Lecture #17 ANNOUNCEMENTS • Reference text (Rabaey *et al.*) posted online • Instructions for Linux users posted online **OUTLINE** • Semiconductor materials • Properties of silicon • Doping <u>Reading</u> Chapter 3.1 (Rabaey)

Semio	conductor N	late	eria	als	;			
		12	13	14	15	16	17	18
<u>Elemental</u> :			5 B 13 41	6 C 14 Si	7 N 15 P	8 0 16 5	9 F 17 Cl	2 He 10 Ne 18 Δr
<u>Compound</u> :		30 Zn 48 Cd 80 Ha	31 Ga 49 In 81 Tl	32 Ge 50 Sn 82 Pb	- 33 As 51 Sb 83 Bi	34 Se 52 Te 84 Po	35 Br 53 I 85 At	36 Kr 54 Xe 86 Rn
		112 J Uub		114 Uuq		116 Uuh		118 Uuc
<u>Alloy</u> :		66 Dy 98 Cf	67 Ho 99 Es	68 Er 100 Fm	69 Tm 101 Md	70 Yb 102 No		
FF0040 F-110000	Laster 47 Oliver							(in a

Charge-Carrier Concentrations

	Summary	
Crystalline Si	:	
 4 valence electronic 	ctrons per atom	
 diamond lattic 	e: each atom has 4 nearest neig	jhbors
 – 5 x 10²² atoms 	s/cm ³	
 In a pure Si ci are formed in 	ystal, conduction electro pairs.	ons and holes
 Holes can be which exist inst 	considered as positively charged side a semiconductor.	d mobile particles
 Both holes an 	d electrons can conduct current.	
Dopants in Si	:	
 Reside on latt 	ice sites (substituting for Si)	
 Group V elem called donors 	ents contribute conduction elect	rons, and are
 Group III elem 	ents contribute holes, and are c	alled acceptors
FECS40 Fall 2003	Lecture 17 Slide 16	Prof King