
1

Lecture 29, Slide 1EECS40, Fall 2003 Prof. King

Lecture #29

ANNOUNCEMENTS
• Lab project:

– Bring a check ($50, payable to “UC Regents”) to lab this
week in order to receive your Tutebot kit. (You will receive
this back, when you return the kit.)

– Extra credit will be awarded if you endow your Tutebot with
additional “intelligence”!

• Prof. King’s office hour tomorrow (11/6) is cancelled

OUTLINE
– Synthesis of logic circuits
– Minimization of logic circuits

Reading: Schwarz & Oldham pp. 403-411

Lecture 29, Slide 2EECS40, Fall 2003 Prof. King

Combinational Logic Circuits
• Logic gates combine several logic-variable inputs to

produce a logic-variable output.

• Combinational logic circuits are “memoryless”
because their output value at a given instant depends
only on the input values at that instant.

• Next time, we will study sequential logic circuits that
possess memory because their present output value
depends on previous as well as present input values.

2

Lecture 29, Slide 3EECS40, Fall 2003 Prof. King

Boolean Algebra Relations

A•A = A
A•A = 0
A•1 = A
A•0 = 0
A•B = B•A
A•(B•C) = (A•B)•C

A+A = A
A+A = 1
A+1 = 1
A+0 = A
A+B = B+A
A+(B+C) = (A+B)+C

A•(B+C) = A•B + A•C
A•B = A + B
A•B = A + B

De Morgan’s laws

Lecture 29, Slide 4EECS40, Fall 2003 Prof. King

Boolean Expression Example

F = A•B•C + A•B•C + (C+D)•(D+E)

F = C•(A+D+E) + D•E

3

Lecture 29, Slide 5EECS40, Fall 2003 Prof. King

Logical Sufficiency of NAND Gates
• If the inputs to a NAND gate are tied together, an

inverter results

• From De Morgan’s laws, the OR operation can be
realized by inverting the input variables and combining
the results in a NAND gate.

• Since the basic logic functions (AND, OR, and NOT) can
be realized by using only NAND gates, NAND gates are
sufficient to realize any combinational logic function.

Lecture 29, Slide 6EECS40, Fall 2003 Prof. King

Logical Sufficiency of NOR Gates
• Show how to realize the AND, OR, and NOT functions

using only NOR gates

• Since the basic logic functions (AND, OR, and NOT) can
be realized by using only NOR gates, NOR gates are
sufficient to realize any combinational logic function.

4

Lecture 29, Slide 7EECS40, Fall 2003 Prof. King

Suppose we are given a truth table for a logic function.

Is there a method to implement the logic function using
basic logic gates?

Answer: There are lots of ways, but one simple way is the
“sum of products” implementation method:

1) Write the sum of products expression based on the
truth table for the logic function

2) Implement this expression using standard logic gates.

• We may not get the most efficient implementation this
way, but we can simplify the circuit afterwards…

Synthesis of Logic Circuits

Lecture 29, Slide 8EECS40, Fall 2003 Prof. King

S1 using sum-of-products:

1) Find where S1 is 1

2) Write down each product of
inputs which create a 1

3) Sum all of the products

4) Draw the logic circuit

Logic Synthesis Example: Adder

01110
10001
01101
01011

1

0
0
0
S1

1

0
1
0
C

1

0
0
0
A

1

1
0
0
B

1

1
1
0
S0

Input Output

A B C A B C

A B C A B C

A B C + A B C + A B C + A B C

A B C A B C

A B C

5

Lecture 29, Slide 9EECS40, Fall 2003 Prof. King

NAND Gate Implementation

• De Morgan’s law tells us that

is the same as

• By definition,

is the same as

All sum-of-products expressions can be implemented with only NAND gates.

Lecture 29, Slide 10EECS40, Fall 2003 Prof. King

Creating a Better Circuit

What makes a digital circuit better?
• Fewer number of gates
• Fewer inputs on each gate

– multi-input gates are slower

• Let’s see how we can simplify the sum-of-
products expression for S1, to make a
better circuit…
– Use the Boolean algebra relations

6

Lecture 29, Slide 11EECS40, Fall 2003 Prof. King

Karnaugh Maps
• Graphical approach to minimizing the number of

terms in a logic expression:
1. Map the truth table into a Karnaugh map (see below)
2. For each 1, circle the biggest block that includes that 1
3. Write the product that corresponds to that block.
4. Sum all of the products

A

B

2-variable
Karnaugh Map

0 1

1

0
A

1

0

BC
00 01 11 10

3-variable
Karnaugh Map

4-variable Karnaugh Map
CD

00 01 11 10

AB

00

01

11

10

Lecture 29, Slide 12EECS40, Fall 2003 Prof. King

01110
10001
01101
01011

1

0
0
0
S1

1

0
1
0
C

1

0
0
0
A

1

1
0
0
B

1

1
1
0
S0

Input Output

11101
01000
10110100

A

BC

BC AC AC AB

S1 = AB + BC + AC

Simplification of expression for S1:

Karnaugh Map Example

