EE 40

Homework \#5

Solutions and grading
Nearly all problems taken from Electric Circuits by Nilsson and Riedel
Notation: The extra connections coming out of the amplifier indicate the "rails".

Problem 1: 20 Points

The amplifier above is an inverting amplifier. We showed in class that the output

$V_{O}=-R_{F} / R_{1} V_{i}$, so in this case $V_{0}=-120 \mathrm{k} / 7.5 \mathrm{k} \mathrm{Vs}=-16 \mathrm{Vs}$.

We also know that V_{0} cannot exceed the rail voltages. So V_{O} is limited to -5 to 5 V .
The amplifier will hit the rails when
$5 \mathrm{~V}=\mathrm{VO}=-16 \mathrm{Vs}$, or
Vs $=-5 / 16=-0.3125 \mathrm{~V}$. Similarly, we hit the bottom rail when $\mathrm{Vs}=0.3125 \mathrm{~V}$.

From this, we can draw the graph: the input is inverted, with slope 16 in the linear regions, and we have just defined where the rails occur.

20 points for a correct graph
Subtract 5 points for wrong gain or not inverting
Subtract 10 points for ignoring rails
Minimum credit is 0 points

This is one of many possible answers for Problem 2.

Notice that the resistor in series with Vb carries a voltage of $(\mathrm{Va}-\mathrm{Vb}) / 2$.
(Why? Since there is no current going into the op-amp, the resistors are effectively in series and we perform voltage division).

The node voltage at the noninverting terminal, also known as Vp , is thus $\mathrm{Vp}=(\mathrm{Va}-\mathrm{Vb}) / 2+\mathrm{Vb}$. Since the amplifier here is a "voltage-follower", the output voltage is the same as Vp . Thus, $\mathrm{V}_{\mathrm{O}}=(\mathrm{Va}-\mathrm{Vb}) / 2$.

20 Points for ANY circuit that works (even if it does not have an op-amp, although contrary to specs!) 10 Points for "best effort" circuit; one that may not be the right form but most analysis is correct Subtract 2 points for each math error Use judgement for other partial credit; minimum score 0 points

Problem 3: 20 Points

a) Since this is again a voltagefollower amplifier, the output voltage is the same as Vp. Since no current can flow into the amplifier input, the $64 \mathrm{k} \Omega$ resistor carries no current and therefore no voltage. Vp , and thus V_{O}, are 320 mV .

$$
\begin{aligned}
P & =I^{2} R=V^{2} / R \\
& =\left(320 \times 10^{-3}\right)^{2} /\left(16 \times 10^{3}\right)=6.4 \mu \mathrm{~W}
\end{aligned}
$$

b) Here, by voltage division, the $16 \mathrm{k} \Omega$ resistor will take $320 \mathrm{mV} \frac{16 \mathrm{k} \Omega}{16 \mathrm{k} \Omega+64 \mathrm{k} \Omega}=64 \mathrm{mV}$.

$$
P=I^{2} R=V^{2} / R=\left(64 \times 10^{-3}\right)^{2} /\left(16 \times 10^{3}\right)=256 n W
$$

c) $6.4 \times 10^{-6} / 256 \times 10^{-9}=25$

10 points for part a, 5 points for part b, 5 points for part c
Subtract 2 points for each math error
No other partial credit

Notice that the 6.4 kW resistor carries a voltage of $\mathrm{Vn}-\mathrm{Vp}$, which we assume is zero. Thus, no current flows through this resistor, and the resistor has no effect on the rest of the circuit.

This leaves us with a basic inverting amplifier.
$\mathrm{V}_{\mathrm{O}}=-\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{1} \mathrm{~V}_{\mathrm{i}}=-(\alpha 50 \mathrm{k} \Omega / 1.6 \mathrm{k} \Omega)(250 \mathrm{mV})=-\alpha 7.8125 \mathrm{~V}$
The bottom rail, -5 V , will be hit when $\alpha=-5 /-7.8125=0.64$; α can be between 0 and 0.64 .
Since this is an inverting amplifier with positive input voltage, and α must be positive (otherwise the feedback resistance will be negative), the output must always be negative. Therefore, we cannot hit the top rail of 5 V .

20 Points for correct range for α
Subtract 5 points for each significant error in analysis
Subtract 2 points for each math error, or for saying α can be negative (no negative resistance)

Problem 5: 20 Points

a) On the left, we see the non-ideal op-amp circuit, with the op-amp replaced by its circuit equivalent. We analyze it using nodal analysis to find V_{O} in terms of Vin. Writing equations at Vn and V_{o},
$\frac{V n-V i n}{2 k \Omega}+\frac{V n}{500 k \Omega}+\frac{V n-V o}{180 k \Omega}=0 \quad \frac{V o-V n}{180 k \Omega}+\frac{V o-A(V p-V n)}{5 k \Omega}=0 \Rightarrow \frac{V o-V n}{180 k \Omega}+\frac{V o+250,000 V n}{5 k \Omega}=0$
Manipulating the second equation, we find
$V n=\frac{37}{[1-(36)(250,000)]} V_{o}$

Manipulating the first equation, we find
$\operatorname{Vin}=\left(\frac{1}{250}+\frac{1}{90}+1\right) V n-\frac{1}{90} V o=\left[\left(\frac{1}{250}+\frac{1}{90}+1\right)\left(\frac{37}{[1-(36)(250,000)]}\right)-\frac{1}{90}\right] V o$
Therefore the gain
$\frac{\text { Vo }}{V i n}=\left[\left(\frac{1}{250}+\frac{1}{90}+1\right)\left(\frac{37}{[1-(36)(250,000)]}\right)-\frac{1}{90}\right]^{-1}=-89.966$
b) Using the ideal op-amp model at right, we are dealing with the usual inverting amplifier.

$$
V_{\mathrm{O}}=-\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{1} \mathrm{~V}_{\text {in }}=-(180 \mathrm{k} \Omega / 2 \mathrm{k} \Omega) \mathrm{V}_{\text {in }}=-90 \mathrm{~V}_{\text {in }}
$$

Thus, $\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\text {in }}=90$ for the ideal op-amp circuit.
20 Points for correct gains (something close to -89 in part a is ok)
Subtract 5 points for each significant error (putting resistors in the wrong place, Vp-Vn upside down...) Subtract 2 points for each math error

