Practice Exam Problems

Medium Difficulty

Problem 1:

For the circuit below, find the current I, and determine which batteries are being charged up.

Problem 2: (Problem 1.11 from Oldham \& Schwartz)

The power output (as light) of a certain automobile headlight is 10 W , and the lamp is known to be 28% efficient as a converter of electric power to light. The voltage applied to the lamp is 12 V .
a) Construct a diagram showing the lamp, and the direction that positive current will flow.
b) What is the value of the current?

Problem 3:

Assume that A, B, C have been at logic zero for a long time, and simultaneously change to logic 1 at time $t=0$. Draw a timing diagram for the circuit below, assuming that each circuit has a time delay T.

Problem 4:

Find a one-gate equivalent for each of the following circuits:

Problem 5:

Consider our usual model for gate delay, with $\mathrm{R}=10 \mathrm{k} \Omega$ and $\mathrm{C}=50 \mathrm{pF}$.

Suppose Vin has been at 3 V for a long time, and goes to zero at $\mathrm{t}=0$.
a) Plot Vout(t) over a range of five time constants.
b) Write the equation for $\operatorname{Vout}(t)$.
c) Write the equation for $I(t)$, the current flowing in the circuit, associated with the capacitor voltage Vout.
d) Determine the energy dissipated in the resistor over the time interval $t=0$ to $t \rightarrow \infty$.
e) Since the voltage source was at zero volts, it did not deliver any energy to the circuit during the time period $\mathrm{t}=0$ to $\mathrm{t} \rightarrow \infty$. Where did the resistor get its energy to dissipate?
f) Does the energy produced = energy dissipated over this time period?

EECS 40 Midterm 1 Review Problems ${ }^{1}$

Designed by Bart

1. In the circuit below, find v 1 and I .

2. What is wrong (if any) with the IDEAL circuit below?

3. In the circuit below, find $\mathrm{V}_{G S}, \mathrm{~V}_{D S}$ and $\mathrm{V}_{D G}$.

[^0]4. In the circuit below, find V and I .

5. In the circuit below, switch S has been in position A for a long time. At $t=$ 0 , switch S instantaneously moves to position B. Find vat $t=0^{+}$and plot v 1 as a function of time (for all t).

[^0]: ${ }^{1}$ These problems are difficult

