Lecture #15

OUTLINE
« Diode analysis and applications continued
« The MOSFET
— The MOSFET as a controlled resistor
— Pinch-off and current saturation
— Channel-length modulation

—Velocity saturation in a short-channel
MOSFET

Reading
+ Rabaey et al.
— Chapter 3.3.1-3.3.2

+ Hambley

— Chapter 12.1
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Light Emitting Diode (LED)

« LEDs are made of compound semiconductor materials

— Carriers diffuse across a forward-biased junction
and recombine in the quasi-neutral regions

—2 optical emission
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Semiconductor Color [ Peak A pn)
|
GaAsePos Red 0.650
GaAsgysPggs:N | Orange-Red |  0.630
GaAsy , Prge:N Yellow 0.585
GaP:N " Green 0.565
[ GaP:Zn-0 Red 0.700
AlGaAs Red 0.650
AllnGaP Orange 0.620
AllnGaP Yellow 0.585
| AllnGaP Green 0.570
SiC Blue 0.470
GaN Blue 0.450
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Optoelectronic Diodes (cont'd)

« Light incident on a pn junction generates electron-hole pairs

« The minority carriers which are generated in the depletion
region, and the minority carriers which are generated in the
gquasi-neutral regions and then diffuse into the depletion
region, are swept across the junction by the electric field
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« This results in an additional component of current flowing in
the diode:
_ gy [T
ID — S(E ’ _1) o [Gpﬂc‘ﬂﬁ

where I ticat Is proportional to the intensity of the light
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Photovoltaic (Solar) Cell
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optical
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Photodiode

« An intrinsic region is placed
between the p-type and n-type
regions

= W, = W, .;.n S0 that most of the

electron-hole pairs are generated
In the depletion region

i

i s

—> faster response time
(~10 GHz operation)

I (A)
In the dark /
Y ; N 1y (V)
operating point ol / D

with incident light
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Why are pn Junctions Important for ICs?

« The basic bulilding block Iin digital ICs Is the
MOS transistor, whose structure contains
reverse-biased diodes.

— pn junctions are important for electrical isolation of
transistors located next to each other at the
surface of a Si wafer.

— The junction capacitance of these diodes can limit

the performance (operating speed) of digital
circuits
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Device Isolation using pn Junctions

regions of n-type Si

n o  nJ _n/ Wn/ ‘nJ
p-type Si

No current flows If voltages are applied between n-type
regions, because two pn junctions are “pback-to-back”

n-region \l| /n-reginn
|
~7 DF
p-region
=> n-type regions isolated in p-type substrate and vice versa
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Transistor A Transistor B

- — - o —_—— -

We can build large circuits consisting of many transistors
without worrying about current flow between devices. The
P-n junctions isolate the transistors because there is

always at least one reverse-biased p-n junction in every
potential current path.
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Modern Field Effect Transistor (FET)

« An electric field is applied normal to the surface of the
semiconductor {by applying a voltage to an overlying
electrode), to modulate the conductance of the
semiconductor

— Modulate drift current flowing between 2 contacts
(“source” and “drain”) by varying the voltage on the
“‘gate” electrode

Metal-oxide-semiconductor ~ Sate
(MOS) FET: 3

Field —8
Oxide

Snurc;:-:..'-. Drain 3
|-'5‘-T':||I pe H.Eglﬂl"lﬂ L1 Field
Oxide
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MOSFET

« NMOS: N-channel Metal
Oxide Semiconductor

« L = channel length
« W = channel width

“Metal” (heavily

doped poly-Si) DRAIN

SOURCE ™

« A GATE electrode is placed above (electrically insulated
from) the silicon surface, and is used to control the
resistance between the SOURCE and DRAIN regions
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N-channel MOSFET
3

i D

=R

) AT

S
’\ gate
_é oxide insulator é’

« Without a gate voltage applied, no current can flow
between the source and drain regions.

« Above a certain gate-to-source voltage (threshold
voltage V), a conducting layer of mobile electrons is
formed at the Si surface beneath the oxide. These
electrons can carry current between the source and drain.
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N-channel vs. P-channel MOSFETs

NMOS PMOS
n+ poly-51 pt poly-51
e e
n+ n+ + -+
p-type 51 n-type Si

* For current to flow, Vo> V; For current to flow, Vo< V5

« Enhancement mode: ;> 0 Enhancement mode: 7 <0

« Depletion mode: V; <0 Depletion mode: V; > 0
— Transistor is ON when V=0V — Transistor is ON when V=0V

(“nt+” denotes very heavily doped n-type material; “p+” denotes very heavily doped n-type material)
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MOSFET Circuit Symbols

NMOS

n+ puly-51

N+

N+

n-type Si

EECS40, Spring 2004

s+,

B

(a) NMOS transistor

as 4-terminal device

G

P E 7

B

(a) PMOS transistol
as 4-termunal device
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(b NMOS transistol

as 3-terminal device

(r
PP [
(d) PMOS transistor

as s-lerminal device
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MOSFET Terminals

+ The voltage applied to the GATE terminal determines whether
current can flow between the SOURCE & DRAIN terminals.

— For an n-channel MOSFET, the SOURCE is biased at a fower
potential (often 0 V) than the DRAIN

(Electrons flow from SOURCE to DRAIN when V; = V)

— For a p-channel MOSFET, the SOURCE is biased at a higher
potential (often the supply voltage V) than the DRAIN

(Holes flow from SOURCE to DRAIN when V5 < V)
« The BODY terminal is usually connected o a fixed potential.

— For an n-channel MOSFET, the BODY is connectedto 0V
— For a p-channel MOSFET, the BODY is connected to V4,
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NMOSFET /; vs. Vs Characteristic

Consider the current f5 (flowing into G) versus Vgae!

I — o
G G
S D

[ 7 ] V
oxide T
Ve @5 semiconductor

T8

" The gate is insulated from the
semiconductor, so there is no
significant gate current.

always zero!

"4

T VGS
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The MOSFET as a Controlled Resistor

« The MOSFET behaves as a resistor when V. Is low:

— Drain current /- increases linearly with V.

— Resistance R . between SOURCE & DRAIN depends on V¢

* Rycis lowered as V| increases above V; oxide thickness = £,

NMOSFET Example:

\—l_;
ID =+
/
--"'-'-‘.‘! -

$ n

Vee=2V
Ve =1V =V
p-subslrale
Inversion charge density Q{x) = -C_,[ V.~-V~-V(x]]
fhe =0if Ve < V5 where C_ =5/,
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Sheet Resistance Revisited

Consider a sample of n-type semiconductor:

/

vV
€«<— + [\ —
\_/

W/

homogeneously doped sample

L

p 1 1 1
RS_ = = =_
t oot qunt w0,

where Q. Is the charge per unit area
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NMOSFET /, vs. Vs Characteristics

Next consider f; (flowing into D) versus Vpg, as Vgg Is varied:

G 4_’.9
S | D v
oxide e -
Ve @ semiconductor gfj
I Above threshold (V¢ > V;):
f “inversion layer” of electrons
Vos™> Vr appears, so conduction

: between § and D is possible
zero if Voo < Vi

3

» Vps Below “threshold” (V¢ < V;):
no charge - no conduction

EECS40, Spring 2004 Lecture 15, Slide 15 Frof. Sanders



MOSFET as a Controlled Resistor (cont'd)

I o VDS
n=
RDE.’
RDS:RS(LKW):U—W— LW V
e Qi #HCGI (VGS R T)
‘v\rage value
V of V(x)

W
b =l Z e $)VDS

We can make R low by
« applying a large “gate drive” (V- — V)
« making W large and/or L small
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Charge in an N-Channel MOSFET

Vae < Vo
GS If depletion region

. - (no inversion layer
3 A N? :
R --ﬂxl——*J | at surface)
______ : ==y

k)
Depletion region

: Inversion I.iu: 8
Vos "1 ST [, =W,V
e N / o \ i,
[:H‘|}||‘rll:-1|| region — WQ l;.-"E‘L-’JLJHE
| - - Vs
VDS >0 : b __: S i el 1 — WQ i?zw'u?z
(small) ' e e L

Average electron velocity v is proportional to lateral electric field E
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What Happens at Larger V7

Inversion-layer
i Is “pinched-off”
: at the drain end

Vps= VeV —

Vo> VeV g e isd p TP
D5 (5 e DU 5 e T O S T 7

1 |
= .

As V,. increases above V.V, =V,oup
the length of the “pinch-off” region AL increases:

- “extra” voltage (V,; — V., IS dropped across the distance AL
+ the voltage dropped across the inversion-layer “‘resistor” remains V,__,

— the drain current /, saturates

Note: Electrons are swept into the drain by the E-field when they enter the pinch-off region.
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Summary of /, vs. V¢

* As V¢ Increases, the inversion-layer charge density at
the drain end of the channel is reduced; therefore, /,
does not increase linearly with V..

« When Vo reaches V.. — V, the channel is "pinched off”
at the drain end, and /, saturates (i.e. it does not
increase with further increases in Vo).

W
I psar = 12,6, E(VG — V7 )2

pinch-off region
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I, vs. Vs Characteristics

The MOSFET I5-Vpe curve consists of two regions:

1) Resistive or “Triode” Region: 0 < Vg < Vg — V7

W | a1’
ot Ds 0 . : : L
I.D — k;-z E|:VG _VT B 7 :|V.DS Vs = Ve~ I".-fﬁ Ly .
where k) = 1. C__ | Resistive
/l

process transconductance parameter g,|

2) Saturation Region:

-
(Juatrat |-m~|mr:n ce

Vps » Vgs— V7
kW 5 v/ 1)
IDSHT :__(VG _VT) ;
2 L 0 -J.ﬁ/‘ 1 i 18 2 2.5
where &, = 4,C. “CUTOFF” region: V, < V,
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Channel-Length Modulation

If L is small, the effect of AL to reduce the inversion-layer
“resistor” length is significant

— I Increases noticeably with AL (i.e. with Vo)

Ip = Iy’ (1 + A V)

&'(Lﬁ-fL/

—«+— Ais the slope

I is the intercept

0

VDsat
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Velocity Saturation

At high elecftric fields, the average velocity of carriers is
NOT proportional to the field; it saturates at ~107 cm/sec
for both electrons and holes:
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Current Saturation in Modern MOSFETs

« |n digital ICs, we typically use transistors with the
shortest possible gate-length for high-speed operation.

» |n avery short-channel MOSFET, I, saturates because
the carrier velocity is limited to ~107 cm/sec
b A

Long-channel device
Short-channel device

™

| | >
¥ psar Vas- 17 Vs
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v is not proportional to E,
due to velocity saturation




Consequences of Velocity Saturation
1. I5 Is lower than that predicted by the mobility model

2. I Increases linearly with Vg — V5 rather than
quadratically in the saturation region

; Visar

267 — : . : - {pear =WC Vs — V5 — Viat

Vags= 23V |4 2
--—"'"_'_'_'_'_'_._._._'_._ L
2k -
where V.., =—v, .

Veg=2.0%

1 ]

V

| [ o1 | -_1|_'|"l|_ ndence

i)

] 0.5 1 1.5 2 25
"
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P-Channel MOSFET /, vs. V¢

« As compared to an n-channel MOSFET, the signs

of all the voltages and the currents are reversed:
¢ Short-channel PMOSFET -V

0

Note that the effects 02}
of velocity saturation
are less pronounced 04,
than for an NMOSFET. =
Why is this the case? s
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