Lecture #3

OUTLINE

- Power calculations
- · Circuit elements
 - Voltage and current sources
 - Electrical resistance (Ohm's law)
- Kirchhoff's laws

Reading

Chapter 2

Prof. King

EECS40, Fall 2003 Lecture 3, Slide 1

Review: Power

If an element is absorbing power (*i.e.* if p > 0), positive charge is flowing from higher potential to lower potential.

p = vi if the "passive sign convention" is used:

How can a circuit element absorb power?

By converting electrical energy into heat (resistors in toasters), light (light bulbs), or acoustic energy (speakers); by storing energy (charging a battery).

EECS40, Fall 2003 Lecture 3, Slide 2 Prof. King

Power Calculation Example

Find the power absorbed by each element:

Conservation of energy→ total power delivered equalstotal power absorbed

ELEMENT	VOLTAGE (V)	CURRENT (A)
a	-18	-51
b	-18	45
С	2	-6
d	20	-20
e	16	-14
f	36	31 .

<u>vi (W)</u> <u>p (W)</u> 918 - 810 - 12 - 400 - 224 1116

EECS40, Fall 2003 Lecture 3, Slide 3 Prof. King

Circuit Elements

- There are 5 ideal basic circuit elements:
 - voltage source
 - current source
 - resistor
 - inductor
 - capacitor

- active elements, capable of generating electric energy
- **passive elements**, incapable of generating electric energy
- Many practical systems can be modeled with just sources and resistors
- The basic analytical techniques for solving circuits with inductors and capacitors are the same as those for resistive circuits

EECS40, Fall 2003 Lecture 3, Slide 4 Prof. King

Electrical Sources

 An electrical source is a device that is capable of converting non-electric energy to electric energy and vice versa.

Examples:

- battery: chemical ← electric
- dynamo (generator/motor): mechanical ← electric
- → Electrical sources can either deliver or absorb power

EECS40, Fall 2003 Lecture 3, Slide 5 Prof. King

Ideal Voltage Source

- Circuit element that maintains a prescribed voltage across its terminals, regardless of the current flowing in those terminals.
 - Voltage is known, but current is determined by the circuit to which the source is connected.
- The voltage can be either independent or dependent on a voltage or current elsewhere in the circuit, and can be constant or time-varying.

Circuit symbols:

Lecture 3, Slide 6

independent voltage-controlled

EECS40, Fall 2003

Prof. King

current-controlled

Ideal Current Source

- Circuit element that maintains a prescribed current through its terminals, regardless of the voltage across those terminals.
 - Current is known, but voltage is determined by the circuit to which the source is connected.
- The current can be either independent or dependent on a voltage or current elsewhere in the circuit, and can be constant or time-varying.

Circuit symbols:

EECS40, Fall 2003

Lecture 3. Slide 7

Prof. Kina

Electrical Resistance

 Resistance is the capacity of a material to impede the flow of electric charge. The circuit element used to model this behavior is the resistor.

$$\underline{\underline{\text{Circuit symbol}}}: \underline{\underline{\qquad}}_{R}$$

<u>Units</u>: Volts per Ampere ≡ ohms (Ω)

• The current flowing in the resistor is proportional to the voltage across the resistor:

$$v = i R$$
 (Ohm's Law)

where v = voltage (V), i = current (A), and $R = \text{resistance }(\Omega)$

EECS40, Fall 2003 Lecture 3, Slide 8 Prof. King

Electrical Conductance

Conductance is the reciprocal of resistance.

Symbol: G

Units: siemens (S) or mhos (℧)

Example:

Consider an 8 Ω resistor. What is its conductance?

EECS40, Fall 2003

Lecture 3, Slide 9

Prof. King

Short Circuit and Open Circuit

Wire ("short circuit"):

- $R = 0 \rightarrow$ no voltage difference exists (all points on the wire are at the same potential)
- · Current can flow, as determined by the circuit

Air ("open circuit"):

- $R = \infty$ \rightarrow no current flows
- Voltage difference can exist, as determined by the circuit

EECS40, Fall 2003

Lecture 3, Slide 10

Prof. King

Circuit Nodes and Loops

- A node is a point where two or more circuit elements are connected.
- A *loop* is formed by tracing a closed path in a circuit through selected basic circuit elements without passing through any intermediate node more than once

Example:

EECS40, Fall 2003

Lecture 3, Slide 11

Prof. King

Kirchhoff's Laws

- · Kirchhoff's Current Law (KCL):
 - The algebraic sum of all the currents at any node in a circuit equals zero.
- Kirchhoff's Voltage Law (KVL):
 - The algebraic sum of all the voltages around any loop in a circuit equals zero.

EECS40, Fall 2003 Lecture 3, Slide 12 Prof. King

Example: Power Absorbed by a Resistor

$$p = vi = (iR)i = i^{2}R$$
$$p = vi = v (v/R) = v^{2}/R$$

Note that p > 0 always, for a resistor.

Example:

- a) Calculate the voltage v_a and current i_a .
- b) Determine the power dissipated in the 80Ω resistor.

EECS40, Fall 2003 Lecture 3, Slide 13 Prof. King

More Examples

· Are these interconnections permissible?

