EE 40

Homework \#8 Solutions and Grading

For each problem, deduct 5 points for each "reasonable" error. If the solution method is completely wrong, award 0 points (the minimum score for each problem).

Problem 1 Answer: 25 Total Points
When $\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=1.5 \mathrm{~V}$.
$V_{G S(N)}=V_{I N}=1.5 \mathrm{~V}$

$$
V_{D S(N)}=V_{O U T}=1.5 \mathrm{~V}
$$

$V_{G S(P)}=V_{I N}-V_{D D}=1.5 \mathrm{~V}-5 \mathrm{~V}=-3.5 \mathrm{~V}$
$V_{D S(P)}=V_{O U T}-V_{D D}=1.5 \mathrm{~V}-5 \mathrm{~V}=-3.5 \mathrm{~V}$
$I_{D(N)}+I_{D(P)}=0 \quad=>\quad I_{D(N)}=-I_{D(P)}$
Both transistors are in saturation, so $I_{D}=I_{D S A T}$ for each transistor. Substitute into $I_{D(N)}=-I_{D(P)}$:

$$
\begin{aligned}
& I_{\operatorname{DSAT}(\mathrm{N})}={ }^{-\mathrm{I}_{\mathrm{DSAT}}(\mathrm{P})}=\frac{\mathrm{W}_{\mathrm{N}}}{2 \mathrm{~L}_{\mathrm{N}}} \mu_{N} C_{o x}\left(\mathrm{~V}_{G S}(\mathrm{~N})-\mathrm{V}_{\mathrm{T}(\mathrm{~N})}\right)^{2}=\frac{\mathrm{W}_{\mathrm{P}}}{2 \mathrm{~L}_{\mathrm{P}}} \mu_{\mathrm{P}} C_{\mathrm{ox}}\left(\mathrm{~V}_{\mathrm{GS}(\mathrm{P})}-\mathrm{V}_{\mathrm{T}(\mathrm{P})}\right)^{2} \\
& \frac{\mathrm{~W}_{\mathrm{N}}}{2 \times 1.5 \times 10^{-6} \mathrm{~m}} 500 \times 10^{-4} \mathrm{~m}^{2} /(\mathrm{Vs}) \frac{5 \times 10^{-15} \mathrm{~F}}{10^{-12} \mathrm{~m}^{2}}(1.5 \mathrm{~V}-1 \mathrm{~V})^{2} \\
& =\frac{10 \times 10^{-6}}{2 \times 1.5 \times 10^{-6} \mathrm{~m}} 250 \times 10^{-4} \mathrm{~m}^{2} /(\mathrm{Vs}) \frac{5 \times 10^{-15} \mathrm{~F}}{10^{-12} \mathrm{~m}^{2}}(-3.5 \mathrm{~V}--1 \mathrm{~V})^{2} \quad \mathrm{~W}_{\mathrm{N}}=125 \mu \mathrm{~m}
\end{aligned}
$$

Problem 2 Answer: 25 Total Points
Propagation delay from high to low involves $\mathrm{R}_{\mathrm{P} 1}, \mathrm{C}_{\mathrm{DB}(\mathrm{N} 1)}, \mathrm{C}_{\mathrm{DB}(\mathrm{P} 1)}, \mathrm{C}_{\mathrm{GB}(\mathrm{N} 2)}, \mathrm{C}_{\mathrm{GB}(\mathrm{P} 2)}$, and C_{\mid}.
To find $R_{P 1}$, take the average of $V_{D S(P 1)} / l_{D(P 1)}$ when $V_{D S(P 1)}$ is at full voltage and when it has transitioned halfway. That is:

$$
\begin{aligned}
& R_{P 1}=\frac{1}{2}\left(\frac{-\mathrm{V}_{\mathrm{DD}}}{\mathrm{I}_{\mathrm{DSAT}(\mathrm{P} 1)}}+\frac{-\mathrm{V}_{\mathrm{DD}} / 2}{\mathrm{I}_{\mathrm{DSAT}(\mathrm{P} 1)}}\right)=. \frac{-0.75 \mathrm{~V}_{\mathrm{DD}}}{-\frac{\mathrm{W}_{\mathrm{P} 1}}{2 \mathrm{~L}_{\mathrm{P} 1}} \mu_{\mathrm{P} 1} \frac{\mathrm{k}_{\mathrm{ox}} \varepsilon_{0}}{\mathrm{t}_{\mathrm{ox}}}\left(\mathrm{~V}_{\mathrm{GS}(\mathrm{P} 1)}-\mathrm{V}_{\mathrm{T}(\mathrm{P} 1)}\right)^{2}} \\
& =\frac{-0.75 \times 5 \mathrm{~V}}{-\frac{12 \times 10^{-6} \mathrm{~m}}{2 \times 2 \times 10^{-6} \mathrm{~m}} 250 \times 10^{-4} \mathrm{~m}^{2} /(\mathrm{Vs}) \frac{4 \times 8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}}{10 \times 10^{-9} \mathrm{~m}}(-5 \mathrm{~V}-(-1 \mathrm{~V}))^{2}}=883 \Omega
\end{aligned}
$$

Note that we do the calculation for $\mathrm{V}_{\mathrm{Gs}(\mathrm{P} 1)}$ after the transition has taken place, so:
$\mathrm{V}_{\mathrm{GS}(\mathrm{P} 1)}=\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{DD}}=0-5 \mathrm{~V}=-5 \mathrm{~V}$

Compute $\mathrm{C}_{\mathrm{GB}(\mathrm{P} 2)}$ and $\mathrm{C}_{\mathrm{GB}(\mathrm{N} 2)}$ using parallel place capacitance:
$C_{G B(P 2)}=\frac{k_{o x} \varepsilon_{0}}{t_{0 x}} W_{P L P}=\frac{4 \times 8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}}{10 \times 10^{-9} \mathrm{~m}}\left(12 \times 10^{-6} \mathrm{~m}\right)\left(2 \times 10^{-6} \mathrm{~m}\right)=85 \mathrm{fF}$
$C_{G B(N 2)}=\frac{\mathrm{k}_{\mathrm{ox}} \varepsilon_{0}}{\mathrm{t}_{\mathrm{ox}}} \mathrm{W}_{\mathrm{N}} \mathrm{L}_{\mathrm{N}}=\frac{4 \times 8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}}{10 \times 10^{-9} \mathrm{~m}}\left(6 \times 10^{-6} \mathrm{~m}\right)\left(2 \times 10^{-6} \mathrm{~m}\right)=42.5 \mathrm{fF}$
Compute $\mathrm{C}_{\boldsymbol{l}}$ using parallel plate capacitance:
$C_{I}=\frac{k_{o x} \varepsilon_{0}}{t_{o x}} W_{I} L_{I}=\frac{4 \times 8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}}{10 \times 10^{-9} \mathrm{~m}}\left(30 \times 10^{-6} \mathrm{~m}\right)\left(1 \times 10^{-6} \mathrm{~m}\right)=106 \mathrm{fF}$
With $\mathrm{C}_{\mathrm{DB}(\mathrm{P} 1)}=\mathrm{C}_{\mathrm{DB}(\mathrm{N} 1)}=50 \mathrm{fF}$, we can now compute the time constant
(all the capacitances are in parallel):
$\tau=\mathrm{R}_{\mathrm{P} 1}\left(\mathrm{C}_{\mathrm{DB}(\mathrm{P} 1)}+\mathrm{C}_{\mathrm{DB}(\mathrm{N} 1)}+\mathrm{C}_{\mathrm{GB}(\mathrm{P} 2)}+\mathrm{C}_{\mathrm{GB}(\mathrm{N} 2)}+\mathrm{C}_{\mathrm{l}}\right)=883 \Omega(50+50+85+42.5+106) \mathrm{fF}=295 \mathrm{ps}$
The propagation delay is 0.69τ :

$$
t_{p}=207 \mathrm{ps}
$$

Problem 3 Answer: 25 Total Points
Low to high transition:
$\mathrm{t}_{\mathrm{p}}=0.69 \tau=0.69 \mathrm{R}_{\mathrm{N} 1}\left[\mathrm{C}_{\mathrm{DB}(\mathrm{P} 1)}+\mathrm{C}_{\mathrm{DB}(\mathrm{N} 1)}+\mathrm{n}\left(\mathrm{C}_{\mathrm{GB}(\mathrm{P} 2)}+\mathrm{C}_{\mathrm{GB}(\mathrm{N} 2)}+\mathrm{C}_{\mathrm{l}}\right)\right] \leq 20 \mathrm{~ns}$
$0.69 \times 3000 \Omega[50+50+n(50+75+100)] f F \leq 20 n s$
$\mathrm{n} \leq 42$
High to low transition:
$\mathrm{t}_{\mathrm{p}}=0.69 \tau=0.69 \mathrm{R}_{\mathrm{P} 1}\left[\mathrm{C}_{\mathrm{DB}(\mathrm{P} 1)}+\mathrm{C}_{\mathrm{DB}(\mathrm{N} 1)}+\mathrm{n}\left(\mathrm{C}_{\mathrm{GB}(\mathrm{P} 2)}+\mathrm{C}_{\mathrm{GB}(\mathrm{N} 2)}+\mathrm{C}_{\mathrm{l}}\right)\right] \leq 20 \mathrm{~ns}$
$0.69 \times 2000 \Omega[50+50+n(50+75+100)] f \mathrm{fF} \leq 20 \mathrm{~ns}$
$\mathrm{n} \leq 63$
Conclusion: Fan-out is $\mathbf{4 2}$ gates.
Deduct 5 points unless both transition directions are considered (high to low and low to high) or an argument is given as to why low to high has longer propagation delay.

Problem 4 Answer: 25 Total Points

Draw the circuits for the attached NAND and NOR gates. Note that the output of the inverter splits into four lines, and each line is attached to a PMOS and an NMOS transistor-just like an inverter input. Therefore, we can model these two gates, in terms of capacitance contributed to propagation delay, as four inverters (each gate is 2 inverters).

I did not specify whether to allow one interconnect capacitance per gate or per input, so:

One Possible Answer:

Using one interconnect capacitance per gate:
Low to high transition:

$$
\begin{aligned}
\mathrm{t}_{\mathrm{p}}=0.69 \tau & =0.69 \mathrm{R}_{\mathrm{N} 1}\left[\mathrm{C}_{\mathrm{DB}(\mathrm{P} 1)}+\mathrm{C}_{\mathrm{DB}(\mathrm{~N} 1)}+4\left(\mathrm{C}_{\mathrm{GB}(\mathrm{P} 2)}+\mathrm{C}_{\mathrm{GB}(\mathrm{~N} 2)}\right)+2 \mathrm{C}_{\mathrm{l}}\right] \\
& =0.69 \times 3000 \Omega[50+50+4(50+75)+2(100)] \mathrm{fF}=\mathbf{1 . 6 6} \mathbf{n s}
\end{aligned}
$$

High to low transition:

$$
\begin{aligned}
t_{p}=0.69 \tau & =0.69 \mathrm{R}_{\mathrm{P} 1}\left[\mathrm{C}_{\mathrm{DB}(\mathrm{P} 1)}+\mathrm{C}_{\mathrm{DB}(\mathrm{~N} 1)}+4\left(\mathrm{C}_{\mathrm{GB}(\mathrm{P} 2)}+\mathrm{C}_{\mathrm{GB}(\mathrm{~N} 2)}\right)+2 \mathrm{C}_{1}\right] \\
& =0.69 \times 2000 \Omega[50+50+4(50+75)+2(100)] \mathrm{fF}=1.10 \mathbf{n s}
\end{aligned}
$$

The Other Possible Answer:

Using one interconnect capacitance per input:
Low to high transition:

$$
\begin{aligned}
\mathrm{t}_{\mathrm{p}}=0.69 \tau & =0.69 \mathrm{R}_{\mathrm{N} 1}\left[\mathrm{C}_{\mathrm{DB}(\mathrm{P} 1)}+\mathrm{C}_{\mathrm{DB}(\mathrm{~N} 1)}+4\left(\mathrm{C}_{\mathrm{GB}(\mathrm{P} 2)}+\mathrm{C}_{\mathrm{GB}(\mathrm{~N} 2)}\right)+2 \mathrm{C}_{\mathrm{l}}\right] \\
& =0.69 \times 3000 \Omega[50+50+4(50+75)+4(100)] \mathrm{fF}=\mathbf{2 . 0 7} \mathbf{n s}
\end{aligned}
$$

High to low transition:

$$
\begin{aligned}
\mathrm{t}_{\mathrm{p}}=0.69 \tau & =0.69 \mathrm{R}_{\mathrm{P} 1}\left[\mathrm{C}_{\mathrm{DB}(\mathrm{P} 1)}+\mathrm{C}_{\mathrm{DB}(\mathrm{~N} 1)}+4\left(\mathrm{C}_{\mathrm{GB}(\mathrm{P} 2)}+\mathrm{C}_{\mathrm{GB}(\mathrm{~N} 2)}\right)+2 \mathrm{C}_{\mathrm{l}}\right] \\
& =0.69 \times 2000 \Omega[50+50+4(50+75)+4(100)] \mathrm{fF}=1.38 \mathbf{n s}
\end{aligned}
$$

