Lecture #13

ANNOUNCEMENTS

- Reader with reference material from Howe&Sodini and from Rabaey et al available at Copy Central on Hearst Ave.

OUTLINE

- Semiconductor materials
- Properties of silicon
- Doping

Reading

Howe&Sodini: Ch. 2.1-2.4.1
Electrical Resistance

\[R = \frac{V}{I} = \frac{L}{Wt} \rho \]

(Uits: \(\Omega \))

where \(\rho \) is the resistivity

(Uits: \(\Omega \cdot \text{cm} \))
What is a Semiconductor?

- Low resistivity => "conductor"
- High resistivity => "insulator"
- Intermediate resistivity => "semiconductor"
 - Generally, the semiconductor material used in integrated-circuit devices is crystalline
 - In recent years, however, non-crystalline semiconductors have become commercially very important
Semiconductor Materials

Elemental:

<table>
<thead>
<tr>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
</tr>
<tr>
<td>He</td>
<td>B</td>
<td>C</td>
<td>N</td>
<td>O</td>
<td>F</td>
<td>Ne</td>
</tr>
<tr>
<td>Al</td>
<td>Si</td>
<td>P</td>
<td>S</td>
<td>Cl</td>
<td>Ar</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td>Ga</td>
<td>Ge</td>
<td>As</td>
<td>Se</td>
<td>Br</td>
<td>Kr</td>
</tr>
<tr>
<td>Cd</td>
<td>In</td>
<td>Sn</td>
<td>Sb</td>
<td>Te</td>
<td>I</td>
<td>Xe</td>
</tr>
<tr>
<td>Hg</td>
<td>Tl</td>
<td>Pb</td>
<td>Bi</td>
<td>Po</td>
<td>At</td>
<td>Rn</td>
</tr>
<tr>
<td>Uub</td>
<td>Uuo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compound:

<table>
<thead>
<tr>
<th>112</th>
<th>114</th>
<th>116</th>
<th>118</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uub</td>
<td>Uuo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>66</th>
<th>67</th>
<th>68</th>
<th>69</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dy</td>
<td>Ho</td>
<td>Er</td>
<td>Tm</td>
<td>Yb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>98</th>
<th>99</th>
<th>100</th>
<th>101</th>
<th>102</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cf</td>
<td>Es</td>
<td>Fm</td>
<td>Md</td>
<td>No</td>
</tr>
</tbody>
</table>
The Silicon Atom

- 14 electrons occupying the 1st 3 energy levels:
 - 1s, 2s, 2p orbitals filled by 10 electrons
 - 3s, 3p orbitals filled by 4 electrons

To minimize the overall energy, the 3s and 3p orbitals hybridize to form 4 tetrahedral 3sp orbitals

Each has one electron and is capable of forming a bond with a neighboring atom
The Si Crystal

“diamond cubic” lattice

- Each Si atom has 4 nearest neighbors
- lattice constant = 5.431 Å
Compound Semiconductors

- "zinc blende" structure
- III-V compound semiconductors: GaAs, GaP, GaN, etc.
 - important for optoelectronics and high-speed ICs
Electronic Properties of Si

- Silicon is a semiconductor material. Pure Si has relatively high resistivity at room temperature.

- There are 2 types of mobile charge-carriers in Si:
 - *Conduction electrons* are negatively charged.
 - *Holes* are positively charged.

- The concentration of conduction electrons & holes in a semiconductor can be affected in several ways:
 1. by adding special impurity atoms (*dopants*)
 2. by applying an electric field
 3. by changing the temperature
 4. by irradiation
Conduction Electrons and Holes

When an electron breaks loose and becomes a conduction electron, a hole is also created.

Note: A hole (along with its associated positive charge) is mobile!
Definition of Parameters

\[n = \text{number of mobile electrons per cm}^3 \]
\[p = \text{number of holes per cm}^3 \]
\[n_i = \text{intrinsic carrier concentration (#/cm}^3) \]

In a pure semiconductor,
\[n = p = n_i \]
Generation

- We have seen that conduction (mobile) electrons and holes can be created in pure (intrinsic) silicon by **thermal generation**.
 - Thermal generation rate increases exponentially with temperature T.

- Another type of generation process which can occur is **optical generation**.
 - The energy absorbed from a photon frees an electron from covalent bond.
 - In Si, the minimum energy required is 1.1eV, which corresponds to $\sim 1 \mu\text{m}$ wavelength (infrared region).

- Note that conduction electrons and holes are continuously generated, if $T > 0$.
Recombination

- When a conduction electron and hole meet, each one is eliminated. The energy lost by the conduction electron (when it “falls” back into the covalent bond) can be released in 2 ways:
 1. to the semiconductor lattice (vibrations)
 "thermal recombination” → semiconductor is heated
 2. to photon emission
 "optical recombination” → light is emitted
- Optical recombination is negligible in Si. It is significant in compound semiconductor materials, and is the basis for light-emitting diodes and laser diodes.
Generation and Recombination Rates

• The generation rate is dependent on temperature T, but it is independent of n and p: $G = G_{\text{thermal}}(T) + G_{\text{optical}}$

• The recombination rate is proportional to both n and p: $R \propto np$

• In steady state, a balance exists between the generation and recombination rates.

\[G = R \quad \Rightarrow \quad np = f(T) \]

• A special case of the steady-state condition is thermal equilibrium: no optical or electrical sources

\[np = n_i^2(T) \]
Covalent (shared e\(^-\)) bonds exists between Si atoms in a crystal. Since the e\(^-\) are loosely bound, some will be free at any \(T\), creating hole electron pairs.

\[
\frac{S_i}{n_i} = 3.9 \times 10^{16} T^{3/2} e^{-\frac{0.605\text{eV}}{kT}} \text{ /cm}^3
\]

\(n_i \approx 10^{10} \text{ cm}^{-3}\) at room temperature
Doping

By substituting a Si atom with a special impurity atom (Column V or Column III element), a conduction electron or hole is created.

Donors: P, As, Sb

Acceptors: B, Al, Ga, In

Dopant concentrations typically range from 10^{14} cm$^{-3}$ to 10^{20} cm$^{-3}$
Charge-Carrier Concentrations

\(N_D \): ionized donor concentration \(\text{(cm}^{-3}\text{)} \)
\(N_A \): ionized acceptor concentration \(\text{(cm}^{-3}\text{)} \)

Charge neutrality condition: \(N_D + p = N_A + n \)

At thermal equilibrium, \(n p = n_i^2 \) \(\text{("Law of Mass Action")} \)

\[
\begin{align*}
n &= \frac{N_D - N_A}{2} + \sqrt{\left(\frac{N_D - N_A}{2}\right)^2 + n_i^2} \\
p &= \frac{N_A - N_D}{2} + \sqrt{\left(\frac{N_A - N_D}{2}\right)^2 + n_i^2}
\end{align*}
\]

Note: Carrier concentrations depend on net dopant concentration \((N_D - N_A) \)!
N-type and P-type Material

If $N_D \gg N_A$ (so that $N_D - N_A \gg n_i$):

\[
 n \approx N_D - N_A \quad \text{and} \quad p \approx \frac{n_i^2}{N_D - N_A}
\]

$n \gg p \Rightarrow \text{material is "n-type"} $

If $N_A \gg N_D$ (so that $N_A - N_D \gg n_i$):

\[
 p \approx N_A - N_D \quad \text{and} \quad n \approx \frac{n_i^2}{N_A - N_D}
\]

$p \gg n \Rightarrow \text{material is "p-type"} $
Terminology

intrinsic semiconductor: “undoped” semiconductor
 electrical properties are native to the material

extrinsic semiconductor: doped semiconductor
 electrical properties are controlled by the added impurity atoms

donor: impurity atom that increases the electron concentration
 group V elements (P, As)

acceptor: impurity atom that increases the hole concentration
 group III elements (B, In)

n-type material: semiconductor containing more electrons than holes
p-type material: semiconductor containing more holes than electrons

majority carrier: the most abundant carrier in a semiconductor sample
minority carrier: the least abundant carrier in a semiconductor sample
Carrier Scattering

- Mobile electrons and atoms in the Si lattice are always in random thermal motion.
 - Average velocity of thermal motion for electrons in Si:
 \[\sim 10^7 \text{ cm/s @ 300K} \]
 - Electrons make frequent collisions with the vibrating atoms
 • "lattice scattering" or "phonon scattering"
 - Other scattering mechanisms:
 • deflection by ionized impurity atoms
 • deflection due to Coulombic force between carriers

- The average current in any direction is zero, if no electric field is applied.
Carrier Drift

- When an electric field (e.g. due to an externally applied voltage) is applied to a semiconductor, mobile charge-carriers will be accelerated by the electrostatic force. This force superimposes on the random motion of electrons:

![Diagram showing electron drift]

- Electrons drift in the direction opposite to the E-field → Current flows

- Because of scattering, electrons in a semiconductor do not achieve constant acceleration. However, they can be viewed as classical particles moving at a constant average drift velocity.
Drift Velocity and Carrier Mobility

Mobile charge-carrier drift velocity is proportional to applied E-field:

$$|v| = \mu E$$

μ is the *mobility* (Units: cm2/V·s)

Note: Carrier mobility depends on total dopant concentration ($N_D + N_A$)!
Current Density

The current density J is the current per unit area ($J = I / A$; A is the cross-sectional area of the conductor)

If we have N positive charges per unit volume moving with average speed v in the $+x$ direction, then the current density in the $+x$ direction is just $J = qNv$

Example:

2×10^{16} holes/cm3 moving to the right at 2×10^4 cm/sec

$J = 1.6 \times 10^{-19} \times 2 \times 10^{16} \times 2 \times 10^4 = 64$ A/cm2

Suppose this occurs in a conductor 2 μm wide and 1 μm thick:

$I = J \times A = 64 \times (2 \times 10^{-4} \times 1 \times 10^{-4})$

$= 1.28$ μA
Electrical Conductivity σ

When an electric field is applied, current flows due to drift of mobile electrons and holes:

Electron current density:
$$J_n = (-q)nv_n = qn\mu_n E$$

Hole current density:
$$J_p = (+q)pv_p = qp\mu_p E$$

Total current density:
$$J = J_n + J_p = (qn\mu_n + qp\mu_p)E$$

Conductivity
$$\sigma \equiv qn\mu_n + qp\mu_p$$
Electrical Resistivity ρ

\[\rho \equiv \frac{1}{\sigma} = \frac{1}{qn\mu_n + qp\mu_p} \]

$\rho \approx \frac{1}{qn\mu_n}$ for n-type mat'l

$\rho \approx \frac{1}{qp\mu_p}$ for p-type mat'l

(Units: ohm-cm)
Consider a Si sample doped with 10^{16}/cm3 Boron. What is its resistivity?

Answer:

$N_A = 10^{16}$/cm3, $N_D = 0$ \hspace{1cm} ($N_A >> N_D \rightarrow p$-type)

$\rightarrow p \approx 10^{16}$/cm3 and $n \approx 10^4$/cm3

$$\rho = \frac{1}{q \mu_n n + q \mu_p p} \approx \frac{1}{q \mu_p p}$$

$$= \left[(1.6 \times 10^{-19}) (10^{16}) (450) \right]^{-1} = 1.4 \ \Omega \cdot \text{cm}$$

From μ vs. $(N_A + N_D)$ plot
Consider the same Si sample, doped additionally with 10^{17}/cm3 Arsenic. What is its resistivity?

Answer:

\[N_A = 10^{16}$/cm3, \quad N_D = 10^{17}$/cm3 \quad (N_D \gg N_A \rightarrow \text{n-type}) \]

\[\rightarrow n \approx 9 \times 10^{16}$/cm3 \quad \text{and} \quad p \approx 1.1 \times 10^3$/cm3 \]

\[\rho = \frac{1}{q_n \mu_n + q_p \mu_p} \approx \frac{1}{q_n \mu_n} \]

\[= \left[(1.6 \times 10^{-19}) (9 \times 10^{16}) (700) \right]^{-1} = 0.10 \ \Omega \cdot \text{cm} \]

The sample is converted to n-type material by adding more donors than acceptors, and is said to be “compensated.”
Sheet Resistance R_s

$$R = \rho \frac{L}{Wt} = R_s \frac{L}{W} \implies R_s = \frac{\rho}{t}$$ (Unit: ohms/square)

R_s is the resistance when $W = L$

- The R_s value for a given layer in an IC technology is used
 - for design and layout of resistors
 - for estimating values of parasitic resistance in a circuit

$R = R_s$
$R = R_s/2$
$R = 2R_s$
$R = 3R_s$
$R \approx 2.6R_s$
Integrated-Circuit Resistors

The resistivity ρ and thickness t are fixed for each layer in a given manufacturing process.

A circuit designer specifies the length L and width W, to achieve a desired resistance R.

$$R = R_s \left(\frac{L}{W} \right)$$

Example: Suppose we want to design a 5 kΩ resistor using a layer of material with $R_s = 200 \ \Omega/\square$.

Resistor layout (top view)
Summary

- **Crystalline Si:**
 - 4 valence electrons per atom
 - Diamond lattice: each atom has 4 nearest neighbors
 - 5×10^{22} atoms/cm3

- In a pure Si crystal, conduction electrons and holes are formed in pairs.
 - Holes can be considered as positively charged mobile particles which exist inside a semiconductor.
 - Both holes and electrons can conduct current.

- **Dopants in Si:**
 - Reside on lattice sites (substituting for Si)
 - Group V elements contribute conduction electrons, and are called *donors*
 - Group III elements contribute holes, and are called *acceptors*