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Lecture #12

ANNOUNCEMENTS
• Graduate school workshop tomorrow (9/23)

– 3-4 PM, Wozniak Lounge (Soda Hall)

OUTLINE
– Capacitors in series and in parallel
– Practical capacitors
– The inductor
– Inductors in series and in parallel

Reading
Chapter 6.1-6.3
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Correction to Lecture 9, Slide 3
• If there are no independent sources in a circuit, VTh = 0.

– If there are dependent sources in the circuit, we need to apply an 
external voltage in order to determine RTh.
Example: Circuit used in RTh Calculation Example #2, Lecture 8:
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Example: Current, Power & Energy for a Capacitor
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Note: In “steady state”
(dc operation), time
derivatives are zero
C is an open circuit
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Capacitors in Parallel
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Equivalent capacitance of capacitors in parallel is the sum
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dvCi eq=
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Capacitors in Series
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Capacitive Voltage Divider
Q: Suppose the voltage applied across a series combination 

of capacitors is changed by ∆v.  How will this affect the 
voltage across each individual capacitor?
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Note that no net charge can
can be introduced to this node.
Therefore, −∆Q1+∆Q2=0
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Note: Capacitors in series have the same charge.
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Application Example:  MEMS Accelerometer

• Capacitive position sensor 
used to measure acceleration 
(by measuring force on a 
proof mass)

FIXED OUTER PLATES

g1
g2
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Sensing the Differential Capacitance

– Fixed electrodes are biased at +Vs and –Vs
– Movable electrode (proof mass) is biased at Vo
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Circuit model
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• A capacitor can be constructed by interleaving the plates 
with two dielectric layers and rolling them up, to achieve 
a compact size.

• To achieve a small volume, a very thin dielectric with a 
high dielectric constant is desirable.  However, dielectric 
materials break down and become conductors when the 
electric field (units: V/cm) is too high.
– Real capacitors have maximum voltage ratings
– An engineering trade-off exists between compact size and 

high voltage rating

Practical Capacitors



6

Lecture 12, Slide 11EECS40, Fall 2003 Prof. King

The Inductor
• An inductor is constructed by coiling a wire around some 

type of form.

• Current flowing through the coil creates a magnetic field 
or flux that links the coil: LiL

• When the current changes, the magnetic flux changes 
a voltage across the coil is induced:

iL
vL(t)

dt
diLtv L
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Note: In “steady state” (dc operation), time
derivatives are zero L is a short circuit
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Symbol:

Units:  Henrys (Volts • second / Ampere)

Current in terms of voltage:

Note: iL must be a continuous function of time
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(typical range of values: µH to 10 H)
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Stored Energy
Consider an inductor having an initial current i(t0) = i0
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Inductors in Series
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Equivalent inductance of inductors in series is the sum
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Inductors in Parallel
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Capacitor

v cannot change instantaneously
i can change instantaneously
Do not short-circuit a charged
capacitor (-> infinite current!)

n cap.’s in series:

n cap.’s in parallel:

Inductor

i cannot change instantaneously
v can change instantaneously

Do not open-circuit an inductor with 
current (-> infinite voltage!)

n ind.’s in series:

n ind.’s in parallel:

Summary
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