UNIVERSITY OF CALIFORNIA AT BERKELEY
 College of Engineering
 Dept. of Electrical Engineering and Computer Sciences

Homework Assignment \#10

Due 2pm in 240 Cory on Friday, April 9.
Be sure to put your Discussion Section on your paper.

Problem 1: Inverter Circuits and Noise Margins

a) Describe qualitatively how an NMOS inverter circuit works. Explain how relatively large noise margins $\boldsymbol{N M}_{\boldsymbol{H}}$ and $\boldsymbol{N} \boldsymbol{M}_{\boldsymbol{L}}$ can be achieved. (Refer to Slides 2 and 6 of Lecture 18 for the definitions of $\boldsymbol{N} \boldsymbol{M}_{\boldsymbol{H}}$ and $\boldsymbol{N} \boldsymbol{M}_{\boldsymbol{L}}$).
b) Describe qualitatively how a CMOS inverter works. What are its advantages with respect to noise margins, power consumption, and size, as compared with the NMOS inverter?

Problem 2: CMOS Logic Gates

(Read: pp. 237-241 of Section 6.2.1, Rabaey et al.)
A static CMOS logic gate is a combination of two networks: a pull-up network of PMOS transistors, and a pull-down network of NMOS transistors. The pull-up network provides a connection between the output and the power-supply $V_{D D}$ anytime the output of the logic gate is meant to be $\mathbf{1}$ (based on the inputs). The pull-down network provides a connection between the output and GND anytime the output of the logic gate is meant to be $\mathbf{0}$ (based on the inputs). Remember that NMOS devices are turned on with a high (logic 1) input voltage, whereas PMOS devices are turned on with a low (logic $\mathbf{0}$) input voltage, and that transistors connected in series correspond to an AND function, whereas transistors connected in parallel correspond to an OR function. (Refer to Slides 5 \& 6 of Lecture 19.)

Design a complex CMOS logic gate to implement the function $\mathbf{F}=\overline{(\mathbf{A + B \cdot C})}$.

Problem 3: Combinatorial Logic Circuits. Hambley problem 7.19 (a and c only). In each case, draw a logic circuit implementing the given Boolean expression using AND, OR, and NOT gates.

Problem 4: Combinatorial Logic Circuits. Hambley problem 7.20 (a and b only)

Problem 5: Logic Circuit Synthesis. Hambley problem 7.34. Write the expression only using the sum-of-products method. Simplify this expression if possible using a Karnaugh map. Draw a logic circuit using only NAND gates.

