UNIVERSITY OF CALIFORNIA AT BERKELEY College of Engineering Dept. of Electrical Engineering and Computer Sciences

EECS 40

Spring 2004

Homework Assignment #7

Issued: Mar. 4, 2004, Due: 2pm in 240 Cory on Friday, Mar. 12, 2004. Be sure to put your **Discussion Section number** on your paper.

<u>Problem 1</u>: Semiconductor Fundamentals

- a) How do mobile electrons and holes come into existence in a pure (undoped) semiconductor? Explain qualitatively how the resistivity of an intrinsic (undoped) semiconductor should change as a function of temperature. (Assume that the electron and hole mobilities are not a strong function of temperature.)
- b) Explain how a Column-III atom (with three outer-shell valence electrons) residing at a substitutional lattice site contributes a hole to the silicon lattice. Explain how a Column-V atom (with five outer-shell valence electrons) residing at a substitutional lattice site contributes an electron to the silicon lattice.
- c) The following is a two-dimensional representation of the semiconductor GaAs:

: Ga: As : Ga: : As: Ga : As: : Ga: As : Ga:

Consider your answer in part (b). If Si atoms are inserted as dopants in GaAs and exclusively replace Ga atoms in the lattice, will the Si-doped GaAs material be n-type or p-type? What if the Si atoms exclusively replace As atoms?

<u>Problem 2</u>: Carrier Concentrations and Doping

Consider a Si sample maintained at T = 300K, doped with arsenic to a concentration 10^{15} cm⁻³.

a) Is this material n-type or p-type? What are the majority and minority carrier concentrations?

- **b**) Suppose the sample type is converted to the opposite type by counter-doping it with boron to a concentration 10^{17} cm⁻³. What are the majority and minority carrier concentrations now?
- c) As the temperature of this sample is increased, n_i will eventually increase to be higher than the dopant concentration, and the sample will become intrinsic ($n \cong p \cong n_i$). Estimate the temperature at which this occurs, by finding the temperature at which n_i be much greater (*i.e.* 10× higher) than $|N_A N_D|$. You can use the formula for n_i given in Lecture 13, Slide 14, or simply use the plot of n_i vs. *T*.

Problem 3: Integrated-Circuit Resistor

Consider a resistor fabricated using a 0.5 μ m-thick film of Si doped with phosphorus to a concentration 10^{18} cm⁻³. The layout dimensions of this resistor are: length $L = 5 \mu$ m; width $W = 1.0 \mu$ m:

- a) What is the sheet resistance of the Si film?
- **b**) What is the resistance value for this resistor?
- c) The saturation drift velocity for electrons in Si is $\sim 10^7$ cm/s. That is, this is the maximum drift velocity for electrons in Si. Sketch the current *vs.* voltage (*I-V*) characteristic of this resistor, for the range of voltages from -20V to 20V.

Problem 4: pn-Junction Electrostatics

As discussed in Lecture 14, a "depletion region" exists at the junction between p-type material and ntype material. This region is depleted of mobile carriers, so that there is significant net charge density (due to the immobile ionized dopants). The width W_j of the depletion region varies with the applied voltage V_D . Therefore, the amount of charge stored in the depletion region also varies with bias. This behavior is modeled as a capacitance. The junction capacitance $C_j = \varepsilon_{Si}A_D/W_j$ where A_D is the junction area and $\varepsilon_{Si} = 10^{-12}$ F/cm is the dielectric permittivity of silicon.

- a) If the width of the depletion region is 1 μ m, and the area of the junction is 2 μ m x 5 μ m, what is the capacitance (in units of femto-farads, fF)?
- b) Is the junction capacitance greater when $V_D < 0$ than when $V_D = 0$? Why or why not? (Explain qualitatively no equations needed -- in one or two sentences.)