EE 40

Homework #8 Solutions and Grading

For each problem, deduct 5 points for each "reasonable" error. If the solution method is completely wrong, award 0 points (the minimum score for each problem).

Problem 1 Answer: 25 Total Points

When $V_{IN} = 1.5 \text{ V}$, $V_{OUT} = 1.5 \text{ V}$.

$$V_{GS(N)} = V_{IN} = 1.5 \text{ V}$$
 $V_{DS(N)} = V_{OUT} = 1.5 \text{ V}$ $V_{DS(N)} = V_{OUT} = 1.5 \text{ V}$ $V_{DS(P)} = V_{OUT} - V_{DD} = 1.5 \text{ V} - 5 \text{ V} = -3.5 \text{ V}$ $I_{D(N)} + I_{D(P)} = 0$ \Rightarrow $I_{D(N)} = -I_{D(P)}$

Both transistors are in saturation, so $I_D = I_{DSAT}$ for each transistor. Substitute into $I_{D(N)} = -I_{D(P)}$:

$$\begin{split} I_{DSAT(N)} &= -I_{DSAT(P)} = \frac{W_N}{2L_N} \mu_N C_{ox} \big(V_{GS(N)} - V_{T(N)} \big)^2 = \frac{W_P}{2L_P} \mu_P C_{ox} \big(V_{GS(P)} - V_{T(P)} \big)^2 \\ & \frac{W_N}{2x1.5x10^{-6} \text{m}} 500x10^{-4} \text{m}^2 \text{/(Vs)} \frac{5x10^{-15} \text{F}}{10^{-12} \text{m}^2} \big(1.5 \text{ V} - 1 \text{ V} \big)^2 \\ & = \frac{10x10^{-6}}{2x1.5x10^{-6} \text{m}} 250x10^{-4} \text{m}^2 \text{/(Vs)} \frac{5x10^{-15} \text{F}}{10^{-12} \text{m}^2} \big(-3.5 \text{ V} - -1 \text{ V} \big)^2 \\ & W_N = 125 \text{ } \mu\text{m} \end{split}$$

Problem 2 Answer: 25 Total Points

Propagation delay from high to low involves R_{P1} , $C_{DB(N1)}$, $C_{DB(P1)}$, $C_{GB(N2)}$, $C_{GB(P2)}$, and C_{I} .

To find R_{P1} , take the average of $V_{DS(P1)}/I_{D(P1)}$ when $V_{DS(P1)}$ is at full voltage and when it has transitioned halfway. That is:

$$R_{P1} = \frac{1}{2} \left(\frac{-V_{DD}}{I_{DSAT(P1)}} + \frac{-V_{DD}/2}{I_{DSAT(P1)}} \right) = \frac{-0.75V_{DD}}{-\frac{W_{P1}}{2L_{P1}} \mu_{P1} \frac{k_{ox} \epsilon_{0}}{t_{ox}} (V_{GS(P1)} - V_{T(P1)})^{2}}$$

$$= \frac{-0.75x5 V}{-\frac{12x10^{-6} m}{2x2x10^{-6} m} 250x10^{-4} m^{2}/(V_{S}) \frac{4x8.85x10^{-12} F/m}{10x10^{-9} m} (-5 V - (-1 V))^{2}} = 883 \Omega$$

Note that we do the calculation for $V_{GS(P1)}$ after the transition has taken place, so:

$$V_{GS(P1)} = V_{IN} - V_{DD} = 0 - 5 V = -5 V$$

Compute $C_{GB(P2)}$ and $C_{GB(N2)}$ using parallel place capacitance:

$$C_{GB(P2)} = \frac{k_{OX}\epsilon_0}{t_{OX}}W_PL_P = \frac{4x8.85x10^{-12}F/m}{10x10^{-9}m}(12x10^{-6}m)(2x10^{-6}m) = 85 \text{ fF}$$

$$C_{GB(N2)} = \frac{k_{ox}\epsilon_0}{t_{ox}} W_N L_N = \frac{4x8.85x10^{-12} F/m}{10x10^{-9} m} (6x10^{-6} m)(2x10^{-6} m) = 42.5 \text{ fF}$$

Compute C₁ using parallel plate capacitance:

$$C_{I} = \frac{k_{ox}\epsilon_{0}}{t_{ox}}W_{I}L_{I} = \frac{4x8.85x10^{-12}F/m}{10x10^{-9}m}(30x10^{-6}m)(1x10^{-6}m) = 106 \text{ fF}$$

With $C_{DB(P1)} = C_{DB(N1)} = 50$ fF, we can now compute the time constant (all the capacitances are in parallel):

$$\tau = R_{P1}(C_{DB(P1)} + C_{DB(N1)} + C_{GB(P2)} + C_{GB(N2)} + C_{I}) = 883 \Omega (50 + 50 + 85 + 42.5 + 106) \text{ fF} = 295 \text{ ps}$$

The propagation delay is 0.69τ :

 $t_{\rm p} = 207 \, \rm ps$

Problem 3 Answer: 25 Total Points

Low to high transition:

$$t_p = 0.69 \ \tau = 0.69 \ R_{N1} [C_{DB(P1)} + C_{DB(N1)} + n(C_{GB(P2)} + C_{GB(N2)} + C_I)] \le 20 \ ns$$

$$0.69 \times 3000 \Omega [50 + 50 + n(50 + 75 + 100)] \text{ fF} \le 20 \text{ ns}$$

n ≤ 42

High to low transition:

$$t_p = 0.69 \tau = 0.69 R_{P1}[C_{DB(P1)} + C_{DB(N1)} + n(C_{GB(P2)} + C_{GB(N2)} + C_I)] \le 20 \text{ ns}$$

$$0.69 \times 2000 \Omega [50 + 50 + n(50 + 75 + 100)] \text{ fF} \le 20 \text{ ns}$$

n ≤ 63

Conclusion: Fan-out is **42 gates**.

Deduct 5 points unless both transition directions are considered (high to low and low to high) or an argument is given as to why low to high has longer propagation delay.

Problem 4 Answer: 25 Total Points

Draw the circuits for the attached NAND and NOR gates. Note that the output of the inverter splits into four lines, and each line is attached to a PMOS and an NMOS transistor—just like an inverter input. Therefore, we can model these two gates, in terms of capacitance contributed to propagation delay, as four inverters (each gate is 2 inverters).

I did not specify whether to allow one interconnect capacitance per gate or per input, so:

One Possible Answer:

Using one interconnect capacitance per gate:

Low to high transition:

$$t_p = 0.69 \ \tau = 0.69 \ R_{N1} [C_{DB(P1)} + C_{DB(N1)} + 4(C_{GB(P2)} + C_{GB(N2)}) + 2 \ C_I]$$

= 0.69 x 3000 Ω [50 + 50 +4(50 + 75) + 2(100)] fF = **1.66 ns**

High to low transition:

$$t_p = 0.69 \ \tau = 0.69 \ R_{P1}[C_{DB(P1)} + C_{DB(N1)} + 4(C_{GB(P2)} + C_{GB(N2)}) + 2 \ C_I]$$

= 0.69 x 2000 Ω [50 + 50 +4(50 + 75) + 2(100)] fF = **1.10 ns**

The Other Possible Answer:

Using one interconnect capacitance per input:

Low to high transition:

$$t_p = 0.69 \ \tau = 0.69 \ R_{N1}[C_{DB(P1)} + C_{DB(N1)} + 4(C_{GB(P2)} + C_{GB(N2)}) + 2 \ C_I]$$
$$= 0.69 \ x \ 3000 \ \Omega \ [50 + 50 + 4(50 + 75) + 4(100)] \ fF = \textbf{2.07 ns}$$

High to low transition:

$$\begin{split} t_p &= 0.69 \; \tau = 0.69 \; R_{P1} [C_{DB(P1)} + C_{DB(N1)} + 4 (C_{GB(P2)} + C_{GB(N2)}) + 2 \; C_I] \\ &= 0.69 \; x \; 2000 \; \Omega \; [50 + 50 \; + 4 (50 + 75) \; + \; 4 (100)] \; \text{fF} = \textbf{1.38 ns} \end{split}$$