Lecture #11

ANNOUNCEMENTS

• Homework Assignment #4 will be posted today
• Midterm #1: Monday Sept. 29th (11:10AM-12:00PM)
 – closed book; one page (8.5”x11”) of notes & calculator allowed
 – covers Chapters 1-5 in textbook (HW#1-4)
• Midterm Review Session: Friday 9/26 7-9PM, 277 Cory
• Extra office hours:
 – Steve: 9/26 from 12-2PM
 – Farhana: 9/27 from 1-3PM, 9/28 from 9-11AM
• Practice problems and old exam are posted online

OUTLINE

– Review: op amp circuit analysis
– The capacitor (Chapter 6.2 in text)

Review: Op Amp Circuit Analysis

Procedure:
1. Assume that the op amp is ideal
 a) Apply KCL at (+) and (–) terminals, noting \(i_p = 0 \) & \(i_n = 0 \)
 b) Note that \(v_n = v_p \)
 c) Write an expression for \(v_o \)
2. Calculate \(v_o \)
3. Check: Is the op-amp operating in its linear region?
 If \(V^- \leq v_o \leq V^+ \), then the assumption is valid.
 If calculated \(v_o > V^+ \), then \(v_o \) is saturated at \(V^+ \)
 If calculated \(v_o < V^- \), then \(v_o \) is saturated at \(V^- \)
Op Amp Circuit Analysis Example

Consider the following circuit:
Assume the op amp is ideal.

a) Calculate v_o if $v_s = 100$ mV
b) What is the **voltage gain** v_o/v_s of this amplifier?
c) Specify the range of values of v_s for which the op amp operates in a linear mode

Op Amp Circuit Analysis Example cont’d.

What if the op amp is not ideal?

- $R_i = 10$ kΩ
- $R_o = 1$ kΩ
- $A = 10^3$
Re-draw the circuit & analyze:

KCL @ node a:

KCL @ node b:

\[-v_o \approx 9.87 < 10 \]
\[v_s \]

Effect of Load Resistance \(R_L \)

KCL @ node b:

\[-\frac{v_o}{v_s} \approx 9.75 < 9.87 \]

- For an ideal op amp (\(R_o = 0 \Omega \)), \(v_o \) does not depend on the “load”. However, for a realistic op amp, it does.
The Capacitor

Two conductors (a,b) separated by an insulator:
- difference in potential = V_{ab}
- \Rightarrow equal & opposite charge Q on conductors

$$Q = CV_{ab}$$
(stored charge in terms of voltage)

where C is the capacitance of the structure,
- positive (+) charge is on the conductor at higher potential

Parallel-plate capacitor:
- area of the plates = A
- separation between plates = d
- dielectric permittivity of insulator = ε

\Rightarrow capacitance

$$C = \frac{A\varepsilon}{d}$$

Symbol:

| C | or | C |

Units: Farads (Coulombs/Volt)

(typical range of values: 1 pF to 1 µF)

Current-Voltage relationship:

$$i_c = \frac{dQ}{dt} = C\frac{dv_c}{dt} + v_c\frac{dC}{dt}$$

Note: v_c must be a continuous function of time
Voltage in Terms of Current

\[Q(t) = \int_{0}^{t} i_c(t) \, dt + Q(0) \]
\[v_c(t) = \frac{1}{C} \int_{0}^{t} i_c(t) \, dt + \frac{Q(0)}{C} = \frac{1}{C} \int_{0}^{t} i_c(t) \, dt + v_c(0) \]

Stored Energy

You might think the energy stored on a capacitor is \(QV \), which has the dimension of Joules. But during charging, the average voltage across the capacitor was only half the final value of \(V \).

Thus, energy is

\[\frac{1}{2} QV = \frac{1}{2} CV^2 \]

Example: A 1 pF capacitance charged to 5 Volts has \(\frac{1}{2}(5V)^2 \ (1pF) = 12.5 \ pJ \)
A more rigorous derivation

\[i_c \]

\[v_c \]

\[t = t_{\text{Final}} \]
\[v = V_{\text{Final}} \]
\[t = t_{\text{Initial}} \]
\[v = V_{\text{Initial}} \]

\[w = \int v_c \cdot i_c \, dt = \int v_c \, dQ = \int v_c \, dt = V_{\text{Final}} - V_{\text{Initial}} \]

\[v = \frac{1}{2} CV_{\text{Final}}^2 - \frac{1}{2} CV_{\text{Initial}}^2 \]

Integrating Amplifier

\[v_o(t) = -\frac{1}{RC} \int_0^t v_{IN}(t) \, dt + v_C(0) \]