UNIVERSITY OF CALIFORNIA AT BERKELEY
 College of Engineering
 Dept. of Electrical Engineering and Computer Sciences

Homework Assignment \#11

Due 2pm in 240 Cory on Friday, 4/23/04
Be sure to put your Discussion Section on your paper.
Problem 1: Sequential Logic Circuits: a) Hambley 7.56; b) Hambley 7.57.

Problem 2: Propagation Delay and Timing Diagram

a) How would you size the NMOS and PMOS transistors in a 3-input NAND gate to achieve comparable worst-case pull-up and pull-down delays? (In other words, indicate the $(\mathrm{W} / \mathrm{L})_{\mathrm{PMOS}}$ to $(\mathrm{W} / \mathrm{L})_{\mathrm{NMOS}}$ ratio so that $t_{p L H}$ and $t_{p H L}$ are equal.) Assume that the W / L ratio for a PMOS transistor must be $3 \times$ larger than for an NMOS transistor, in order to achieve comparable equivalent resistance in the on state.) Note that the worst-case pull-up delay occurs when only one PMOS transistor is switched on.
b) Consider the fanout = 1 inverter of Example 5.4 (and Example 5.5) from Rabaey et al., discussed in Lecture 22. Estimate the propagation delays $t_{p L H}$ and $t_{p H L}$ if the driving inverter is instead connected to 4 inverters (i.e. fanout $=4$). You can assume that each of the extrinsic capacitance components of the driving inverter output capacitance increases by a factor of 4 , while the intrinsic capacitance components are unchanged, for this case. The values of R_{n} and R_{p} for $\mathrm{W} / \mathrm{L}=1$ are $13 \mathrm{k} \Omega$ and $31 \mathrm{k} \Omega$, respectively. As noted in class, the W/L ratios for the NMOS and PMOS transistors in the inverters are not equal to 1 . Thus, you'll need to calculate the actual equivalent resistance values in order to determine the propagation delays.
c) Assume each NAND gate in the logic circuit below has propagation delay $t_{p}=50 \mathrm{ps}$. Note that the logic input signals \mathbf{A}, \mathbf{B}, and \mathbf{C} each change from $\mathbf{0}$ to $\mathbf{1}$ at time $t=50 \mathrm{ps}$. Draw the timing diagrams for the logic signals $\mathbf{D}, \mathbf{E}, \mathbf{F}$, and \mathbf{G}, for times in the range $t=0$ to $t=250 \mathrm{ps}$.

