Correction to Answer for Common-Source Amplifier Example

Part (f): This problem was a bit “trickier” than originally intended!

For \(R_D = 25 \, \text{k}\Omega \), the MOSFET would be operating in the linear region, with \(v_{DS} = v_{OUT} = 0.5 \, \text{V} \). (This is obtained by load-line analysis, i.e. carefully sketching the \(i_D-v_{DS} \) curve for \(v_{GS} = 3 \, \text{V} \), then sketching the load line, then finding the value of \(v_{DS} \) at the point where these curves intersect.) The formula for \(g_m \) is then

\[
g_m \equiv \left. \frac{\partial i_D}{\partial v_{GS}} \right|_{v_{GS}=3V} = \left. \frac{\partial W}{\partial v_{GS}} \right|_{v_{GS}=3V} \left[k' \frac{W}{L} \left(v_{GS} - V_T - \frac{v_{DS}}{2} \right) v_{DS} \right]_{v_{GS}=3V} = k' \frac{W}{L} v_{DS} = 50 \times 10^{-6} \times 0.5 = 7.5 \times 10^{-5} \, \text{S}
\]

The small-signal equivalent circuit for the amplifier is

\[\text{Diagram of the small-signal equivalent circuit.} \]

From this circuit, it can be seen that the incremental change in the output voltage, \(v_{out} \), is simply \(-g_m v_{gs} R_D = -(7.5 \times 10^{-5})(0.1)(25000) = 0.1875 \, \text{V} \). This is larger than the value of 0.15 V which we obtained for \(R_D = 5 \, \text{k}\Omega \).

RL Circuit Answer

\(t < 0: v = 2 \, \text{V} \)
\(t > 0: v = 10 - 8e^{-1000t} \)

(Note that \(v \) is a continuous function of time, because the current flowing through the inductor is a continuous function of time.)

RC Circuit Answer

\(t < 0: v = 0 \, \text{V} \)
\(t > 0: v = -1.5e^{-100t} \, \text{Volts} \)

(Note that \(v \) is discontinuous at \(t = 0 \).)

Diode Circuit #1 (left) Answer

D1 is ON \((V_{D1} = 0, \, I_{D1} > 0; \, i.e. \text{ short circuit with positive current flow}) \)
D2 is OFF \((V_{D2} < 0, \, I_{D2} = 0; \, i.e. \text{ open circuit with negative voltage drop}) \)
\(V = 6 \, \text{V}; \, I = 6 \, \text{mA} \)

Diode Circuit #2 (right) Answer

D1 is ON \((V_{D1} = 0, \, I_{D1} > 0; \, i.e. \text{ short circuit with positive current flow}) \)
D2 is OFF \((V_{D2} < 0, \, I_{D2} = 0; \, i.e. \text{ open circuit with negative voltage drop}) \)
\(V = 10 \, \text{V}; \, I = 0 \)