Lecture \#30

ANNOUNCEMENTS

- Lab project:
- No lab sections will be held next Tuesday (Veterans Day). A special section will be held next Monday at 6 PM for the Tuesday-section students to pick up their Tutebot kits.
- For extra credit (full points on HW portion of course grade):
- Each team of 2 must demo. 1 additional behavior
- Each team of 3 must demo. 2 additional behaviors
- Extra credit for top Tutebot in class: 5 pts on course grade

OUTLINE
» Sequential logic circuits

Reading: Schwarz \& Oldham pp. 411-420

Further Comments on Karnaugh Maps

- The algebraic manipulations needed to simplify a given expression are not always obvious. Karnaugh maps make it easier to minimize the number of terms in a logic expression.
- Terminology:
- "2-cube: 2 squares that have a common edge (-> product of 3 variables)
- "4-cube: 4 squares with common edges (-> product of 2 variables)
- In locating cubes on a Karnaugh map, the map should be considered to fold around from top to bottom, and from left to right.
- Squares on the right-hand side are considered to be adjacent to those on the left-hand side.
- Squares on the top of the map are considered to be adjacent to those on the bottom.
- Example:

The four squares in the map corners form a 4-cube

Flip-Flops

- One of the basic building blocks for sequential circuits is the flip-flop:
-2 stable operating states \rightarrow stores 1 bit of info.
- A simple flip-flop can be constructed using two inverters:

The S-R ("Set"-"Reset") Flip-Flop

S-R Flip-Flop Symbol:

- Rule 1:
- If $\mathbf{S}=\mathbf{0}$ and $\mathbf{R}=\mathbf{0}, \mathbf{Q}$ does not change.
- Rule 2:
- If $\mathbf{S}=0$ and $\mathbf{R}=1$, then $\mathbf{Q}=0$
- Rule 3:
- If $\mathbf{S}=\mathbf{1}$ and $\mathbf{R}=\mathbf{0}$, then $\mathbf{Q}=1$
- Rule 4:
- $S=1$ and $R=1$ should never occur.

Clock Signals

- Often, the operation of a sequential circuit is synchronized by a clock signal :

- The clock signal regulates when the circuits respond to new inputs, so that operations occur in proper sequence.
- Sequential circuits that are regulated by a clock signal are said to be synchronous.

Clocked S-R Flip-Flop

- When $\mathbf{C K}=\mathbf{0}$, the value of \mathbf{Q} does not change
- When CK = 1, the circuit acts like an ordinary S-R flip-flop

The D ("Delay") Flip-Flop

D Flip-Flop Symbol:

- The output terminals \mathbf{Q} and \mathbf{Q} behave just as in the S-R flip-flop.
- Q changes only when the clock signal CK makes a positive transition.

CK	\mathbf{D}	\mathbf{Q}_{n}
$\mathbf{0}$	\times	$\mathbf{Q}_{\mathrm{n}-1}$
1	\times	$\mathbf{Q}_{\mathrm{n}-1}$
\uparrow	0	0
\uparrow	1	1
		Prof. King

Registers

- A register is an array of flip-flops that is used to store or manipulate the bits of a digital word.

Example: Serial-In, Parallel-Out Shift Register

Conclusion (Logic Circuits)

- Complex combinational logic functions can be achieved simply by interconnecting NAND gates (or NOR gates).
- Logic gates can be interconnected to form flipflops.
- Interconnections of flip-flops form registers.
- A complex digital system such as a computer consists of many gates, flip-flops, and registers. Thus, logic gates are the basic building blocks for complex digital systems.

