write a 1 to a push-pull/
open-drain control register
bit to configure the
corresponding port bit or
pin as an open-drain
output. Write a 0 to
configure the port bit or pin
as a push-pull output.

140 Chapter 8. Using on-chip Peripherals

8

General Purpose Timers
The C167 has two groups (GPT1 and GPT2) of general purpose timers/counters.
GPT1 contains 3 timers/counters (T2, T3, and T4) and GPT2 contains 2
timers/counters (T5 and T6). Each timer in each group may operate independently
in a number of different modes including timer mode, counter mode, gated timer
mode, reload mode, and capture mode.

The following table lists the special function registers used to program the general
purpose timers.

Register Description

CAPREL GPT2 capture/reload register.

CRIC GPT2 CAPREL interrupt control register.

T2 GPT1 timer 2 register.

T3 GPT1 timer 3 register.

T4 GPT1 timer 4 register.

T5 GPT2 timer 5 register.

T6 GPT2 timer 6 register.

T2IC GPT1 timer 2 interrupt control register.

T3IC GPT1 timer 3 interrupt control register.

T4IC GPT1 timer 4 interrupt control register.

T5IC GPT2 timer 5 interrupt control register.

T6IC GPT2 timer 6 interrupt control register.

T2CON GPT1 timer 2 control register.

T3CON GPT1 timer 3 control register.

T4CON GPT1 timer 4 control register.

T5CON GPT2 timer 5 control register.

T6CON GPT2 timer 6 control register..

The following example program shows how to use Timer 3 to generate a 1000Hz
timer tick interrupt for timing purposes. The timer tick interrupt increments the
timer_tick variable once for each interrupt. The timer3_setup function initializes
the timer and the timer3_delay function delays for the specified number of timer
ticks.

This example program toggles a bit on Port 7 every 0.100 seconds.

Getting Started 141

8

#include <reg167.h>
#include <intrins.h>

static unsigned long volatile timer_tick = 0UL;

static void timer3_irq (void) interrupt T3INT = 35 {
 timer_tick++;
}

void timer3_setup (unsigned int ticks_per_sec) {
 unsigned int reload;
 unsigned long frequency = 2500000;
 unsigned int prescale;

 for (prescale = 0; prescale < 8; prescale++) {
 if ((frequency / ticks_per_sec) <= 65535) break;
 frequency /= 2;
 }
 reload = frequency / ticks_per_sec;

 T3CON = 0x0080; /* 2.5MHz, Timer Mode, Count Down */
 T3CON |= prescale;

 T2CON = 0x0027; /* Setup T2 for reload operation on any T3OTL */
 T2 = reload; /* Reload for T3 */
 T3 = reload; /* Start T3 with proper reload */
 T3IC = 0x0044; /* Timer 3 interrupt enabled, Level 1 */
 T3R = 1; /* Start Timer */
 IEN = 1; /* Enable Interrupts /
}

void timer3_delay (unsigned long ticks) {
 unsigned long start_tick;
 unsigned long timer_tick_copy;

 atomic (0); /* start un-interruptable code */
 start_tick = timer_tick_copy;
 endatomic (); /* end un-interruptable code */

 while (1) {
 atomic (0); /* start un-interruptable code */
 timer_tick_copy = timer_tick;
 endatomic (); /* end un-interruptable code */
 if ((timer_tick_copy - start_tick) > ticks) break;
 }
}

void main (void) {
 DP7 = 0x01; /* Setup P7.0 for output */
 ODP7 = 0x01; /* Setup P7.0 for open-drain */
 timer3_setup (1000); /* Setup timer for 1000Hz operation */
 while (1) {
 timer3_delay (100); /* Wait 0.10 seconds */
 P7 |= 0x01; /* Turn on P7.0 */
 timer3_delay (100); /* Wait 0.10 seconds */
 P7 &= ~0x01; /* Turn off P7.0 */
 }
}

142 Chapter 8. Using on-chip Peripherals

8

Serial Interface
The C167 includes a standard RS-232 compatible serial port (ASC0) you may use
with your application programs. The C167 uses port pins P3.10 and P3.11 for
transmit and receive respectively. You must properly configure these port pins for
input and output to use the serial port. Additionally, there is a baudrate reload
register and a control register that you must properly configure before serial port 0
will function.

The C167 provides full interrupt control for the serial port transmit, receive, and
error conditions. There are separate transmit and receive buffers you write
outgoing data to and read incoming data from. You may poll the interrupt control
registers to determine when a character has been receive or when the next
character may be sent. You may also create interrupt routines to handle these
operations.

The following table lists the special function registers used to program serial
port 0.

Register Description

S0BG Serial port 0 baud rate generator reload register.

S0CON Serial port 0 control register.

S0EIC Serial port 0 error interrupt control register.

S0RBUF Serial port 0 receive buffer.

S0TBIC Serial port 0 transmit buffer interrupt control register.

S0TBUF Serial port 0 transmit buffer.

SORIC Serial port 0 receive interrupt control register.

SOTIC Serial port 0 transmit interrupt control register.

The following example program shows how to perform interrupt-driven serial I/O
using the C167’s asynchronous serial channel. Interrupt routines in this example
handle transmit interrupts (serial_TX_irq) and receive interrupts (serial_RX_irq)
using 256-byte circular buffers. Routines are provided to transmit (serial_TX)
and receive (serial_RX) characters and to initialize the serial channel
(serial_setup). Additionally, the library routines for putchar and _getkey have
been replaced with ones that use the interrupt-driven serial I/O routines. This also
lets the printf and scanf library functions work with the interrupt-driven I/O
routines in this example.

Getting Started 143

8

#include <reg167.h>
#include <intrins.h>

static unsigned char volatile rx_buf [sizeof (unsigned char) * 256];
static unsigned char tx_buf [sizeof (unsigned char) * 256];

/* Note: variables that are modified in interrupts are volatile! */
static unsigned char volatile rx_in = 0; /* RX buffer next in index */
static unsigned char rx_out = 0; /* RX buffer next out index */

static unsigned char tx_in = 0; /* TX buffer next in index */
static unsigned char volatile tx_out = 0; /* TX buffer next out index */
static bit volatile tx_restart = 0; /* NZ for transmit restart */

void serial_TX_irq (void) interrupt S0TINT = 42 {
 if (tx_in != tx_out) /* buffer not empty? */
 S0TBUF = tx_buf [tx_out++]; /* transmit the next character */
 else tx_restart = 1; /* transmit must be re-started */
}

void serial_RX_irq (void) interrupt S0RINT = 43 {
 rx_buf [rx_in++] = S0RBUF; /* put received character in buffer */
}

char putchar (char c) { /* substitute function for putchar */
 /* wait while buffer is full */
 while (((unsigned char)(tx_in + 1)) == tx_out); /* buffer full? */
 atomic (0); /* start un-interruptable code */
 tx_buf [tx_in++] = c; /* put the character in the buffer */
 endatomic (); /* end un-interruptable code */
 if (tx_restart) { /* if transmits must be restarted... */
 tx_restart = 0; /* clear re-start flag */
 S0TIR = 1; /* enable transmit request */
 }
 S0TIE = 1; /* enable interrupt */
 return (c);
}

char _getkeyserial_RX (void) { /* substitute function for _getkey */
 while (rx_in == rx_out);
 return (rx_buf [rx_out++]);
}

void serial_setup (unsigned int baud) {
 /* Calculate reload value for baudrate generator */
 S0BG = (20000000UL / (32UL * (unsigned long) baud)) - 1;
 DP3 |= 0x0400; /* Set TXD for output */
 DP3 &= ~0x0800; /* Set RXD for input */
 P3 |= 0x0400; /* Set TXD high */
 S0CON = 0x8011;
 S0RIC = 0x0044; /* Enable serial receive interrupt lvl 1 */
 S0TIC = 0x0008; /* Disable serial transmit interrupt lvl 2*/
 tx_restart = 1; /* Set restart flag */
}

void main (void) {
 serial_setup (19200);

144 Chapter 8. Using on-chip Peripherals

8

 IEN = 1; /* Enable interrupts */

 printf ("Serial I/O Initialized\n");

 while (1) {
 char c;

 c = getchar ();
 printf ("\nYou typed the character %c.\n", c);
 }
}

Getting Started 145

8

Watchdog Timer
The C167 includes a 16-bit watchdog timer for recovery from hardware or
software failures. The watchdog timer counts up until it overflows or until it is
reset by the SRVWDT instruction. If the watchdog timer overflows, it resets the
CPU and starts executing your program from the beginning exactly as if a
hardware reset occurred.

Your application must periodically reset the watchdog timer using the _srvwdt_
intrinsic C library function. If your program does not reset the watchdog timer
frequently enough or if your program crashes, the watchdog timer overflows and
resets the CPU.

The watchdog timer configuration register WDTCON lets you specify the reload
value for upper byte of the timer as well as the clock divisor (2 or 128).

The following example code shows how to initialize the watchdog timer and how
to reset it.

#include <reg167.h>
#include <intrins.h>

void main (void) {
 WDTCON = 0x8001; /* Setup the watchdog timer */
 /* 80..------------- Set the reload value to 0x80 */
 /* ...1------------- Divide by 2 */

 while (1) {
 /* Applicaiton Code */

 srvwdt (); /* Reset the watchdog timer */
 }
}

NOTE
The watchdog timer is enabled after a software reset, hardware reset, or
watchdog reset. Your application must disable the watchdog timer if it is not
used. By default, the C startup code disables the watchdog for you.

However, if your application uses the watchdog timer, make sure the startup code
(found in START167.A66) properly enables it. Look for the following section in
the startup code and set the WATCHDOG variable to 1.

; WATCHDOG: Disable Hardware Watchdog
; --- Set WATCHDOG = 1 to enable the Hardware watchdog
$SET (WATCHDOG = 1)
;

146 Chapter 8. Using on-chip Peripherals

8

Pulse Width Modulation
Pulse width modulation (PWM) is a method of varying the width of a pulse to
control the duty cycle of a signal. Dimmer switches use this technology to control
the amount of the AC sine wave that reaches the light bulb.

The C167 provides 4 independent PWM channels. The PWM signals are output
on Port 7 pins 0 to 3. Each channel has a 16-bit up/down counter, a 16-bit period
register, and a 16-bit pulse width register. There are 2 common control registers
and a common interrupt control register.

The PWM output signals are XORed with the outputs of their respective Port 7
latches. After reset, the Port 7 latches are cleared to 0 and the PWM signals go
directly to the port pins. You may set a port latch to invert the PWM signal on
that port pin. For example, setting P7.0 inverts the PWM channel 0 output signal.

Register Description

PPx PWM period register for channel x.

PWx PWM pulse width register for channel x.

PTx PWM counter register for channel x.

PWMCON0 PWM control register 0.

PWMCON1 PWM control register 1.

PWMIC PWM interrupt control register.

The clock for each of the PWM counters is the CPU clock with no divisor or with
a divisor of 64. In the standard PWM generation mode, the PWM counter (PTx)
counts up from 0 until it reaches the defined period and then resets to 0.

If the clock frequency is 20.000 MHz and the PWM counter is driven with no
divisor and the period register (PPx) contains 19999, the counter counts from 0 to
19999 (20,000 counts). 20,000,000 divided by 20,000 is 1,000 (1.000 kHz).

The pulse width register (PWx) contains the count at which the PWM signal is
“on”. When the PWM counter contains a value that is less than the pulse width
register, the output is “off” or 0. When the PWM counter contains a value that is
greater than the pulse width register, the output is “on” or 1.

If the period is setup for 19999 (20000 counts), the following pulse widths
generate the specified duty cycles.

Getting Started 147

8

Pulse Width Duty Cycle†

0 100.0%

2500 87.5%

5000 75.0%

10000 50.0%

15000 25.0%

17500 12.5%

20000 0.0%

† For a period of 20,000 counts.

The following example code shows functions to initialize the PWM (PWM_setup)
and how to set the pulse width (PWM_pulse_width).

#include <reg167.h>

void PWM_setup (unsigned char channel, unsigned int period) {
 if (channel > 3) return;

 DP7 |= (1 << channel); /* Setup P7.channel for output */
 ODP7 |= (1 << channel); /* Setup P7.channel for open-drain */
 P7 &= ~(1 << channel); /* P1.channel = 0 */

 switch (channel) {
 case 0:
 PP0 = period; /* Set PWM period */
 PW0 = period + 1; /* Set 0% duty cycle */
 PB01 = 0; /* Channel 0 & 1 are independent */
 break;

 case 1:
 PP1 = period; /* Set PWM period */
 PW1 = period + 1; /* Set 0% duty cycle */
 PB01 = 0; /* Channel 0 & 1 are independent */
 break;

 case 2:
 PP2 = period; /* Set PWM period */
 PW2 = period + 1; /* Set 0% duty cycle */
 PS2 = 0; /* Stardard mode (non-single shot) */
 break;

 case 3:
 PP3 = period; /* Set PWM period */
 PW3 = period + 1; /* Set 0% duty cycle */
 PS3 = 0; /* Stardard mode (non-single shot) */
 break;
 }

 PWMCON0 |= (0x0001 << channel); /* Start the PTx counter */
 PWMCON0 &= ~(0x0010 << channel); /* PTx clocked with CLKCPU */
 PWMCON0 &= ~(0x0100 << channel); /* Disable interrupts */
 PWMCON0 &= ~(0x1000 << channel); /* Clear interrupt request */

 PWMCON1 |= (0x0001 << channel); /* Enable channel output */
 PWMCON1 &= ~(0x0010 << channel); /* Setup edge aligned mode */
}

148 Chapter 8. Using on-chip Peripherals

8

void PWM_pulse_width (unsigned char channel, unsigned int width) {
 switch (channel) {
 case 0: PW0 = width; break;
 case 1: PW1 = width; break;
 case 2: PW2 = width; break;
 case 3: PW3 = width; break;
 }
}

void main (void) {
 PWM_setup (0, 20000 - 1); /* 20MHz/20000 = 1kHz (1ms pulse width) */

 while (1) {
 PWM_pulse_width (0, 0); /* 100% duty cycle (ON from 0 to 19999) */
 PWM_pulse_width (0, 20000); /* 0% duty cycle */
 PWM_pulse_width (0, 10000); /* 50% duty cycle */
 PWM_pulse_width (0, 15000); /* 25% duty cycle */
 }
}

Getting Started 149

8

A/D Converter
The C167 A/D converter provides 16 channels of 10-bit analog to digital
conversion. Voltages presented to the input pins on Port 5 are converted to digital
values and may be read from the A/D result register. Analog inputs may range
from the voltages present on the VAREF and VAGND pins.

The on-chip A/D converter may be configured for a number of conversion modes
including single or continuous conversions on one or more analog input channels.
In addition, the C167 A/D converter can generate interrupts for end-of-conversion
and overwrite conditions and can even be used to trigger a PEC data transfer.

Register Description

ADCON A/D converter control register.

ADDAT A/D converter result register.

ADDAT2 A/D converter channel injection result register.

ADCIC A/D converter interrupt control register (for end-of-conversion).

ADEIC A/D converter interrupt control register (for overrun errors and channel injection).

The following example code shows how to initialize the A/D converter for single
channel single conversion mode and read the data for that channel.

#include <reg167.h>

unsigned int ADC_read (unsigned char channel) {
 ADCON = 0xB000;
 /* B...----------------- Conversion Clock = TCC = 96 *TCL */
 /* B...----------------- Sample Clock = 8 * TCC */

 ADCON |= channel & 0x000F; /* Select channel to convert */
 ADST = 1; /* Begin conversion */

 while (ADBSY == 1); /* Wait while the ADC is converting */
 return (ADDAT & 0x03FF); /* Return the result */
}

void read_adc_channels (void) {
 unsigned char i;

 while (1) {
 for (i = 0; i < 16; i++) { /* Loop thru ADC channels */
 printf ("ADC Channel %u = %u\n",
 (unsigned) i, /* Print channel */
 (unsigned) ADC_read (i)); /* Print ADC input */
 }
 }
}

150 Chapter 8. Using on-chip Peripherals

8

Power Reduction Modes
The C167 offers two different power saving modes you may invoke using a single
instruction: Idle Mode and Power Down Mode.

Idle Mode
Idle Mode halts the CPU but lets peripherals continue operating. When any reset
or interrupt condition occurs, Idle Mode is canceled. Power consumption can be
greatly decreased in idle mode. All peripherals including the watchdog timer
continue to operate normally.

To enter Idle Mode, your program must execute the IDLE instruction. You may
do this directly in C using the _idle_ intrinsic library function.

#include <intrins.h>

void main (void) {
 while (1) {
 task_a ();
 task_b ():
 task_c ():

 idle (); /* Enter IDLE Mode */
 }
}

Any interrupt condition, regardless of IEN, terminates Idle Mode. This applies
only to those interrupts whose individual interrupt enable flags were set before
Idle Mode was entered.

After the RETI instruction of the interrupt that terminates Idle Mode, the CPU
begins executing the code following the IDLE instruction.

Power Down Mode
Power Down Mode halts both the CPU and peripherals. It is canceled only by a
hardware reset.

To enter Power Down Mode, your program must pull the NMI pin low using
external hardware and execute the PWRDN instruction using the _pwrdn_
intrinsic library function.

#include <intrins.h>

void main (void) {
 task_a ();
 task_b ():

Getting Started 151

8

 task_c ():

 pwrdn (); /* Enter POWER DOWN Mode - Wait for reset */
}

If the NMI pin is not held low, the PWRDN instruction is ignored and the 166
does not go into Power Down Mode.

Once Power Down Mode is entered, only a hardware reset will restart the CPU
and peripherals.

Getting Started 153

11

Chapter 10. CPU and C Startup Code
Your target program must initialize the CPU to match the configuration of your
hardware design. The STARTUP.A66 file contains the startup code for an 8xC166
target program. The START167.A66 file contains the startup code for all other 166
derivatives. These source files are located in the \C166\LIB directory. You should
copy either of these files to your project directory and make changes to match your
hardware configuration.

The startup code executes immediately upon reset of the target system. It
optionally performs the following operations:

1. Initialize the SYSCON and BUSCON SFRs,

2. Initialize the ADDRSELx and BUSCONx SFRs,

3. Reserve and initialize the hardware stack and stack overflow and underflow
SFRs,

4. Set DPP0 - DPP3 and CP for memory and registerbank accesses,

5. Reserve and initialize the user stack area and user stack pointer (R0),

6. Clear data memory,

7. Initialize variables that are explicitly initialized in the C source code,

8. Transfer control to the main C function.

Selecting the Memory Model
When you assemble the startup code outside of µVision2, you must tell the
assembler which memory model you use. You do this with the SET command and
the memory model: TINY, SMALL, COMPACT, HCOMPACT, MEDIUM,
LARGE, or HLARGE. For example, if you use the SMALL memory model, use
the following command line to assemble the startup code:

A166 START167.A66 SET (SMALL)

Configuring the Startup Code
The STARTUP.A66 and START167.A66 files contain definitions at the beginning
which are used for the chip hardware configuration and for the C run-time system.
An overview of the groups of configuration statements is provided below.

154 Chapter 10. CPU and C Startup Code

8

Hardware Configuration

Name Description

SYSCON CPU system control register. This configures the chip parameters like basic bus
characteristics, power-down modes, chip select configuration, system clock
parameters, and so on.

SYSCON2
SYSCON3

Power-down control registers, CPU clock control registers, and on-chip peripheral
enable registers (available only on some devices).

BUSCONn
ADDRESSn
RANGEn

Initialization registers for BUSCON0-BUSCON4. These registers define the
starting address, range, and bus characteristics for different memory devices (like
FLASH, SRAM, EPROM, and I/O) accessed via the chip select outputs.

C Compiler Run-Time Configuration

Name Description

CLR_MEMORY Memory Zero Initialization of RAM areas. Default: enable the memory zero
initialization of RAM area. To disable the memory zero initialization enter “$SET
(CLR_MEMORY = 1)”; this reduces the code size of the startup code.

DPPUSE Allow re-assignment of DPP registers. Default: 1 to support the L166 DPPUSE
directive. To disable the DPP re-assignment enter “$SET (DPPUSE = 0)”; this
reduces the code size of the startup code.

INIT_VARS Variable Initialization of explicit initialized variables (The variables are to be defined
static or declared at file level). Default: initialize variables. To disable the variable
initialization enter “$SET (INIT_VARS = 0)”; this reduces the code size of the
startup code.

SSTSZ Set the actual stack space for the system stack, if you have selected 7 for the
STK_SIZE.

STK_SIZE STK_SIZE: Maximum System Stack Size selection initialization value. Default
value is 0 for 256 words stack size. This is also the reset value. Set STK_SIZE to
the following values for other stack sizes:

0 for 256 words system stack.
1 for 128 words system stack.
2 for 64 words system stack.
3 for 32 words system stack.
4 for 512 words system stack (not for 166)
7 for user defined size of the system stack

USTSZ Set the actual stack space for the user stack. The user stack is used for automatic
variables. The USTSZ variable allows you to set the size for the user stack.

WATCHDOG Hardware Watchdog control. Default: disable the hardware watchdog. To enable
the watchdog enter “$SET (WATCHDOG = 1)”.

NOTE
Siemens offers a configuration and programming utility called DAVE. This free
utility helps you configure the CPU and create C source code to use the on-chip
peripherals of the various 166 derivatives.

Getting Started 155

11

Chapter 11. Using Monitor-166
The Keil Monitor-166 allows you to connect your 166/ST10 hardware to the
uVision2 Debugger. You can use the powerful debugging interface to test
application programs in your target hardware.

The Monitor requires that the program you are debugging is located in RAM
space. To set breakpoints in your code, the Monitor inserts TRAP instructions at
all breakpoint locations. This operation is completely transparent, but may have
side effects when calculating program checksums.

The Monitor program requires two interrupt vectors: the NMI interrupt is used for
breakpoints. You may break program execution with a switch connect to the NMI
pin of the CPU. The serial interface requires and additional interrupt, to stop
program execution with the uVision2 HALT toolbar command.

The Keil Monitor-166 may be configured in three different operating modes:

Bootstrap Mode

In bootstrap mode, the Monitor program will be downloaded into RAM of the
target system. This is typical the best mode to start working with the Monitor,
since it auto-adjust baudrates and does not require to burn any EPROM's. The
Monitor communicates with the 166/ST10 build-in UART ASC0.

UART Mode

In this configuration the Monitor program will be direct programmed to (Flash)
EPROM's. It also communicates via the UART ASC0 (or ASC1 for 8xC166
CPU) and requires exact configuration of the baudrate. Compared to the
Bootstrap mode, you save the time to download the Monitor program at system
startup.

Simulated Serial Mode

This configuration uses a simulated serial interface and does not require the
166/ST10 on-chip UART. You may use two unused I/O pins of the 166/ST10 to
establish the communication between uVision2 and your target hardware. This
mode does not use any of the on-chip peripherals, but has the restrictions that you
cannot use the uVision2 HALT toolbar command, since the serial interrupt is not
available.

156 Chapter 11. Using Monitor-166

8

Bootstrap Loader
Many derivatives of the 166 include a bootstrap loader (BSL) that uses the serial
port to download code to the on-chip RAM. The asynchronous serial port (ASC0)
is used to transfer the program code.

For example, the C167 device enters BSL mode when port pin P0L.4 is low at the
end of the hardware reset. After entering BSL mode, the C167 waits to receive a
zero byte on the RXD0 line. The zero byte must contain 1 start bit, eight zero
bits, and a stop bit. Once the zero byte is received, the BSL initialized the ASC0
interface with the appropriate baudrate and transmits an identification byte on
TXD0. This procedure is similar for other 166 derivatives.

The bootstrap loader is used by the Keil Monitor to download itself and your
program for debugging. You target board does not require a monitor ROM. Only
RAM devices are required for testing your programs.

Hardware and Software Requirements
The following requirements must be met for Monitor-166 to operate correctly:

¢ Siemens 161/163/164/165/166/167 CPU or ST10 variant

¢ Serial interface for communication with the PC.

¢ Software trap used for breakpoints (usually NMI trap).

¢ Additional 10 words stack space in the user program to be tested.

¢ 256 bytes off-chip data memory (RAM).

¢ 5 Kbytes of-chip code memory loaded with Monitor-166 software (ROM or
RAM in Bootstrap Mode).

All other hardware components can be used by the application.

Serial Transmission Line
Monitor-166 requires only the signals TRANSMIT DATA, RECEIVE DATA and
SIGNAL GROUND from the RS232 or V.24 line. However, in most cases, some
additional connections are necessary in the serial connectors, to enable transmit
and receive data.

PIN connections of various computer systems

Getting Started 157

11

25 Pin Connector 9 Pin Connector

Signal Name Pin Description Signal Name Pin Description

RxD 3 receive data RxD 2 receive data

TxD 2 transmit data TxD 3 transmit data

Gnd 7 signal ground Gnd 5 signal ground

In addition to the above pins, connect pin 7 to pin 8 and pin 1 to pin 4 and pin 6.

µVision2 Monitor Driver
µVision2 interfaces to target systems when you select Use: Keil Monitor-166
Driver in the dialog Options – Debug.

Click on Settings to opens the dialog Monitor Driver Settings that allows you to
configure various parameters such as COM port and baudrate. Refer to “Set
Debug Options” on page 75 for more information about the Debug dialog.

158 Chapter 11. Using Monitor-166

8

The following table describes the Monitor Driver Settings page:

Dialog Item Description

Monitor Configuration List available Monitor configurations. You may add user configurations as
described under “Monitor-166 Configuration” on page 160. Select the Monitor
configuration for your target hardware.

Description Provides you with a quick description of you target hardware. It contains also
required configuration settings. You may use cut and paste to copy the settings
into other Options dialog pages.

PC Port Settings Select the PC COM port and the baudrate you want to use. If you have
problems with your target hardware, try the Baudrate 9600.

Stop Program
Execution with

When Serial interrupt or NMI is enabled, you can terminate a running
application program with the Stop toolbar button or the ESC key in the
Command page. To support this, the serial interface is not longer available for
the user program. In addition, it is not allowed to reset the global Interrupt
Enable Flag IE (bit in PSW) in your application.

In any case a high to low transition at the NMI# pin terminates a running
application.

Cache Options To speed up the screen updates, the Monitor driver implements several data
caches.

Ignore Code
Modifications

When enabled µVision2 duplicates the program code on the PC and never
reloads the code from your target system. You should disable this option to
debug self-modifying code.

Cache Memory enables the memory cache for data regions. When you single step trough
code, µVision2 will reload the data regions, even when memory cache is
enabled. You should disable this option to view changes on IO ports or
peripherals when debugging is stopped.

Cache SFR space enables the memory cache for the SFR space of the CPU. When you single
step trough code, µVision2 will reload the SFR regions, even when SFR cache
is enabled. You should disable this option to view changes on IO ports or
peripherals when debugging is stopped.

Restrictions of µVision2 when using Monitor-166
The memory mapping of a CPU board with Monitor-166 is selected with
hardware components and the Monitor configuration file. It is not possible to use
Debug – Memory Map to change the memory mapping of the target system.

The Performance Analyzer, Call Stack and Code Coverage features are not
available with Monitor-166.

Breakpoint Options are handled directly by Monitor-166. However, when access
or conditional breakpoints are set, the application is executed in single steps and
not in real time. Single step execution is at least 1000 times slower.

Getting Started 159

11

Target Options when Using Monitor-166
When you are using Monitor-166,
the complete target application need
to be stored in RAM space. This is
required, since the Monitor changes
the program code to set breakpoints
in your application. Therefore the
ROM entries in the dialog Options
– Target – External Memory
should refer to the RAM areas
where you want to store the
program code during debugging.

In the page Options – L166 Misc
you should enter under Reserve the
memory regions used by your
Monitor configuration. The
required address ranges for pre-
configured Monitor variants can be
found under Options – Debug –
Settings – Description. For more
information refer to “Monitor-166
Configuration” on page.

160 Chapter 11. Using Monitor-166

8

Monitor-166 Configuration
The Monitor-166 can be adapted to different hardware configurations. The
configuration works with a µVision2 project file and is described in the file
C:\KEIL\C166\MONITOR\README.TXT.

The following table describes the µVision2 project files used for the Monitor
configuration:

Folder and Project File Description

C:\KEIL\C166\MONITOR\U
SER166\USER 166.UV2

User configuration files for 8xC166 CPU and ST10-166.

C:\KEIL\C166\MONITOR\U
SER167\USER 167.UV2

User configuration files for all other CPU variants, like 161/163/164/165
and 167 CPU type and ST10

C:\KEIL\C166\MONITOR\
…

Other folders may contain pre-configured monitor variants for different
boards.

To configure a new Monitor variant, create a new folder under C:\KEIL\C166\MONITOR
and copy all files from USER166 or USER167

Trouble Shooting
If the Monitor does start correctly it is typically a problem of the CPU startup or
Monitor code and data locations. Check carefully the settings in the file
CONFIG.INC. In BOOTSTRAP mode, uVision2 check if the Monitor is
downloaded correctly. If the Monitor does not start, check if the Write
Configuration Control bit _WRCFG matches your hardware.

If the Monitor stops working during the C startup code of your application your
are most likely using different settings in the CPU parameter section. Check
carefully if the settings of the STARTUP.A66 or START167.A66 file match the
settings in the CONFIG.INC.

During operation the Monitor might report the following errors:

Error Text Description

BAD SERIAL
TRANSMISSION

uVision2 has lost the serial connection to the Monitor program. This error might
occur because your program re-initializes the serial interface or changes the
PORT direction register for I/O lines used by the serial interface. This error
also occurs when you single step in the serial I/O routines of your application.

CANNOT WRITE TO
ROM AREA

You try to download code into ROM space or non-existing memory.

CANNOT WRITE
BREAKPOINT

You try to set a breakpoint in ROM space or non-existing memory.

Getting Started 161

11

Error Text Description

CANNOT WRITE
BREAKPOINT
VECTOR

The Monitor program cannot install the interrupt vectors for the NMI trap or
Serial interface. This error occurs when the RAM at address 0 cannot be
accessed.

INVALID OPCODE You try to execute invalid program code.

Getting Started 163

11

Chapter 12. Command Reference
This chapter briefly describes the commands and directives for the Keil 166/ST10
development tools. Commands and directives are listed in a tabular format along
with a description.

NOTE
Underlined characters denote the abbreviation for the particular command or
directive.

µVision 2 Command Line Invocation
The µVision2 IDE can directly execute operations on a project when it is called
from a command line. The command line syntax is as follows:

UV2 ¤projectfile¥ ¤command¥
projectfile is the name of a project file. µVision2 project files have the

extension .UV2. If no projectfile is specify, µVision2 opens the
last project file used.

command is one of the following commands. If no command is specified
µVision2 opens the projectfile in interactive Build Mode.

Command Description

-b Build the project and exit after the build process is complete.

-d Start µVision2 Debugging Mode. You can use this command together with a Debug
Initialization File to execute automated test procedures. µVision2 will exit after
debugging is completed with the EXIT command or stop debug session.

-r Re-translate the project and exit after the build process is complete.

-t targetname Open the project and set the specified target as current target. This option can be
used in combination with other µVision2 commands. Example:
 UV2 PROJECT1.UV2 –t"C167CR Board" –b
builds the target “C167CR Board” as defined in the PROJECT1.UV2 file. If the –t
command option is not given µVision2 uses the target which was set as current
target in the last project session.

-o outputfile copy output of the Output Window – Build page to the specified file. Example:
 UV2 PROJECT1.UV2 –o"listmake.prn" –r

164 Chapter 12. Command Reference

8

A166 Macro Assembler Directives
Invocation: A166 sourcefile ¤directives¥

A166 @commandfile

sourcefile is the name of an assembler source file.

commandfile is the name of a file which contains a complete command line for
the assembler including a sourcefile and directives.

directives are control parameters described in the following table.

A166 Directive Description

CASE Enable case sensitive symbol names.

COND, NOCOND Enable or disable skipped sections to appear in the listing file.

DATE(date) Places date string in header (9 characters maximum).

DEBUG Includes debugging symbol information in the object file.

ERRORPRINT¤(filename)¥ Outputs error messages to filename.

EXPDECNUM Set the output format of the macro processor function %EVAL to
decimal format.

EXTMAC Enable extended ST10 MAC instructions.

INCLUDE(filename) Includes the contents of filename in the assembly.

GEN Generates a full listing of macro expansions in listing file.

NOGEN List only the original source text in listing file.

NOLINES Excludes line number information from the object file.

NOLIST Excludes the assembler source code from the listing file.

NOMPL Disables MPL macro processing.

NOMACRO Disables standard macro processing.

NOMOD166 Do not recognize the predefined special function registers.

MOD167 Enable the extended instruction set for 161/163/164/165/167.

NOSYMBOLS Excludes the symbol table from the listing file.

NOSYMLIST Do not list the following symbol definitions in the symbol table.

OBJECT¤(filename)¥,
NOOBJECT

Enables or disables object file output. The object file is saved as
filename if specified.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing file.

PRINT¤(filename)¥,
NOPRINT

Enables or disables listing file output. The listing file is saved as
filename if specified.

REGUSE Defines register usage of assembler functions for the C optimizer.

RESET (symbol, …) Assigns a value of 0000h to the specified symbols.

RESTORE Restore control setting from SAVE stack.

SAVE Stores current control setting for GEN, LIST and SYMLIST.

SEGMENTED,

NOSEGMENTED

Define the mode of CPU operation.

Getting Started 165

11

A166 Directive Description

SET (symbol, …) Assigns a value of 0FFFFh to the specified symbols.

TABS (number) Specifies the tab setting.

TITLE(title) Includes title in the listing file header.

TYPE, NOTYPE Defines whether type information is included in object file or not.

USEDEXTONLY Prevent A166 from generating external definitions for unused external
identifiers.

XREF Includes a symbol cross reference report in the listing file.

166 Chapter 12. Command Reference

8

C166 Optimizing C Cross Compiler Directives
Invocation: C166 sourcefile ¤directives¥

C166 @commandfile

where

sourcefile is the name of a C source file.

commandfile is the name of a file which contains a complete command line for
the compiler including a sourcefile and directives.

directives are control parameters described in the following table.

C166 Directive Description

ASM / ENDASM Merge assembler source text into the SRC file.

ASMEXPAND,
NOASMEXPAND

Enable or disable macro text expansion for assembler source text
sections.

BROWSE Generate browse information.

BYTEALIGN Assume pointers to byte-aligned structures.

CODE Includes an assembly listing in the listing file.

COMPACT Selects the COMPACT memory model.

DEBUG Includes debugging information in the object file.

DEFINE Defines preprocessor names on the command line.

DYNAMICUSRSTK Enables dynamic modification of the user stack by a real-time OS.

EXTINS Break EXT instruction sequences at C source line numbers.

FIXxxx Generate code with fixes for chip bugs.

FLOAT64 Enabled double-precision floating-point numbers.

HCOMPACT Selects the HCOMPACT memory model.

HLARGE Selects the HLARGE memory model.

HOLD Specifies size limits for default placing of objects without explicit memory
types.

INCDIR Specify additional path names for include files.

INIT, NOINIT Enable or disabled zero initialization of variables.

LARGE Selects the LARGE memory model.

LISTINCLUDE Includes the contents of include files in the listing file.

MEDIUM Selects the MEDIUM memory model.

MOD167 Enable the extended instruction set for 161/163/164/165/167.

NOALIAS Disable alias checking for pointer access optimization.

NODPPSAVE Do not save the DPP registers in interrupt functions.

NOCOND Excludes skipped conditional code from the listing file.

NOEXTEND Disables 166 extensions and processes only ANSI C constructs.

NOFIXDPP Generate code without DPP register assumptions.

NOFRAME Suppress prolog and epilog for interrupt service routines

Getting Started 167

11

C166 Directive Description

OBJECT¤(filename)¥,
NOOBJECT

Enables or disables object file output. The object file is saved as
filename if specified.

OPTIMIZE Specifies the level of optimization performed by the compiler.

ORDER Locates variables in memory in the same order in which they are
declared in the source file.

PACK Generate BYTE aligned structures with word elements.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing file.

PECDEF Reserve PEC channels.

PREPRINT¤(filename)¥ Produce a preprocessor listing file with all macros expanded. The
preprocessor listing file is saved as filename if specified.

PREPRINTONLY¤(file)¥ Produce a preprocessor listing and stop compilation.

PRINT¤(filename)¥,
NOPRINT

Enables or disables listing file output. The listing file is saved as
filename if specified.

REGFILE(filename) Specifies the name of the generated file to contain register usage
information.

RENAMECLASS Rename predefined class names in the object file.

SAVESYS Save temporary results and variables to system stack.

SAVEUSR Save temporary results and saved-by-callee variables to user stack.

SMALL Selects the SMALL memory model.

SRC Creates an assembly source file instead of an object file.

STATIC Allocate automatic variables to static memory addresses.

SYMBOLS Includes a list of the symbols used in the listing file.

TINY Selects the TINY memory model.

UNSINGEDCHAR Treat plain char as unsigned char.

USERSTACKDPP3 Assume user stack area in IDATA or SDATA memory class.

WARNING Change a Warning to an Error or disable a warning.

WARNINGLEVEL(n) Controls the types and severity of warnings generated.

168 Chapter 12. Command Reference

8

L166 Linker/Locator Directives
The L166 Linker/Locator links your 166 object modules, locates them at absolute
addresses, and creates an absolute object module you may use for debugging or
creating an Intel HEX file. Invoke the linker using either of the following
command lines:

L166 @commandfile

L166 inputlist ¤TO outputfile¥ ¤directives¥
where

inputlist is a comma-separated list of the object files and libraries the
linker includes in the final absolute object module.

outputfile is the name of the absolute object module the linker creates.

commandfile is the name of a file which contains a complete command line for
the linker. The command file includes an inputlist,
outputfile (if desired), and directives. You may use a
command file to make linking your application easier or to include
more input files or directives than fit on the command line.

directives are linker control parameters described in the following table.

L166 Directive Description

ASSIGN Define public symbols on the command line.

CINITTAB Locate C initialization data sections to specified address range.

CLASSES Define physical class address ranges and class locating order.

DISABLEWARNING Disable report of specified warning numbers.

DPPUSE Re-assign DPP registers for NCONST and NDATA groups.

GROUPS Define physical group addresses and group locating order.

IXREF Include a cross reference report in the listing file.

LINKONLY Suppress located process for incremental linkage.

NAME Specifies a module name for the object file.

NOCASE Disable case sensitivity of the linker.

NOCOMMENTS Excludes comment information from the listing file and the object file.

NODEFAULTLIBRARY Excludes modules from the run-time libraries.

NOLINES Excludes line number information from the listing file and object file.

NOMAP Excludes memory map information from the listing file.

NOPUBLICS Excludes public symbol information in listing and object file.

NOSYMBOLS Excludes local symbol information in listing and object file.

NOTYPES Excludes type information from the object file.

NOVECTAB Remove the interrupt vector table in the output file.

Getting Started 169

11

L166 Directive Description

OBJECTCONTROLS Excludes specific debugging information from the object file.
Subcontrols must be specified in parentheses. See NOCOMMENTS,
NOLINES, NOPUBLICS, NOSYMBOLS, and PURGE.

PAGELENGTH(n) Sets maximum number of lines in each page of listing file.

PAGEWIDTH(n) Sets maximum number of characters in each line of listing file.

PRINT Specifies the name of the listing file.

PRINTCONTROLS Excludes specific debugging information from the listing file.
Subcontrols must be specified in parentheses. See NOCOMMENTS,
NOLINES, NOPUBLICS, NOSYMBOLS, and PURGE.

PURGE Excludes all debugging information from the listing file and the object file.

REGBANK Define physical register bank addresses and locating order.

REGFILE(filename) Specifies the name of the register usage information file.

RESERVE Reserve physical 166/ST10 memory areas.

RTX166 Includes support for the RTX166 Full real-time kernel.

RTX166TINY Includes support for the RTX166 Tiny real-time kernel.

SECSIZE Change the length of sections.

SECTIONS Define physical section addresses and section locating order.

VECTAB Specify a start address for the interrupt vector table.

WARNINGLEVEL(n) Controls the types and severity of warnings generated.

170 Chapter 12. Command Reference

8

LIB166 Library Manager Commands
The LIB166 Library Manager lets you create and maintain library files of your
166 object modules. Invoke the library manager using the following command:

LIB166 ¤command¥
LIB166 @commandfile

command is one of the following commands. If no command is specified
LIB166 enters an interactive command mode.

commandfile is the name of a file which contains a complete command line for
the library manager. The command file includes a single
command that is executed by LIB166. You may use a command
file to generate a large library with at once.

LIB166 Command Description

ADD Adds an object module to the library file. For example,
 LIB166 ADD GOODCODE.OBJ TO MYLIB.LIB
adds the GOODCODE.OBJ object module to MYLIB.LIB.

CREATE Creates a new library file. For example,
 LIB166 CREATE MYLIB.LIB
creates a new library file named MYLIB.LIB.

DELETE Removes an object module from the library file. For example,
 LIB166 DELETE MYLIB.LIB (GOODCODE)
removes the GOODCODE module from MYLIB.LIB.

EXTRACT Extracts an object module from the library file. For example,
 LIB166 EXTRACT MYLIB.LIB (GOODCODE) TO GOOD.OBJ
copies the GOODCODE module to the object file GOOD.OBJ.

EXIT Exits the library manager interactive mode.

HELP Displays help information for the library manager.

LIST Lists the module and public symbol information stored in the library file. For
example,
 LIB166 LIST MYLIB.LIB TO MYLIB.LST PUBLICS
generates a listing file (named MYLIB.LST) that contains the module names
stored in the MYLIB.LIB library file. The PUBLICS directive specifies that
public symbols are also included in the listing.

REPLACE Replaces an existing object module to the library file. For example,
 LIB166 REPLACE GOODCODE.OBJ IN MYLIB.LIB
replaces the GOODCODE.OBJ object module in MYLIB.LIB. Note that
Replace will add GOODCODE.OBJ to the library if it does not exists.

TRANSFER Generates a complete new library and adds object modules. For example,
 LIB166 TRANSFER FILE1.OBJ, FILE2.OBJ TO MYLIB.LIB
deletes the existing library MYLIB.LIB, re-creates it and adds the object
modules FILE1.OBJ and FILE2.OBJ to that library.

Getting Started 171

11

OH166 Object-HEX Converter Commands
The OH166 object-HEX converter creates Intel HEX files from absolute object
modules. Invoke the HEX converter using the following command:

OH166 absfile ¤H167¥¤RANGE(start-end)¥¤OFFSET(offset)¥¤FLASH(fillbyte)¥
where

absfile is the name of an absolute object file that the L166 linker/locator
generated.

H167 specifies that an Intel HEX-386 file is created. By default,
OH166 creates a standard Intel HEX-86 file.

RANGE specifies the address range of data in the absfile to convert and
store in the HEX file. The default range is 0x000000 to
0xFFFFFF.

start specifies the starting address of the range. This address must be
entered in C hexadecimal notation, for example: 0x010000.

end specifies the ending address of the range. This address must be
entered in C hexadecimal notation, for example: 0xFFFFFF.

OFFSET specifies an offset (offset) added to the addresses from the
absfile.

FLASH The HEX file is sorted in ascending order. Unused bytes in the
RANGE are filled with the fillbyte specified with the FLASH
directive. The sorted HEX file can be downloaded to FLASH
devices.

The following command line creates a HEX file named MYCODE.HEX from the
absolute object module MYCODE. Records in the HEX file are written in
HEX-386 format.

OH166 MYCODE H167

172 Index

Index

$
$ system variable 85

_
break system variable 85
_getkey library routine 142
idle library routine 150
pwrdn library routine 150
sof library routine 135
srvwdt library routine 145

µ
µVision2 Debugger 67
µVision2 IDE 6,13,36

Command line parameters 163
Debug Options 75
Menu Commands 14
Options 40
Shortcuts 14
Toolbars 14
Toolbox 74

1
166 Devices 2
166 microcontroller family 2

A
A/D converter 149

Example program 149
A166 8
A166 macro assembler 28

Commands 164
Directives 164

Access Break 70
ADCIC register 149
ADCON register 149
Add command

LIB166 library manager 170
ADDAT register 149
ADDAT2 register 149

Additional items, document
conventions iv

ADEIC register 149
Analog/Digital converter 149
ANSI C 110
Assembler Instructions 68
Assembler kit 8
Assign directive

L166 linker/locator 168
Assistance 5

B
Binary constants 83
Bit addresses 94
Bit-fields 49
Bold capital text, use of iv
Bootstrap loader 156
Braces, use of iv
break 97
Breakpoint Commands 81
Breakpoints 69

Access Break 70
Conditional 70
Execution Break 70

Build Process 57
Build Project 41

C
C run-time configuration 154
C startup code 153
C166 C compiler 20
C166 compiler

Commands 166
Directives 166
Language Extensions 20
Memory Models 23

CA166 8
CAPREL register 140
case 97
Changes to the documentation 3
Character constant escape

sequence 84

Getting Started 173

11

Character constants 84
Choices, document conventions iv
Classes directive

L166 linker/locator 168
Classes of symbols 91
Code Coverage 77
Command reference 163

A166 macro assembler 164
C166 compiler 166
L166 linker/locator 168
LIB166 library manager 170
OH166 hex converter 171

Comparison chart 9
Compiler kit 8
conditional assembly 28
Conditional Break 70
Configuration

C run-time 154
CPU 153
DAVE utility 154
Hardware 154
Memory model 153
Run-time 154
tool options 43

Constant Expressions 82
Constants 82

Binary 83
Character 84
Decimal 83
Floating-point 83
HEX 83
Octal 83
String 84

continue 97
Control Directives

#pragma 26
Copy Tool Settings 60
Correct syntax errors 41
Counters 140
Courier typeface, use of iv
CPU driver symbols 85
CPU initialization 153
CPU pin register See VTREG
CPU registers 73
CPU Registers 73
CPU Simulation 67

Create a Library 59
Create a Project File 36
Create command

LIB166 library manager 170
Create HEX File 41
Creating header files 128
CRIC register 140
Custom Translator 64
cycles system variable 85

D
Data Threshold 50
Data Types 54
DAVE utility 154
Debug Comamnds

Program Execution 80
Debug Commands 17,80

Memory 80
Debug Functions 97
Debug Menu 17,68,72
Debug Mode 67
Debugger 67
Decimal constants 83
Delete command

LIB166 library manager 170
Development cycle 6
Development tools 13
Device Database 58
Direct memory access

controllers 134
Directives

A166 macro assembler 164
C166 compiler 166
L166 linker/locator 168
LIB166 library manager 170
OH166 hex converter 171

Directory structure 12
Disassembly Window 68
Displayed text, document

conventions iv
DMA 134
do 97
Document conventions iv
Documentation changes 3
Double brackets, use of iv

174 Index

DPP registers 129
dScope functions 110

E
Edit Menu 15
Editor Commands 15
EK166 evaluation kit 4
Ellipses, use of iv
Ellipses, vertical, use of iv
else 97
Escape sequence 84
Evaluation board 155
Evaluation kit 4
Evaluation users 4
Example program

A/D converter 149
General purpose timers 140
Idle mode 150
Interrupt functions 131
Parallel port I/O 139
PEC 137
Peripheral event controller 137
Power down mode 150
Pulse width modulation 147
PWM 147
Serial interface 142
Watchdog timer 145

Examples of expressions 95
exec

Function description 100
Predefined function 100

Execution Break 70
Exit command

LIB166 library manager 170
Experienced users 4
Expression components 82

Bit addresses 82,94
Constants 82
CPU driver symbols 85
Line numbers 82,93
Operators 82,94
Program variables 82,90
SFRs 85
Special function registers 85
Symbols 82,90
System variables 82,85

Type specifications 82,94
Variables 82,90
VTREGs 86

Expression examples 95
Expressions 82
External RAM 55,59
Extract command

LIB166 library manager 170

F
Feature check list 9
File Commands 14
File Extensions 65
File Menu 14
File specific Options 43,62
Filename, document

conventions iv
Files Groups 42
Find in Files 44
float

Predefined function 100
Floating-point constants 83
Folder for Listing Files 58
Folder for Object Files 58
FR166 9
Fully qualified symbols 91
Function classes

Predefined functions 99
Signal functions 99
User functions 99

Function Classes 99
Functions

µVision2 Debug Functions 97
Classes 99
Creating 97
Invoking 99
Predefined 100
Signal 106
User 104

G
General commands 81
General purpose timers 140

Example program 140
getfloat

Getting Started 175

11

Function description 101
Predefined function 100

getint
Predefined function 100

getlong
Predefined function 100

Getting help 5
Getting started immediately 3
Global Register Optimization 50
goto 97
GPT1 140
GPT2 140
Group specific Options

for Groups 43,62

H
Hardware configuration 154
Hardware requirements 11
HCOMPACT Memory Model 49
Header files 128
Help 5
Help command

LIB166 library manager 170
Help Menu 18
HEX constants 83
HEX File 41
HLARGE Memory Model 49

I
I/O ports 88,138
IDLE instruction 150
Idle mode 150

Example program 150
IEN register 132,150
if97
Import µVision1 Projects 56
Include specific Library

Modules 64
Installing the software 11
Instructions

IDLE 150
PWRDN 150
RETI 150
SRVWDT 145

Interrupt control registers 132

Layout 132
Layout for PEC 136

Interrupt enable flag 133
Interrupt functions 131

Example program 131
Interrupt group level 133
Interrupt priority level 133
Interrupt request flag 133
Introduction 1
Italicized text, use of iv
itrace system variable 85

K
Key names, document

conventions iv
Kit comparison 9

L
L166 linker/locator 30

Assign directive 168
Classes directive 168
Commands 168
Directives 168
Ixref directive 168
Name directive 168
Nocomments directive 168
Nodefaultlibrary directive 168

Last minute changes 3
LIB166 library manager 34

Add command 170
Commands 170
Create command 170
Delete command 170
Exit command 170
Extract command 170
Help command 170
List command 170
Replace command 170
Transfer mmand 170

Library 63,64
Line numbers 93
List command

LIB166 library manager 170
Listing Files 58
Literal 91

176 Index

Literal symbols 91
Locate Sections 43,60

M
Macro Processing Language 28
Macros

standard macros 28
Manual topics 3
MEDIUM Memory Model 48
Memory Map 78
Memory model 153
Memory Model 40,48

COMPACT 23
HCOMPACT 23
HLARGE 23
LARGE 23
MEDIUM 23
SMALL 23
TINY 23

Memory Models 23
Memory Type 40,48
Memory Types 22
Memory Window 73
memset

Function description 101
Predefined function 100

Module names 90
Monitor Driver 157
Monitor-166 155

Configuration 160
Serial Transmission Line 156

MPL 28

N
Naming conventions for

symbols 90
New Project 36
New users 4
NMI pin 150
Non-qualified symbols 92

O
Object Files 58
Octal constants 83

OH166 hex converter 34
Command-line example 171
Commands 171

Omitted text, document
conventions iv

Operators 94
Optimum Code 48
Optional items, document

conventions iv
Options

for Files 43,62
for Groups 43,62

Output Window 41

P
Parallel port 138

Example program 139
Part numbers 8
PC-Lint 47
PEC 134

Control register layout 135
Example program 137
Interrupt control register

layout 136
Performance Analyzer 77
Peripheral event controller 134

Control register layout 135
Example program 137
Interrupt control register

layout 136
PK161 8
PK166 8
Pointer 23
Port I/O 138
Ports 88
Power down mode 150

Example program 150
Power reduction modes 150
PPx register 146
Predefined functions 100

exec 100
float 100
getfloat 100,101
getint 100
getlong 100

Getting Started 177

11

memset 100,101
printf 100,101
rand 100,102
twatch 100,102

Printed text, document
conventions iv

printf
Function description 101
Predefined function 100

printf library routine 142
Product link 8
Production kit 4
Professional Developer’s Kit 8
Program counter system variable 85
Project Commands 17
Project Menu 17
Project Targets 42
PSW register 132
PTx register 146
Pulse width modulation 146

Example program 147
putchar library routine 142
PWM 146

Example program 147
PWMCON0 register 146
PWMCON1 register 146
PWMIC register 146
PWRDN instruction 150
PWx register 146

Q
Qualified symbols 91

R
radix system variable 85
rand

Function description 102
Predefined function 100

Real-time operating system 9
REG167.H header file 128
Register banks 131
Registers

ADCIC 149
ADCON 149
ADDAT 149

ADDAT2 149
ADEIC 149
CAPREL 140
CRIC 140
IEN 132,150
PPx 146
PSW 132
PTx 146
PWMCON0 146
PWMCON1 146
PWMIC 146
PWx 146
S0BG 142
S0CON 142
S0EIC 142
S0RBUF 142
S0RIC 142
S0TBIC 142
S0TBUF 142
S0TIC 142
T2 140
T2CON 140
T2IC 140
T3 140
T3CON 140
T3IC 140
T4 140
T4CON 140
T4IC 140
T5 140
T5CON 140
T5IC 140
T6 140
T6CON 140
T6IC 140
WDTCON 145

Replace command
LIB166 library manager 170

Requesting assistance 5
Requirements 11
RETI instruction 150
RS-232 142
RS-232 ports 89
RTX166 9
Run Program 72

178 Index

S
S0BG register 142
S0CON register 142
S0EIC register 142
S0RBUF register 142
S0RIC register 142
S0TBIC register 142
S0TBUF register 142
S0TIC register 142
Sans serif typeface, use of iv
Saving power 150
scanf library routine 142
Select Text 16
Serial interface 142

Example program 142
Serial ports 89
Serial Window 76
SETUP program 11
SFRs 85
Siemens

DAVE utility 154
Signal functions 106
Simulating I/O ports 88
Simulating serial ports 89
Simulation 67
Simulator 67
Single Step Program 72
Single-board computers 155
SMALL Memory Model 48
Software development cycle 6
Software requirements 11
Source Browser 44
Special function registers 85
SRVWDT instruction 145
ST10 Devices 2
Start µVision2 36
Start Debugging 67
Start External Tools 57
START167.A66 38,153
START167.A66 file 145
Startup code 128,145,153

Memory model 153
STARTUP.A66 153
String constants 84
switch 97

Symbol expressions 90
Symbols

Classification 91
CPU driver 85
Fully qualified 91
Literals 91
Module names 90
Naming conventions 90
Non-qualified 92
Qualified names 91
SFRs 85
Special function registers 85
System variables 85
VTREGs 86

Symbols Window 79
Syntax errors 41
System variables 85

$ 85
break 85
cycles 85
itrace 85
Program counter 85
radix 85

T
T2 register 140
T2CON register 140
T2IC register 140
T3 register 140
T3CON register 140
T3IC register 140
T4 register 140
T4CON register 140
T4IC register 140
T5 register 140
T5CON register 140
T5IC register 140
T6 register 140
T6CON register 140
T6IC register 140
Target hardware 155
Target Tool Settings 60
Technical support 5
Timer 2 140
Timer 3 140
Timer 4 140

Getting Started 179

11

Timer 5 140
Timer 6 140
Timers 140
Tool Information 65
tool options 43
Tools Menu 18,46
Topics 3
Transfer command

LIB166 library manager 170
Translate asm/endasm sections 63
twatch

Function description 102
Predefined function 100

Type specifications 94
Types of users 4

U
UART 76
User Classes 61
User functions 104
Users 4
Using Monitor 155
Utilities 44

V
VAGND pin 149
VAREF pin 149
Variable expressions 90
Variable values 72
Variables, document

conventions iv
Vertical bar, use of iv
Vertical ellipses, use of iv
View memory contents 73
View Menu 16
VTREGs 86

W
Watch Window 72
Watchdog timer 145

Example program 145
WDTCON register 145
while 97
Window Menu 18
Windows-based tool

requirements 11
Write Optimum Code 48

	Preface
	Contents
	Chapter€1. Introduction
	166/ST10 Microcontroller Family
	Manual Topics
	Changes to the Documentation
	Evaluation Kits and Production Kits
	Types of Users
	Requesting Assistance
	Software Development Cycle
	µVision2 IDE
	166 Compiler & Assembler
	LIB166 Library Manager
	L166 Linker/Locator
	µVision2 Debugger
	Monitor˚166
	RTX166 Real˚Time Operating System

	Product Overview

	PK166 Professional Developer™s Kit
	PK161 Professional Developer™s Kit
	CA166 Compiler Kit
	A166 Assembler Kit
	RTX166 Real˚Time Operating System (FR166)
	Comparison Chart
	Chapter€2. Installation
	System Requirements
	Installation Details
	Folder Structure

	Chapter€3. Development Tools
	µVision2 Integrated Development Environment
	About the Environment
	Menu Commands, Toolbars and Shortcuts
	File Menu and File Commands
	Edit Menu and Editor Commands
	Select Text Commands
	View Menu
	Project Menu and Project Commands

	Debug Menu and Debug Commands
	Tools Menu
	Window Menu

	Help Menu

	C166 Optimizing C Cross Compiler
	C166 Language Extensions
	Data Types
	Memory Types
	Memory Models
	Pointer

	Examples for using the memory type together with Pointers:
	Registerbanks
	Interrupt Functions
	PEC Support
	Parameter Passing
	Code Optimizing
	General Optimizations
	166/ST10 Specific Optimizations
	Program Invocation
	Example
	Sample Program
	A166 Macro Assembler
	Source˚Level Debugging
	Functional Overview
	Listing File

	L166 Linker/Locator
	Address Management
	Map File

	LIB166 Library Manager

	OH166 Object˚HEX Converter
	Chapter€4. Creating Applications
	Create a Project
	�� Start µVision2 and Create a Project File
	�� Create New Source Files
	Add and Configure the Startup Code
	�� Set Tool Options for Target
	�� Build Project and Create a HEX File

	Project Targets and File Groups
	Overview of Configuration Dialogs
	µVision2 Utilities
	�� Find in Files
	�� Source Browser
	Tools Menu
	Running PC-Lint

	Writing Optimum Code
	Memory Models and Memory Types
	Tips for SMALL and MEDIUM Memory Model
	Tips for HCOMPACT and HLARGE Memory Model

	Bit-field Structures
	Data Threshold
	Global Register Optimization
	Other C166 Compiler Directives
	Data Types

	Applications without external RAM Devices
	Tips and Tricks
	Import Project Files from µVision Version 1
	Start External Tools after the Build Process
	Specify a Separate Folder for Listing and Object Files
	Use a CPU that is not in the µVision2 Device Database
	Create a Library File
	Copy Tool Settings to a New Target
	Locate Sections to Absolute Memory Locations
	User Classes
	File and Group Specific Options Œ Properties Dialog
	Translate a C Module with asm/endasm Sections
	Include Always specific Library Modules
	Use a Custom Translator

	File Extensions
	Different Compiler and Assembler Settings
	Version and Serial Number Information

	Chapter€5. Testing Programs
	µVision2 Debugger
	CPU Simulation
	�� Start Debugging
	�� Disassembly Window
	�� Breakpoints
	�� Target Program Execution
	�� Watch Window
	� CPU Registers
	�� Memory Window
	�� Toolbox
	�� Set Debug Options
	�� Serial Window
	�� Performance Analyzer
	�� Code Coverage
	Memory Map
	View Œ Symbols Window

	Debug Commands
	Memory Commands
	Program Execution Commands
	Breakpoint Commands
	General Commands

	Expressions
	Components of an Expression
	Constants
	Binary, Decimal, HEX, and Octal Constants
	Floating˚Point Constants
	Character Constants
	String Constants

	System Variables
	On-chip Peripheral Symbols
	Special Function Registers (SFRs)
	CPU Pin Registers (VTREGs)
	Program Variables (Symbols)
	Module Names
	Symbol Naming Conventions
	Symbol Classification
	Literal Symbols

	Fully Qualified Symbols
	Non˚Qualified Symbols
	Line Numbers
	Bit Addresses
	Type Specifications
	Operators
	Differences Between µVision2 and C
	Expression Examples
	Chapter€6. µVision2 Debug Functions
	Creating Functions
	Invoking Functions
	Function Classes
	Predefined Functions
	void exec (ﬁcommand_stringﬂ)
	double getdbl (ﬁprompt_stringﬂ), int getint (ﬁprompt_stringﬂ),�long getlong (ﬁprompt_stringﬂ)

	void memset (start address, uchar value, ulong length)

	void printf (ﬁformat_stringﬂ, ...)
	int rand (int seed)
	void twatch (long states)
	uchar _RBYTE (address), uint _RWORD (address),�ulong _RDWORD (address), float _RFLOAT (address),�double _RDOUBLE (address)
	_WBYTE (addr, uchar value), _WWORD (addr, uint value),�_WDWORD (addr, ulong value), _WFLOAT (addr, float value,�_WDOUBLE (addr, double value)
	User Functions
	Example
	Restrictions
	Signal Functions
	Example
	Restrictions
	Managing Signal Functions
	Analog Example
	Differences Between Debug Functions and C
	Chapter€7. Sample Programs
	HELLO: Your First 166 C Program
	HELLO Project File
	Editing HELLO.C
	�� Compiling and Linking HELLO
	�� Testing HELLO

	Single˚Stepping and Breakpoints

	MEASURE: A Remote Measurement System
	Hardware Requirements
	MEASURE Project File
	�� Compiling and Linking MEASURE
	�� Browse Symbols
	�� Testing MEASURE
	Remote Measurement System Commands
	�� View Program Code
	��
�
	�� View Memory Contents

	��
�
	Program Execution
	�� Call Stack
	��
�
	�� Trace Recording
	��
�
	Breakpoints Dialog
	�� Watch Variables
	View and Modify On-Chip Peripherals
	Using Peripheral Dialog Boxes
	Using VTREG Symbols
	Using User and Signal Functions
	Using the Performance Analyzer
	Chapter€8. Using on-chip Peripherals
	Header Files and Startup Code
	DPP Registers
	Interrupts
	Interrupt Control Registers

	Peripheral Event Controller
	PEC Control Register
	Source and Destination Pointers
	Channel Selection
	PEC Example Program

	Parallel Port I/O
	General Purpose Timers
	Serial Interface
	Watchdog Timer
	Pulse Width Modulation
	A/D Converter

	Power Reduction Modes
	Idle Mode
	Power Down Mode

	Chapter€10. CPU and C€Startup Code
	Selecting the Memory Model
	Configuring the Startup Code
	Hardware Configuration
	C Compiler Run˚Time Configuration

	Chapter€11. Using Monitor-166
	Bootstrap Mode
	UART Mode
	Simulated Serial Mode
	Bootstrap Loader

	Hardware and Software Requirements
	Serial Transmission Line
	µVision2 Monitor Driver
	Restrictions of µVision2 when using Monitor-166

	Target Options when Using Monitor-166
	Monitor-166 Configuration
	Trouble Shooting
	Chapter€12. Command Reference
	µVision 2 Command Line Invocation
	A166 Macro Assembler Directives
	C166 Optimizing C Cross Compiler Directives
	L166 Linker/Locator Directives
	LIB166 Library Manager Commands
	OH166 Object˚HEX Converter Commands

	Index

