

Analo	og <i>vs.</i> Digital Signa	als
· ·	ot all) observables are an analog vs. digital watches	•
information el	convenient way to repres lectronically is to use dig <u>telephony</u>	
is essentia	-digital & digital-to-analog al (and nothing new) of a piano keyboard	conversion
EECS40, Fall 2003	Lecture 1, Slide 5	Prof. King

	Example 2	(continued)	
Possible d	igital representatio	on for the sine wav	e signal:
	Analog representation:	Digital representation:	
	Amplitude in μ V	Binary number	
	1	000001	
	2	000010	
	3	000011	
	4	000100	
	5	000101	
	8	001000	
	16	010000	
	32	100000	
	50	110010	
	63	111111	
EECS40, Fall 2003	Lecture 1,	Slide 9	Prof. King

"Truth Table" for Hot Tub Controller

	Α	В	С	Т	Н	
Γ	0	0	0	0	0	
	0	0	1	0	0	
	0	1	0	0	0	
	0	1	1	0	0	
	1	0	0	0	0	
	1	0	1	0	0	
	1	1	0	0	0	
	1	1	1	0	1	
	0	0	0	1	1	
	0	0	1	1	1	
	0	1	0	1	1	
	0	1	1	1	1	
	1	0	0	1	1	
	1	0	1	1	1	
	1	1	0	1	1	1
	1	1	1	1	1	

Dasie logical	functions:	
AND: "	dot"	Example: X = A·B
OR: "	+ sign"	Example: Y = A+B
NOT: "	bar over symbol"	Example: $Z = \overline{A}$
using these	l expression car e basic logical fi <u>gical functions</u> :	be constructed unctions
using these	e basic logical f	
using these Additional log Inverted AN	e basic logical for gical functions: D = NAND: AB	(only 0 when A and $B=1$)
using these <u>Additional loc</u> Inverted AN Inverted OR	e basic logical fr gical functions: D = NAND: AB = NOR: A+1	(only 0 when A and $B=1$) (only 1 when $A=B=0$)
using these Additional log Inverted AN	e basic logical fr gical functions: D = NAND: AB = NOR: A+1	(only 0 when A and $B=1$)

