Lecture #35

OUTLINE

• Device isolation methods
• Electrical contacts to Si
• Mask layout conventions
• Process flow examples
 – Resistor
 – N-channel MOSFET

Device Isolation Methods

(1) pn-junction isolation:

Cross-Sectional View:

device area 1 device area 2

\[p \] \[p \] \[p \]

\[n \]

\[n \]

Top View:

\[p \] \[p \]

\[p \] \[p \]

• The substrate is biased to ensure that the pn junctions are never forward biased
(2) Oxide isolation:

\[
\begin{array}{c}
\text{SiO}_2 \\
\text{SiO}_2 \\
n \\
\text{SiO}_2 \\
\text{SiO}_2 \\
p \\
p \\
\end{array}
\]

(3) Silicon-on-Insulator substrate:

\[
\begin{array}{c}
\text{Si} \\
\text{Si} \\
dielectric substrate (e.g. SiO}_2, \text{Al}_2\text{O}_3)
\end{array}
\]

Electrical Contacts to Si

- In order to achieve a low-resistance ("ohmic") contact between metal and silicon, the silicon must be heavily doped:

 \[
 \begin{array}{c}
 \text{Metal contact to n-type Si} \\
 \text{Metal contact to p-type Si}
 \end{array}
 \]

\[
\begin{array}{c}
\text{SiO}_2 \\
\text{SiO}_2 \\
\text{SiO}_2 \\
\text{SiO}_2 \\
\text{SiO}_2 \\
n^+ \\
p^+
\end{array}
\]

\[
\begin{array}{c}
\text{Al} \\
\text{Al}
\end{array}
\]

\[
\begin{array}{c}
N_d \geq 10^{20} \text{ cm}^{-3} \\
N_A \geq 10^{19} \text{ cm}^{-3}
\end{array}
\]

→ To contact the body of a MOSFET, locally heavy doping is used.
Mask Layout

- Typically, multiple lithography steps are needed in order to fabricate an integrated circuit.
 - Each lithography step utilizes a mask with the desired pattern for a specific layer.
- Computer-aided design (CAD) tools are used to generate the masks
 - The desired pattern for each layer is drawn, and can be overlaid with the patterns for other layers, to make sure that they are properly aligned to each other.

Layout Example:
MOSFET gate pattern aligned to “active area” pattern

Process layers:
- “Active” area
- Gate (poly-Si)

What if the physical mask looks like this?

Most of the area of the exposure field is dark

“dark-field” mask

Layout is all color, with the exception of a few holes

→ very inconvenient to draw and to display
Dark-Field / Light-Field Convention

A dark-field mask blocks our view of underlying layers

...but if we draw the “negative” (or “complement”) of masks that are dark-field, the CAD layout is much easier, and the overlaid layers are easier to visualize

Rather than this:

Draw only the “holes” on the layout, i.e. the clear areas

To indicate that the CAD layout is the negative of the mask, label it “dark field”. “Clear field” indicates a “positive” mask.

Process Flow Example #1: Resistor

Three-mask process:

Starting material: p-type wafer with \(N_A = 10^{16} \text{ cm}^{-3} \)

Step 1: grow 500 nm of SiO\(_2\)

Step 2: pattern oxide using the oxide mask (dark field)

Step 3: implant phosphorus and anneal to form an n-type layer with \(N_D = 10^{20} \text{ cm}^{-3} \) and depth 100 nm

Step 4: deposit oxide to a thickness of 500 nm

Step 5: pattern deposited oxide using the contact mask (dark field)

Step 6: deposit aluminum to a thickness of 1 \(\mu \text{m} \)

Step 7: pattern using the aluminum mask (clear field)

Layout:

- Oxide mask (dark field)
- Contact mask (dark field)
- Al mask (clear field)
Step 2: Pattern oxide

Step 3: Implant & Anneal

Step 4: Deposit 500 nm oxide

Step 5: Pattern oxide

Step 7: Pattern metal
Importance of Layer-to-Layer Alignment

Example: metal line to contact hole

→ marginal contact

→ no contact!

→ safety margin to allow for misalignment

Example of Design Rule:
If the minimum feature size is 2λ, then the safety margin for overlay error is λ.

Design Rules are needed:
- Interface between designer and process engineer
- Guidelines for designing masks

N-channel MOSFET

Schematic Cross-Sectional View

Layout (Top View)

4 lithography steps are required:
1. active area
2. gate electrode
3. contacts
4. metal interconnects
Process Flow Example #2: nMOSFET

1) Thermal oxidation (~10 nm “pad oxide”)

2) Silicon-nitride (Si_3N_4) deposition by CVD (~40nm)

3) Active-area definition (lithography & etch)

4) Boron ion implantation (“channel stop” implant)

5) Thermal oxidation to grow oxide in “field regions”

6) Si_3N_4 & pad oxide removal

7) Thermal oxidation (“gate oxide”)

8) Poly-Si deposition by CVD

9) Poly-Si gate-electrode patterning (litho. & etch)

10) P or As ion implantation to form n^+ source and drain regions
11) SiO₂ CVD
12) Contact definition (litho. & etch)
13) Al deposition by sputtering
14) Al patterning by litho. & etch to form interconnects

Visualizing Layouts and Cross-Sections with SIMPLer

SIMPL is a CAD tool created by Prof. Neureuther’s group
- allows IC designers to visualize device cross-sections corresponding to a fabrication process and physical layout.

A Berkeley undergraduate student, Harlan Hile, created a mini-version of SIMPL (called SIMPLer) for EECS40.
- It’s a JAVA program -> can be run on any computer, as well as on a web server.
- You can access it directly at
 http://www.ocf.berkeley.edu/~hhile/SIMPLer/SIMPLer.html