Lecture #14

<u>OUTLINE</u>

- Midterm #1 stats
- The pn Junction Diode
 - Depletion region & junction capacitance
 - I-V characteristic
 - Circuit applications and analysis

Reference Reading

- Rabaey et al.
 - Chapter 3.2.1 to 3.2.2
- Hambley
 - Chapter 10.1 to 10.4

Midterm #1 Statistics

The pn Junction Diode

Schematic diagram

Circuit symbol

Physical structure:

(an example)

For simplicity, assume that the doping profile changes abruptly at the junction.

Depletion Region

- When the junction is first formed, mobile carriers diffuse across the junction (due to the concentration gradients)
 - Holes diffuse from the p side to the n side,
 leaving behind negatively charged acceptor ions
 - Electrons diffuse from the n side to the p side, leaving behind positively charged donor ions

→A region depleted of mobile carriers is formed at the junction.

 The space charge due to immobile ions in the depletion region establishes an electric field which opposes carrier diffusion.

Charge Density Distribution

Charge is stored in the depletion region.

Electric Field and Built-In Potential φ₀

electric field (V/cm)

potential (V)

No net current flows across the junction when the externally applied voltage is 0 V.

→ distance

 $\frac{kT}{q}\ln(10) = 60 \,\text{mV for } T = 300 \,\text{K}$ $\longrightarrow \text{distance}$

built-in potential φ₀

Effect of Applied Voltage

- The quasi-neutral p and n regions have low resistivity, whereas the depletion region has high resistivity. Thus, when an external voltage V_D is applied across the diode, almost all of this voltage is dropped across the depletion region. (Think of a voltage divider circuit.)
- If V_D > 0 (forward bias), the potential barrier to carrier diffusion is reduced by the applied voltage.
- If V_D < 0 (reverse bias), the potential barrier to carrier diffusion is increased by the applied voltage.

Forward Bias

 As V_D increases, the potential barrier to carrier diffusion across the junction decreases*, and current increases exponentially.

* Hence, the width of the depletion region decreases.

 $\rightarrow V_{\rm D} ({\rm Volts})$

Reverse Bias

 As |V_D| increases, the potential barrier to carrier diffusion across the junction increases*; thus, no carriers diffuse across the junction.

* Hence, the width of the depletion region increases.

I-V Characteristic

Exponential diode equation:
$$I_D = I_S(e^{qV_D/kT} - 1)$$

$$\frac{kT}{q} = 0.026 \text{ Volts for } T = 300 \text{K}$$

$I_{\rm s}$ is the diode **saturation current**

- function of n_i^2 , A_D , N_A , N_D , length of quasi-neutral regions
- typical range of values: 10^{-14} to 10^{-17} A/ μ m²

Note that $e^{0.6/0.026} = 10^{10}$ and $e^{0.72/0.026} = 10^{12}$

 $\rightarrow I_D$ is in the mA range for V_D in the range 0.6 to 0.7 V, typically.

Depletion Region Width W_i

 The width of the depletion region is a function of the bias voltage, and is dependent on N_A and N_D:

$$W_{j} = \sqrt{\frac{2\varepsilon_{Si}}{q}} \left(\frac{N_{A} + N_{D}}{N_{A} N_{D}} \right) (\phi_{0} - V_{D})$$

 If one side is much more heavily doped than the other (which is commonly the case), then this can be simplified:

$$W_j \cong \sqrt{\frac{2\varepsilon_{Si}}{aN}} (\phi_0 - V_D)$$
 $\varepsilon_{Si} = 10^{-12} \text{ F/cm}$

where N is the doping concentration on the more lightly doped side

Junction Capacitance

 The charge stored in the depletion region changes with applied voltage. This is modeled as junction capacitance

$$C_{j} = \frac{A_{D} \mathcal{E}_{Si}}{W_{j}}$$

Summary: pn-Junction Diode Electrostatics

- A depletion region (in which n and p are each much smaller than the net dopant concentration) is formed at the junction between p- and n-type regions
 - A built-in potential barrier (voltage drop) exists across the depletion region, opposing carrier diffusion (due to a concentration gradient) across the junction: $\phi_0 = \frac{kT}{q} \ln \left(\frac{N_A N_D}{n_i^2} \right)$
 - At equilibrium (V_O=0), no net current flows across the junction
 - Width of depletion region $W_{j} \cong \sqrt{\frac{2arepsilon_{Si}}{qN}} (\phi_{\!\scriptscriptstyle 0} V_{\!\scriptscriptstyle D})$
 - decreases with increasing forward bias (p-type region biased at higher potential than n-type region)
 - increases with increasing reverse bias (n-type region biased at higher potential than p-type region)
 - Charge stored in depletion region ightarrow capacitance $C_j = rac{A_D \mathcal{E}_{Si}}{W_j}$

Summary: pn-Junction Diode I-V

- Under forward bias, the potential barrier is reduced, so that carriers flow (by diffusion) across the junction
 - Current increases exponentially with increasing forward bias
 - The carriers become minority carriers once they cross the junction; as they diffuse in the quasi-neutral regions, they recombine with majority carriers (supplied by the metal contacts) "injection" of minority carriers
- Under reverse bias, the potential barrier is increased, so that negligible carriers flow across the junction
 - If a minority carrier enters the depletion region (by thermal generation or diffusion from the quasi-neutral regions), it will be swept across the junction by the built-in electric field

"collection" of minority carriers → reverse current

pn-Junction Reverse Breakdown

 As the reverse bias voltage increases, the peak electric field in the depletion region increases. When the electric field exceeds a critical value (E_{crit} ≅ 2x10⁵ V/cm), the reverse current shows a dramatic increase:

Zener Diode

A Zener diode is designed to operate in the breakdown mode.

Circuit Analysis with a Nonlinear Element

Since the pn junction is a nonlinear circuit element, its presence complicates circuit analysis.

(Node and loop equations become transcendental.)

Load Line Analysis Method

- Graph the I-V relationships for the non-linear element and for the rest of the circuit
- The operating point of the circuit is found from the intersection of these two curves.

The I-V characteristic of all of the circuit except the non-linear element is called the <u>load line</u>

Ideal Diode Model of pn Diode

- An ideal diode passes current only in one direction.
- An ideal diode has the following properties:
 - when $I_D > 0$, $V_D = 0$ when $V_D < 0$, $I_D = 0$ Diode behaves like a switch: closed in forward bias mode

- open in reverse bias mode

Large-Signal Diode Model

For a Si pn diode, $V_{Don} \cong 0.7 \text{ V}$

RULE 1: When
$$I_D > 0$$
, $V_D = V_{Don}$

RULE 2: When
$$V_D < V_{Don}$$
, $I_D = 0$

Diode behaves like a voltage source in series with a switch:

- · closed in forward bias mode
- · open in reverse bias mode

How to Analyze Circuits with Diodes

A diode has only two states:

- forward biased: $I_D > 0$, $V_D = 0 \text{ V (or } 0.7 \text{ V)}$
- reverse biased: $I_D = 0$, $V_D < 0$ V (or 0.7 V)

Procedure:

- Guess the state(s) of the diode(s)
- Check to see if KCL and KVL are obeyed.
- 3. If KCL and KVL are not obeyed, refine your guess
- 4. Repeat steps 1-3 until KCL and KVL are obeyed.

If $v_s(t) > 0$ V, diode is forward biased (else KVL is disobeyed – try it)

If $v_s(t) \le 0$ V, diode is reverse biased (else KVL is disobeyed – try it)

Application Example #1

Application Example #2

(using the ideal diode model)

Diode Logic

Diodes can be used to perform logic functions:

AND gate

output voltage is high only if both A and B are high

OR gate

output voltage is high if either (or both) A and B are high

Inputs A and B vary between 0 Volts ("low") and V_{cc} ("high") Between what voltage levels does C vary?