EECS 40

Spring 2004

Homework Assignment #8 Issued: 3/11/04 Due: 2pm in 240 Cory on Friday, 3/19/04 Be sure to put your name and Discussion Section on your paper.

Problem 1: Hambley 10.12

Problem 2: Hambley 10.28

Problem 3: MOSFET Fundamentals

- a) Explain qualitatively (without using any equations) how a conductive path is formed between the n-type source and drain regions of an n-channel enhancement-mode MOSFET (with a p-type body), by applying a suitable voltage on the gate electrode. How does the resistance between the source and drain change with increasing gate voltage?
- b) How does the resistance between the source and drain change with drain voltage increasing from 0 V up to the gate voltage, for a long n-channel MOSFET? (Again, explain qualitatively without resorting to any equations.) Assume that the source and the body are each biased at 0 Volts.
- c) How does your answer to part (b) change if the channel length is very short (so that velocity saturation effects are evident)?

Problem 4: MOSFET I-V characteristics

A long-channel n-channel enhancement-mode MOSFET has threshold voltage $V_T = 0.5$ V, process transconductance parameter $k_n' = 0.2$ mA/V², channel length L = 1 µm and channel width W = 10 µm.

- a) Sketch the drain current vs. gate voltage (I_{DS} vs. V_{GS}) characteristic for $0 \le V_{GS} \le 5$ V, $V_{DS} = 0.5$ V.
- b) Sketch the drain current *vs.* drain voltage (I_{DS} *vs.* V_{DS}) characteristics for $0 \le V_{DS} \le 5$ V, for $V_{GS} = 0$ V, 1 V, 2, V, 3 V, 4 V, and 5 V.
- c) For each set of voltages below, state the region of operation and compute the drain current:
 - i) $V_{GS} = 1$ V and $V_{DS} = 5$ V
 - ii) $V_{GS} = 1$ V and $V_{DS} = 0.5$ V
 - iii) $V_{GS} = 0$ V and $V_{DS} = 5$ V