Lecture #12

ANNOUNCEMENTS
• Graduate school workshop tomorrow (9/23)
 – 3-4 PM, Wozniak Lounge (Soda Hall)

OUTLINE
– Capacitors in series and in parallel
– Practical capacitors
– The inductor
– Inductors in series and in parallel

Reading
Chapter 6.1-6.3

Correction to Lecture 9, Slide 3
• If there are no independent sources in a circuit, \(V_{Th} = 0 \).
 – If there are dependent sources in the circuit, we need to apply an external voltage in order to determine \(R_{Th} \).

Example: Circuit used in \(R_{Th} \) Calculation Example #2, Lecture 8:

\[
\begin{align*}
\text{Applying KCL to node } x: & \quad V_x - 40i_A + V_x - V_{\text{TEST}} = 0 \\
\text{Definition of } i_A: & \quad i_A = -\frac{V_x}{80} \\
\text{\Rightarrow } & \quad V_x = \frac{8}{25}V_{\text{TEST}}
\end{align*}
\]

\[
R_{Th} = \frac{V_{\text{TEST}}}{I_{\text{TEST}}} = \frac{75}{4} \Omega
\]
Example: Current, Power & Energy for a Capacitor

\[v(t) = \frac{1}{C} \int_{0}^{t} i(\tau) d\tau + v(0) \]

\[i = C \frac{dv}{dt} \]

\[v_c \text{ must be a continuous function of time; however, } i_c \text{ can be discontinuous.} \]

Note: In “steady state” (dc operation), time derivatives are zero \(\rightarrow C \text{ is an open circuit} \)

\[p = vi \]

\[w = \int_{0}^{t} pd\tau = \frac{1}{2} Cv^2 \]
Capacitors in Parallel

\[i = i_1 + i_2 = C_1 \frac{dv}{dt} + C_2 \frac{dv}{dt} \]
\[i = (C_1 + C_2) \frac{dv}{dt} = C_{eq} \frac{dv}{dt} \]

Equivalent capacitance of capacitors in parallel is the sum

\[C_{eq} = C_1 + C_2 \]

Capacitors in Series

\[i = C_1 \frac{dv_1}{dt} = C_2 \frac{dv_2}{dt} \]
\[\Rightarrow \frac{dv_1}{dt} = \frac{i}{C_1} \quad \text{and} \quad \frac{dv_2}{dt} = \frac{i}{C_2} \]
\[i = C_{eq} \frac{dv_1}{dt} + C_{eq} \frac{dv_2}{dt} \]
\[i = C_{eq} \frac{dv_1}{dt} + C_{eq} \frac{dv_2}{dt} \]
\[i = C_{eq} \frac{i}{C_1} + C_{eq} \frac{i}{C_2} \Rightarrow \]
\[\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} \]
Capacitive Voltage Divider

Q: Suppose the voltage applied across a series combination of capacitors is changed by Δv. How will this affect the voltage across each individual capacitor?

$$\Delta v = \Delta v_1 + \Delta v_2$$

Note that no net charge can be introduced to this node. Therefore, $-\Delta Q_1 + \Delta Q_2 = 0$

$$\Rightarrow C_1 \Delta v_1 = C_2 \Delta v_2$$

$$\Delta v_2 = \frac{C_1}{C_1 + C_2} \Delta v$$

Note: Capacitors in series have the same charge.

Application Example: MEMS Accelerometer

- Capacitive position sensor used to measure acceleration (by measuring force on a proof mass)

$$F = kx = ma$$

EECS40, Fall 2003 Lecture 12, Slide 7 Prof. King
Sensing the Differential Capacitance

- Fixed electrodes are biased at $+V_s$ and $-V_s$
- Movable electrode (proof mass) is biased at V_o

Circuit model

$V_a = -V_s + \frac{C_1}{C_1 + C_2} (2V_s) = \frac{C_1 - C_2}{C_1 + C_2} V_s$

$V_a = \frac{\varepsilon A}{g_1} - \frac{\varepsilon A}{g_2}$

$V_o = \frac{g_1}{g_2} - \frac{g_1}{g_2} = \frac{g_2 - g_1}{g_2 + g_1} = \frac{g_2 - g_1}{\text{const}}$

Practical Capacitors

- A capacitor can be constructed by interleaving the plates with two dielectric layers and rolling them up, to achieve a compact size.

- To achieve a small volume, a very thin dielectric with a high dielectric constant is desirable. However, dielectric materials break down and become conductors when the electric field (units: V/cm) is too high.
 - Real capacitors have maximum voltage ratings
 - An engineering trade-off exists between compact size and high voltage rating
The Inductor

- An inductor is constructed by coiling a wire around some type of form.

- Current flowing through the coil creates a magnetic field or flux that links the coil: \(Li_L \)

- When the current changes, the magnetic flux changes \(\rightarrow \) a voltage across the coil is induced:

\[
v_L(t) = L \frac{di_L}{dt}
\]

Note: In “steady state” (dc operation), time derivatives are zero \(\rightarrow L \) is a short circuit

Symbol:

\[
L
\]

Units: Henrys (Volts \(\cdot \) second / Ampere)

(typical range of values: \(\mu \text{H} \) to 10 H)

Current in terms of voltage:

\[
di_L = \frac{1}{L} v_L(t) dt
\]

\[
i_L(t) = \frac{1}{L} \int_{t_0}^{t} v_L(\tau) d\tau + i(t_0)
\]

Note: \(i_L \) must be a continuous function of time
Stored Energy

Consider an inductor having an initial current $i(t_0) = i_0$

\[p(t) = v(t)i(t) = Li(t) \frac{di}{dt} \]

\[w(t) = \int_{t_0}^{t} p(\tau) d\tau = \int_{i_0}^{i} Li \frac{dt}{d\tau} d\tau = \int_{i_0}^{i} L i dt \]

\[w(t) = \frac{1}{2} Li^2 - \frac{1}{2} Li_0^2 \]

Inductors in Series

The equivalent inductance of inductors in series is the sum

\[v = L_1 \frac{di}{dt} + L_2 \frac{di}{dt} = (L_1 + L_2) \frac{di}{dt} = L_{eq} \frac{di}{dt} \]

\[L_{eq} = L_1 + L_2 \]
Inductors in Parallel

\[i(t) = i_1(t) + i_2(t) = \frac{1}{L_1} \int_{t_0}^{t} v(t') + i_1(t_0) dt' + \frac{1}{L_2} \int_{t_0}^{t} v(t') + i_2(t_0) dt' \]

\[i = \left[\frac{1}{L_1} + \frac{1}{L_2} \right] \int_{t_0}^{t} v(t') + \left[i_1(t_0) + i_2(t_0) \right] dt' \]

\[\Rightarrow \frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} \]

with \(i(t_0) = i_1(t_0) + i_2(t_0) \)

Summary

Capacitor

\[i = C \frac{dv}{dt} \]

\[w = \frac{1}{2} Cv^2 \]

\(v \) cannot change instantaneously

\(i \) can change instantaneously

Do not short-circuit a charged capacitor (\(\rightarrow \) infinite current!)

\[n \text{ cap.'s in series: } \frac{1}{C_{eq}} = \sum_{i=1}^{n} \frac{1}{C_i} \]

\[n \text{ cap.'s in parallel: } C_{eq} = \sum_{i=1}^{n} C_i \]

Inductor

\[v = L \frac{di}{dt} \]

\[w = \frac{1}{2} Li^2 \]

\(i \) cannot change instantaneously

\(v \) can change instantaneously

Do not open-circuit an inductor with current (\(\rightarrow \) infinite voltage!)

\[n \text{ ind.'s in series: } L_{eq} = \sum_{i=1}^{n} L_i \]

\[n \text{ ind.'s in parallel: } \frac{1}{L_{eq}} = \sum_{i=1}^{n} \frac{1}{L_i} \]
