Lecture #26

ANNOUNCEMENTS

• Extra Office Hours this week:
 – Prof. King: Thursday 10/30 12-2 PM
 – Steve: Friday 10/31 12-2 PM
 – Farhana:
• Review session: Friday 10/31 2-4 PM, 120 Latimer

OUTLINE

• Logic functions
• NMOS logic gates
• The CMOS inverter

Reading

• Schwarz & Oldham: Chapters 11.2, 15.3
• Rabaey et al.: Chapter 5.2

Digital Signals

• For a digital signal, the voltage must be within one of two ranges in order to be defined:

 ![Digital Signal Diagram]

 \[V_{DD}, V_{OH}, V_{IH}, V_{IL}, V_{OL}, 0\text{ Volts} \]

 • Positive Logic:
 – “low” voltage \(\equiv\) logic state 0
 – “high” voltage \(\equiv\) logic state 1
Logic Functions, Symbols, & Notation

<table>
<thead>
<tr>
<th>NAME</th>
<th>SYMBOL</th>
<th>NOTATION</th>
<th>TRUTH TABLE</th>
</tr>
</thead>
</table>
| “NOT” | ![Diagram](NOT.png) | $F = \overline{A}$ | \[
| | | | A | F | 0 | 1 |
| | | | 1 | 0 |
| “OR” | ![Diagram](OR.png) | $F = A + B$ | \[
| | | | A | B | F |
| | | | 0 | 0 | 0 |
| | | | 0 | 1 | 1 |
| | | | 1 | 0 | 1 |
| | | | 1 | 1 | 1 |
| “AND” | ![Diagram](AND.png) | $F = A \cdot B$ | \[
| | | | A | B | F |
| | | | 0 | 0 | 0 |
| | | | 0 | 1 | 0 |
| | | | 1 | 0 | 0 |
| | | | 1 | 1 | 1 |
| “NOR” | ![Diagram](NOR.png) | $F = A + B$ | \[
| | | | A | B | F |
| | | | 0 | 0 | 1 |
| | | | 0 | 1 | 0 |
| | | | 1 | 0 | 0 |
| | | | 1 | 1 | 0 |
| “NAND” | ![Diagram](NAND.png) | $F = \overline{A} \cdot \overline{B}$ | \[
| | | | A | B | F |
| | | | 0 | 0 | 1 |
| | | | 0 | 1 | 1 |
| | | | 1 | 0 | 1 |
| | | | 1 | 1 | 0 |
| “XOR” | ![Diagram](XOR.png) | (exclusive OR) $F = A + B$ | \[
| | | | A | B | F |
| | | | 0 | 0 | 0 |
| | | | 0 | 1 | 1 |
| | | | 1 | 0 | 1 |
| | | | 1 | 1 | 0 |
NMOS Inverter ("NOT" Gate)

Circuit:

\[v_{DS} = v_{OUT} - i_D + v_{IN} - V_{DD} \]

Voltage-Transfer Characteristic:

\[v_{GS} = v_{in} \leq V_T \]

Noise Margins

Definition of Input Levels

\[V_{OL}, V_{IL}, V_{OH}, V_{IH} \]

Logic swing:

\[V_{sw} = V_{OH} - V_{OL} \]

Definition of Noise Margins

\[V_{OH}, V_{IL}, NM_H, NM_L \]

Noise margin high:

\[NM_H = V_{OH} - V_{IH} \]

Noise margin low:

\[NM_L = V_{IL} - V_{OL} \]
NMOS NAND Gate

- Output is low only if both inputs are high

\[\begin{array}{ccc}
V_{DD} & R_D & F \\
A & B & F \\
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}\]

NMOS NOR Gate

- Output is low if either input is high

\[\begin{array}{ccc}
V_{DD} & R_D & F \\
A & B & F \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0 \\
\end{array}\]
Disadvantages of NMOS Logic Gates

- Large values of R_D are required in order to
 - achieve a low value of V_{OL}
 - keep power consumption low

→ Large resistors are needed, but these take up a lot of space.

- One solution is to replace the resistor with an NMOSFET that is always on.

The CMOS Inverter: Intuitive Perspective

CIRCUIT

<table>
<thead>
<tr>
<th>V_{IN}</th>
<th>G</th>
<th>S</th>
<th>D</th>
<th>V_{OUT}</th>
</tr>
</thead>
</table>

SWITCH MODELS

- $V_{IN} = V_{DD}$
- $V_{OL} = 0$ V
- $V_{OH} = V_{DD}$

- $V_{IN} = 0$ V

Low static power consumption, since one MOSFET is always off in steady state.
CMOS Inverter Voltage Transfer Characteristic

- **A**: N: off, P: lin
- **B**: N: lin, P: on
- **C**: N: lin, P: sat
- **D**: N: sat, P: lin
- **E**: N: sat, P: sat

CMOS Inverter Load-Line Analysis

- $V_{IN} = V_{DD} + V_{GSp}$
- $V_{OUT} = V_{DD} + V_{DSP}$

- $I_{Dn} = -I_{Dp}$

- Increasing V_{IN}:
 - $V_{IN} = 0$ V
 - $V_{IN} = V_{DD}$
 - $V_{IN} = V_{DSn}$

- Increasing V_{OUT}:
 - $V_{DSP} = 0$

EECS40, Fall 2003 Lecture 26, Slide 11 Prof. King

EECS40, Fall 2003 Lecture 26, Slide 12 Prof. King
CMOS Inverter Load-Line Analysis: Region A

\[V_{IN} \leq V_{Tn} \]

\[I_{Dn} = -I_{Dp} \]

CMOS Inverter Load-Line Analysis: Region B

\[V_{DD}/2 > V_{IN} > V_{Tn} \]

\[I_{Dn} = -I_{Dp} \]
CMOS Inverter Load-Line Analysis: Region D

\[V_{DD} - |V_Tp| > V_{IN} > V_{DD}/2 \]

\[I_{Dn} = -I_{Dp} \]

CMOS Inverter Load-Line Analysis: Region E

\[V_{IN} > V_{DD} - |V_Tp| \]

\[I_{Dn} = -I_{Dp} \]