Lecture #27

ANNOUNCEMENTS

Extra Office Hours this week:

Prof. King: Thu. 10/30 1:15-2 PM

Steve: Fri. 10/31 12-2 PM

 Farhana: Sat. 11/1 4-5 PM; Sun. 11/2 3-5 PM (regular office hours cancelled next week)

OUTLINE

- The CMOS inverter (cont'd)
- CMOS logic gates
- The body effect

Reading (Rabaey et al.)

Chapter 5.5.1 (p.174); 6.2.1 (pp.199-202); Chapter 3.3.2 (pp.58-60)

EECS40, Fall 2003

Lecture 27, Slide 1

Prof. King

Features of CMOS Circuits

- The output is always connected to V_{DD} or GND in steady state
 - → Full logic swing; large noise margins
 - → Logic levels are not dependent upon the relative sizes of the devices ("ratioless")
- There is no direct path between V_{DD} and GND in steady state
 - → no static power dissipation

EECS40, Fall 2003 Lecture 27, Slide 2 Prof. King

N-Channel MOSFET Operation

An NMOSFET is a closed switch when the input is high

NMOSFETs pass a "strong" 0 but a "weak" 1

EECS40, Fall 2003

Lecture 27, Slide 5

Prof. King

P-Channel MOSFET Operation

A PMOSFET is a closed switch when the input is low

 $=(\overline{AB})$

PMOSFETs pass a "strong" 1 but a "weak" 0

EECS40, Fall 2003

Lecture 27, Slide 6

Prof. King

Pull-Down and Pull-Up Devices

- In CMOS logic gates, NMOSFETs are used to connect the output to GND, whereas PMOSFETs are used to connect the output to V_{DD}.
 - An NMOSFET functions as a **pull-down device** when it is turned on (gate voltage = V_{DD})
 - A PMOSFET functions as a *pull-up device* when it is turned on (gate voltage = *GND*)

The "Body Effect"

 V_T is a function of V_{SB} :

$$V_T = V_{T0} + \gamma \left(\sqrt{2\phi_F + V_{SB}} - \sqrt{2\phi_F} \right)$$
where $\phi_F = \frac{kT}{q} \ln \left(\frac{N_B}{n_i} \right)$

 γ is the **body effect coefficient**

When the body-source pn junction is reverse-biased, $|V_T|$ increases. Usually, we want to minimize γ so that I_{Dsat} will be the same for all transistors in a circuit.

EECS40, Fall 2003 Lecture 27, Slide 11 Prof. King

