<u>EE 40</u>

Homework #8

Due Friday, December 6, 2002 at 2 PM

Problem 1:

Consider the CMOS inverter circuit. Let V_M be the input voltage which makes V_{OUT} equal to V_{IN} . For this input voltage, both the PMOS and NMOS transistors will be in saturation mode.

Let λ equal zero for both transistors, so $I_D = I_{DSAT}$ for each transistor. With

$$I_{DSAT(N)} = \frac{W_{N}}{2L_{N}} \mu_{N} C_{ox} (V_{GS(N)} - V_{T(N)})^{2} \qquad I_{DSAT(P)} = -\frac{W_{P}}{2L_{P}} \mu_{P} C_{ox} (V_{GS(P)} - V_{T(P)})^{2}$$

$$V_{T(N)} = -V_{T(P)} = 1 V C_{OX} = 5 \text{ fF}/\mu\text{m}^2 L_N = L_P = 1.5 \ \mu\text{m}^2$$

$$\mu_N = 500 \ \text{cm}^2/(\text{Vs}) \mu_P = 250 \ \text{cm}^2/(\text{Vs}) W_P = 10 \ \mu\text{m}^2$$

find the value of W_N that will lead to $V_M = 1.5$ V.

Problem 2:

Suppose we have connected the output of CMOS inverter 1 to the input of CMOS inverter 2, where both of the inverters have the following characteristics:

$V_{T(N)} = -V_{T(P)} = 1 V$	$L_N = L_P = 2 \ \mu m$	$W_N = 6 \ \mu m$
$\mu_{\rm N} = 500 \ {\rm cm}^2/({\rm Vs})$	$\mu_{p} = 250 \text{ cm}^{2}/(\text{Vs})$	$W_P = 12 \ \mu m$
t _{ox} = 10 nm (oxide thickness)	$k_{OX} = 4$ (oxide dielectric constant)	$V_{DD} = 5 V$
$L_{I} = 30 \ \mu m$ (interconnect length)	$W_I = 1 \ \mu m$ (interconnect width)	$C_{DB(P)} = C_{DB(N)} = 50 \text{ fF}$

Find the propagation delay from the input of inverter 1 to the output of inverter 1 for a perfect high to low input transition.

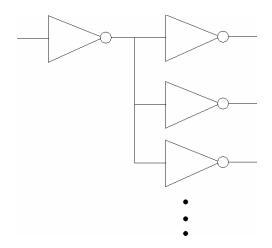
Use W_N , L_N , W_P , L_P as the channel dimensions (for calculating I_{DSAT}) as well as the gate dimensions (for calculating C_{GB}). Let λ equal zero for all transistors.

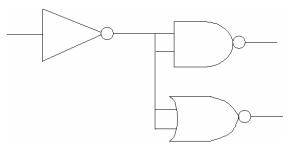
Problem 3:

Consider a CMOS inverter with

$$\label{eq:constraint} \begin{split} \mathsf{R}_{\mathsf{N}} &= 3 \; \mathsf{k} \Omega \qquad \qquad \mathsf{C}_{\mathsf{DB}(\mathsf{P})} = \mathsf{C}_{\mathsf{DB}(\mathsf{N})} = \; \mathsf{C}_{\mathsf{GB}(\mathsf{P})} = 50 \; \mathsf{fF} \\ \\ \mathsf{R}_{\mathsf{P}} &= 2 \; \mathsf{k} \Omega \qquad \qquad \mathsf{C}_{\mathsf{GB}(\mathsf{N})} = 75 \; \mathsf{fF} \end{split}$$

The output of this inverter is connected to the input of several other identical inverters, as shown at right.


Each inverter connected at the output adds an interconnect capacitance C_1 of 100 fF.


Determine the number of inverters that can be connected (the "fan-out") if the propagation delay from the input to output of the first inverter may not exceed 20 ns.

Problem 4:

Consider a CMOS inverter with output connected to both inputs of a NAND gate and both inputs of a NOR gate as shown.

Using the resistance and capacitance values given in Problem 3 for the transistors, determine the propagation delay from the inverter input to inverter output for both low to high and high to low (perfect) input transitions.

