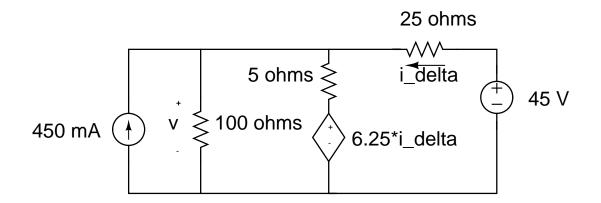
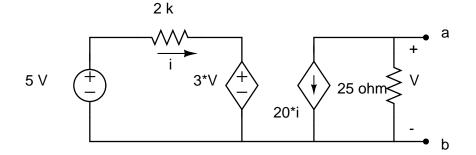

EECS 40 Midterm II Review Problems Bharathwaj Muthuswamy

1 Circuit Analysis


1. Warmup Problem I

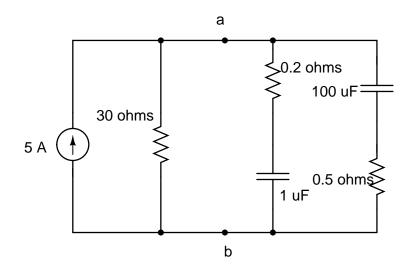
Find v_0 in the circuit below using NODAL analysis.



2. Warmup Problem II

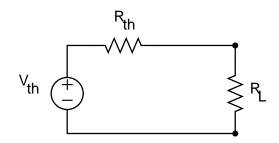
Using NODAL analysis, find v.

3. **Thevenin equivalent with dependent and independent sources** Find the thevenin equivalent of the following circuit with respect to terminals ab.



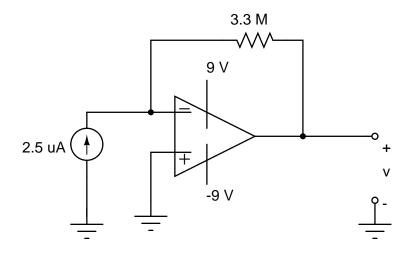
4. Short circuits

After the circuit below has been in operation for a long time, good ol' Bart comes along and by "abusing his power", connects a screwdriver between terminals a and b. Assume the resistance of the screwdriver is negligable.

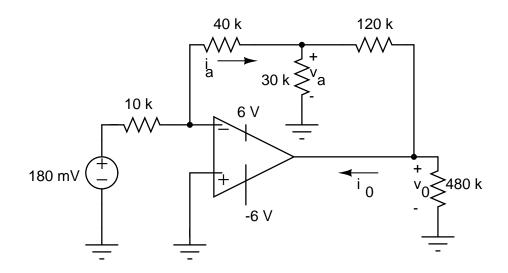

a) Find the current in the screwdriver at $t = 0^+$ and $t \to \infty$.

b) Derive the expression for the current in the screwdriver for $t \ge 0^+$.

5. Maximum Power Transfer Theorem In the circuit below, find the value of R_L that maximizes the power delivered to R_L^{-1} .


¹Hint: Express the power delivered to R_L as a function of V_{th} , R_{th} and R_L . Then use calculus.

2 Operational Amplifiers

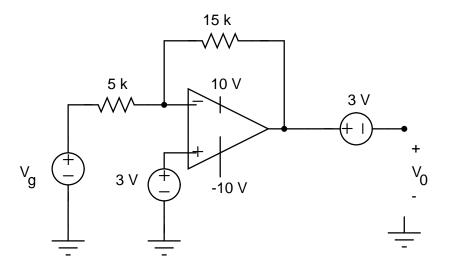

6. Warmup Problem I

In the op-amp circuit below, find v. Assume the op-amp output WILL rail, if $v \geq 9$ V or $v \leq$ -9 V.


7. Warmup Problem II

In the op-amp circuit below, find v_a , v_o , i_a and i_o . Assume the op-amp output WILL rail, if $v_o \ge 6$ V or $v_o \le -6$ V.

8. Ohm's law


In the op-amp circuit below, find i. Assume the op-amp outputs WILL rail, if the output voltages of the two op-amps become greater than 6 V or less than -6 V.

9. Help the Batman²

The Riddler claims the circuit below will produce an output voltage that will vary between \pm 9 V as V_g varies between 0 and 6 V. Assume the op-amp outputs WILL rail, if V₀ goes above 10 V or below -10 V.

²Bart's favourite superhero!

Obviously, the Dark Knight detective is called into action. Unfortunately, the Batman took EECS 40 a long time ago and his circuits knowledge is a little rusty. He doesn't have enough time to review his skills, so you get to help the Batman!

a. Draw a graph of the output voltage V_0 as a function of the input voltage V_g for $0 \le V_g \le 6$ V.

b. Should the Batman agree with the Riddler's claim? (the fate of Gotham city rests in your hands!)