## Lecture \#5

## OUTLINE

- Resistors in series
- equivalent resistance
- voltage-divider circuit
- measuring current
- Resistors in parallel
- equivalent resistance
- current-divider circuit
- measuring voltage
- Circuit w/ dependent source example


## Reading

Chapter 3.1-3.5

## Clarification of Terms

- If $p>0$, then the circuit element is absorbing electric power from the rest of the circuit.
(Power is delivered to the element.)
- For a resistor, energy is dissipated in the form of heat
- For a source, energy is stored
- If $p<0$, then the circuit element is supplying electric power to the rest of the circuit.
(The element is said to be developing power or generating power; this power is delivered to the rest of the circuit.)



## Resistors in Series

Consider a circuit with multiple resistors connected in series. Find their "equivalent resistance".


- KCL tells us that the same current (I) flows through every resistor
- KVL tells us

Equivalent resistance of resistors in series is the sum

## When can the Voltage Divider Formula be Used?


$V_{2}=\frac{R_{2}}{R_{1}+R_{2}+R_{3}+R_{4}} \cdot V_{S S}$

$V_{2} \neq \frac{R_{2}}{R_{1}+R_{2}+R_{3}+R_{4}} \cdot V_{S S}$

Correct, if nothing else is connected to nodes
because $\boldsymbol{R}_{5}$ removes condition of resistors in series

## Measuring Current

To measure the current flowing through an element in a real circuit, insert an ammeter (digital multimeter in current mode) in series with the element.
Ammeters are characterized by their "ammeter input resistance" ( $\boldsymbol{R}_{\text {in }}$ ). Ideally, this should be very low (typical value $1 \Omega$ ).


## Effect of Ammeter



Example: $\mathrm{V}_{1}=1 \mathrm{~V}, \mathrm{R}_{1}=\mathrm{R}_{2}=500 \Omega, \mathrm{R}_{\text {in }}=1 \Omega$
$\frac{I=\frac{1 \mathrm{~V}}{500 \Omega+500 \Omega}=1 \mathrm{~mA}, \quad I_{\text {meas }}=\frac{1 \mathrm{~V}}{500 \Omega+500 \Omega+1 \Omega} \cong 0.999 \mathrm{~mA}}{\frac{\text { Lecture 5, Slide 7 }}{\text { EECS40, Fall 2003 }}=\frac{\text { Prof. King }}{}}$

## Resistors in Parallel

Consider a circuit with two resistors connected in parallel.
Find their "equivalent resistance".


- KVL tells us that the same voltage is dropped across each resistor $\boldsymbol{V}_{x}=\boldsymbol{I}_{1} \boldsymbol{R}_{\boldsymbol{I}}=\boldsymbol{I}_{2} \boldsymbol{R}_{2}$
- KCL tells us


## General Formula for Parallel Resistors

What single resistance $R_{\text {eq }}$ is equivalent to three resistors in parallel?


Equivalent conductance of resistors in parallel is the sum


## Generalized Current Divider Formula

Consider a current divider circuit with $>2$ resistors in parallel:


$$
\mathrm{V}=\frac{\mathrm{I}}{\left(\frac{1}{\mathrm{R}_{1}}\right)+\left(\frac{1}{\mathrm{R}_{2}}\right)+\left(\frac{1}{\mathrm{R}_{3}}\right)}
$$

$$
\mathrm{I}_{3}=\frac{\mathrm{V}}{\mathrm{R}_{3}}=\mathrm{I}\left[\frac{1 / \mathrm{R}_{3}}{1 / \mathrm{R}_{1}+1 / \mathrm{R}_{2}+1 / \mathrm{R}_{3}}\right]
$$

## Measuring Voltage

To measure the voltage drop across an element in a real circuit, insert a voltmeter (digital multimeter in voltage mode) in parallel with the element.
Voltmeters are characterized by their "voltmeter input resistance" ( $\boldsymbol{R}_{\text {in }}$ ). Ideally, this should be very high (typical value $10 \mathrm{M} \Omega$ )


## Effect of Voltmeter

undisturbed circuit circuit with voltmeter inserted


$$
V_{2}=V_{S S}\left[\frac{R_{2}}{R_{1}+R_{2}}\right] \quad V_{2}^{\prime}=V_{S S}\left[\frac{R_{2} \| R_{\text {in }}}{R_{2} \| R_{\text {in }}+R_{1}}\right]
$$

Example: $\mathrm{V}_{\mathrm{SS}}=10 \mathrm{~V}, \mathrm{R}_{2}=100 \mathrm{~K}, \mathrm{R}_{1}=900 \mathrm{~K} \Rightarrow \mathrm{~V}_{2}=1 \mathrm{~V}$
If $R_{\text {in }}=10 \mathrm{M}, \mathrm{V}_{2}^{\prime}=0.991 \mathrm{~V}$,

## Circuit w/ Dependent Source Example

Find $i_{2}, i_{1}$ and $i_{\text {。 }}$


## Using Equivalent Resistances

Simplify a circuit before applying KCL and/or KVL:
Example: Find $I$


## Identifying Series and Parallel Combinations

Some circuits must be analyzed (not amenable to simple inspection)


Special cases:

$$
\mathrm{R}_{3}=0 \quad \mathrm{OR} \quad \mathrm{R}_{3}=\infty
$$



