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Lecture #29

ANNOUNCEMENTS
• Lab project:

– Bring a check ($50, payable to “UC Regents”) to lab this 
week in order to receive your Tutebot kit.  (You will receive 
this back, when you return the kit.)

– Extra credit will be awarded if you endow your Tutebot with 
additional “intelligence”!

• Prof. King’s office hour tomorrow (11/6) is cancelled

OUTLINE
– Synthesis of logic circuits
– Minimization of logic circuits

Reading: Schwarz & Oldham pp. 403-411
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Combinational Logic Circuits
• Logic gates combine several logic-variable inputs to 

produce a logic-variable output.

• Combinational logic circuits are “memoryless” 
because their output value at a given instant depends 
only on the input values at that instant.

• Next time, we will study sequential logic circuits that 
possess memory because their present output value 
depends on previous as well as present input values.
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Boolean Algebra Relations

A•A = A
A•A = 0
A•1 = A
A•0 = 0
A•B = B•A
A•(B•C) = (A•B)•C

A+A = A
A+A = 1
A+1 = 1
A+0 = A
A+B = B+A
A+(B+C) = (A+B)+C

A•(B+C) = A•B + A•C
A•B = A + B
A•B = A + B

De Morgan’s laws
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Boolean Expression Example

F = A•B•C + A•B•C + (C+D)•(D+E)

F = C•(A+D+E) + D•E
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Logical Sufficiency of NAND Gates
• If the inputs to a NAND gate are tied together, an 

inverter results

• From De Morgan’s laws, the OR operation can be 
realized by inverting the input variables and combining 
the results in a NAND gate.

• Since the basic logic functions (AND, OR, and NOT) can 
be realized by using only NAND gates, NAND gates are 
sufficient to realize any combinational logic function.
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Logical Sufficiency of NOR Gates
• Show how to realize the AND, OR, and NOT functions 

using only NOR gates

• Since the basic logic functions (AND, OR, and NOT) can 
be realized by using only NOR gates, NOR gates are 
sufficient to realize any combinational logic function.
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Suppose we are given a truth table for a logic function.

Is there a method to implement the logic function using 
basic logic gates?

Answer: There are lots of ways, but one simple way is the 
“sum of products” implementation method:

1) Write the sum of products expression based on the 
truth table for the logic function

2) Implement this expression using standard logic gates.

• We may not get the most efficient implementation this 
way, but we can simplify the circuit afterwards…

Synthesis of Logic Circuits
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S1 using sum-of-products:

1) Find where S1 is 1

2) Write down each product of 
inputs which create a 1

3) Sum all of the products

4) Draw the logic circuit

Logic Synthesis Example: Adder
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Input Output
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NAND Gate Implementation

• De Morgan’s law tells us that

is the same as

• By definition,

is the same as

All sum-of-products expressions can be implemented with only NAND gates.
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Creating a Better Circuit

What makes a digital circuit better?
• Fewer number of gates
• Fewer inputs on each gate

– multi-input gates are slower

• Let’s see how we can simplify the sum-of-
products expression for S1, to make a 
better circuit…
– Use the Boolean algebra relations



6

Lecture 29, Slide 11EECS40, Fall 2003 Prof. King

Karnaugh Maps
• Graphical approach to minimizing the number of 

terms in a logic expression:
1. Map the truth table into a Karnaugh map (see below)
2. For each 1, circle the biggest block that includes that 1
3. Write the product that corresponds to that block.
4. Sum all of the products

A

B

2-variable
Karnaugh Map

0 1
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BC
00 01 11 10

3-variable
Karnaugh Map

4-variable Karnaugh Map
CD

00 01 11 10
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00

01
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10
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Input Output

11101
01000
10110100

A

BC

BC AC AC AB

S1 = AB + BC + AC

Simplification of expression for S1:

Karnaugh Map Example


