	Lecture #37		
	ANNOUNCEMENTS		
•	Prof. King's Office Hour on Wed 11/26 changed to 3-4	1PM	
	 In order to receive extra credit for your Tutebot project, you must endow it with added functionality. Examples: reaction to light, heat, sound; edge avoidance; capability to "learn" where objects are (memory) Simply adding LEDs is not sufficient to earn extra credit! 		
	OUTLINE		
	» Interconnect parameters		
	» Interconnect modeling		
	<u>Reading</u> (Rabaey <i>et al</i> .) Chapter 4: pp. 104-127		
	Chapter 5: pp. 172-173		
EECS40), Fall 2003 Lecture 37, Slide 1	Prof. King	

	Interconnects	
	<i>nnect</i> is a thin-film wire that ele or more components in an inte	5
component These " paı	cts can introduce parasitic (unw s of capacitance, resistance, an rasitics" detrimentally affect	,
•	ance (<i>e.g.</i> propagation delay) onsumption /	
	ors are scaled down in size and g layers increases, the impact on ncreases.	
\rightarrow Need to	model interconnects, to evaluate	their impact
EECS40, Fall 2003	Lecture 37, Slide 2	Prof. King

Interconnect Resistance Example Typical values of R_n and R_p are ~10 k Ω , for W/L = 1

... but R_n , R_p are much lower for large transistors (used to drive long interconnects with reasonable t_p)

Compare with the resistance of a 0.5μ m-thick AI wire:

R = ρ / H = (2.7 $\mu\Omega$ -cm) / (0.5 μ m) = 5.4 x 10⁻² Ω / \Box

<u>Example</u>: $L = 1000 \ \mu m$, $W = 1 \ \mu m$

 $\rightarrow R_{wire} = R_{\Box} (L / W)$

= $(5.4 \times 10^{-2} \Omega /)(1000/1) = 54 \Omega$

EECS40, Fall 2003

Lecture 37, Slide 5

Prof. King

