Lecture #18

OUTLINE
- Continue small signal analysis
- Logic functions
- NMOS logic gates
- The CMOS inverter

Reading
- Rabaey *et al.*: Chapter 5.2
- Hambley: Chapter 7.1-7.2

Digital Signals
- For a digital signal, the voltage must be within one of two ranges in order to be defined:
 - "1": \[V_{OH} \text{ to } V_{DD} \]
 - "0": \[V_{IL} \text{ to } V_{OL} \]
- Positive Logic:
 - "low" voltage = logic state 0
 - "high" voltage = logic state 1

Logic Functions, Symbols, & Notation

<table>
<thead>
<tr>
<th>NAME</th>
<th>SYMBOL</th>
<th>NOTATION</th>
<th>TRUTH TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>"NOT"</td>
<td>![Not Symbol]</td>
<td>[F = \overline{A}]</td>
<td>[\begin{array}{c</td>
</tr>
<tr>
<td>"OR"</td>
<td>![Or Symbol]</td>
<td>[F = A + B]</td>
<td>[\begin{array}{c</td>
</tr>
<tr>
<td>"AND"</td>
<td>![And Symbol]</td>
<td>[F = A \cdot B]</td>
<td>[\begin{array}{c</td>
</tr>
<tr>
<td>"XOR"</td>
<td>![Xor Symbol]</td>
<td>(exclusive OR) [F = A \oplus B]</td>
<td>[\begin{array}{c</td>
</tr>
</tbody>
</table>
NMOS Inverter ("NOT" Gate)

Circuit:
\[V_{DD} \]
\[I_D \]
\[V_{IN} = V_{DD} \]
\[V_{DD}/R_D \]
\[V_{GS} = V_{IN} \leq V_T \]
\[V_{DS} = V_{OUT} \]

Voltage-Transfer Characteristic:
Increasing
\[V_{DS} = V_{IN} \]
\[V_{DD} \]
\[V_{DS} \]

Noise Margins

Definition of Input Levels

Definition of Noise Margins

Noise margin high
\[NM_H = V_{OH} - V_{IH} \]

Noise margin low
\[NM_L = V_{IL} - V_{OL} \]

NMOS NAND Gate

- Output is low only if both inputs are high

Truth Table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NMOS NOR Gate

- Output is low if either input is high

Truth Table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Disadvantages of NMOS Logic Gates

- Large values of R_D are required in order to
 - achieve a low value of V_{OL}
 - keep power consumption low

→ Large resistors are needed, but these take up a lot of space.

- One solution is to replace the resistor with an NMOSFET that is always on.

The CMOS Inverter: Intuitive Perspective

CIRCUIT

SWITCH MODELS

Low static power consumption, since one MOSFET is always off in steady state

CMOS Inverter Voltage Transfer Characteristic

CMOS Inverter Load-Line Analysis

$V_{IN} = V_{DD}$

$V_{OUT} = V_{DD} + V_{DS}$

$V_{IN} = 0$ V

$V_{OUT} = V_{DD} + V_{DS}$

Increasing

Increasing V_{IN}