Lecture #17 (cont'd from #16)

<u>OUTLINE</u>

- MOSFET I_D vs. V_{GS} characteristic
- Circuit models for the MOSFET
 - resistive switch model
 - small-signal model

Reading

- Rabaey et al.: Chapter 3.3.2
- Hambley: Chapter 12 (through 12.5)

MOSFET I_D vs. V_{GS} Characteristic

• Typically, V_{DS} is fixed when I_D is plotted as a function of V_{GS}

x 10⁴ quadratic 2 0.5 1.5 $V_{GS}(V)$

Short-channel MOSFET

EECS40, Spring 2004

Lecture 17, Slide 2

Prof. Sanders

MOSFET V_{τ} Measurement

V_T can be determined by plotting I_D vs. V_{GS}, using a low value of V_{DS}:

Subthreshold Conduction (Leakage Current)

- The transition from the ON state to the OFF state is gradual. This can be seen more clearly when I_D is plotted on a logarithmic scale:
- In the subthreshold (V_{GS} < V_T) region,

$$I_D \propto \exp\left(\frac{qV_{GS}}{nkT}\right)$$

This is essentially the channelsource pn junction current. (Some electrons diffuse from the source into the channel, if this pn junction is forward biased.)

Qualitative Explanation for Subthreshold Leakage

 The channel V_c (at the Si surface) is capacitively coupled to the gate voltage V_c:

Using the capacitive voltage divider formula:

$$\Delta V_c = \frac{C_{ox}}{C_{ox} + C_{dep}} \Delta V_G$$

The forward bias on the channel-source pn junction increases with V_G scaled by the factor $C_{ox} / (C_{ox} + C_{dep})$

$$\Rightarrow n = \frac{C_{ox} + C_{dep}}{C_{ox}} = 1 + \frac{C_{dep}}{C_{ox}}$$

Slope Factor (or Subthreshold Swing) S

S is defined to be the inverse slope of the log (I_D)
 vs. V_{GS} characteristic in the subthreshold region:

$$S = n \left(\frac{kT}{q}\right) \ln(10)$$

Units: Volts per decade

Note that S ≥ 60 mV/dec at room temperature:

$$\left(\frac{kT}{q}\right)\ln(10) = 60 \,\mathrm{mV}$$

V_{τ} Design Trade-Off

(Important consideration for digital-circuit applications)

Low V_T is desirable for high ON current

$$I_{DSAT} \propto (V_{DD} - V_T)^{\eta}$$
 1 < η < 2

where V_{DD} is the power-supply voltage

... but high V_T is needed for low OFF current

The MOSFET as a Resistive Switch

- For digital circuit applications, the MOSFET is either OFF (V_{GS} < V_T) or ON (V_{GS} = V_{DD}). Thus, we only need to consider two I_D vs. V_{DS} curves:
 - the curve for V_{GS} < V_T
 - 2. the curve for $V_{GS} = V_{DD}$

Equivalent Resistance R_{eq}

- In a digital circuit, an n-channel MOSFET in the ON state is typically used to discharge a capacitor connected to its drain terminal:
 - gate voltage V_G = V_{DD}
 - source voltage V_s = 0 V
 - drain voltage V_D initially at V_{DD}, discharging toward 0 V

The value of R_{eq} should be set to the value which gives the correct propagation delay (time required for output to fall to $\frac{1}{2}V_{\square\square}$):

$$R_{eq} \cong \frac{3}{4} \frac{V_{DD}}{I_{DSATn}} \left(1 - \frac{5}{6} \lambda_n V_{DD} \right)$$

Typical MOSFET Parameter Values

- For a given MOSFET fabrication process technology, the following parameters are known:
 - $V_T (\sim 0.5 \text{ V})$
 - C_{ox} and k' (<0.001 A/V²)
 - $V_{DSAT} (\leq 1 \text{ V})$
 - $-\lambda (\leq 0.1 \text{ V}^{-1})$

Example R_{eq} values for 0.25 μ m technology (W = L):

$V_{DD}(V)$	1	1.5	2	2.5
NMOS (kΩ)	35	19	15	13
PMOS (kΩ)	115	55	38	31

How can Reg be decreased?

P-Channel MOSFET Example

- In a digital circuit, a p-channel MOSFET in the ON state is typically used to charge a capacitor connected to its drain terminal:
 - gate voltage V_G = 0 V
 - source voltage $V_s = V_{DD}$ (power-supply voltage)
 - drain voltage V_D initially at 0 V, charging toward V_{DD}

$$R_{eq} \cong \frac{3}{4} \frac{V_{DD}}{\left|I_{DSATp}\right|} \left(1 - \frac{5}{6} \lambda_p V_{DD}\right)$$

$$I_{DSAT} = -\frac{k_p'}{2} \frac{W}{L} \left(V_{DD} - \left| V_{Tp} \right| \right)^2$$

Common-Source (CS) Amplifier

 V_{DD}

 The input voltage v_s causes v_{Gs} to vary with time, which in turn causes i_D to vary. The changing voltage drop across R_D causes an amplified (and inverted) version of the input signal to appear at the drain terminal.

Notation

- Subscript convention:
 - $V_{DS} \equiv V_D V_S$, $V_{GS} \equiv V_G V_S$, etc.
- Double-subscripts denote DC sources:
 - V_{DD}, V_{CC}, I_{SS}, etc.
- To distinguish between DC and incremental components of an electrical quantity, the following convention is used:
 - DC quantity: upper-case letter with upper-case subscript
 I_D , V_{DS} , etc.
 - Incremental quantity: lower-case letter with lower-case subscript
 i_d , v_{ds} , etc.
 - Total (DC + incremental) quantity:

lower-case letter with upper-case subscript

i_D , v_{DS} , etc.

Load-Line Analysis of CS Amplifier

 The operating point of the circuit can be determined by finding the intersection of the appropriate MOSFET ip vs. vps characteristic and the load line:

load-line equation:

$$V_{DD} = R_D i_D + v_{DS}$$

Voltage Transfer Function

Goal:

Operate the amplifier in the high-gain region, so that small changes in \mathbf{v}_{IN} result in large changes in \mathbf{v}_{OUT}

- (1): transistor biased in cutoff region
- (2): $\mathbf{v}_{IN} > \mathbf{V}_{T}$; transistor biased in saturation region
- (3): transistor biased in saturation region
- (4): transistor biased in "resistive" or "triode" region

Quiescent Operating Point

- The operating point of the amplifier for zero input signal (v_s = 0) is often referred to as the quiescent operating point. (Another word: bias.)
 - The bias point should be chosen so that the output voltage is approximately centered between V_{DD} and 0 V.
 - v_s varies the input voltage around the input bias point.

Note: The relationship between v_{out} and v_{in} is not linear; this can result in a distorted output voltage signal. If the input signal amplitude is very small, however, we can have amplification with negligible distortion.

Bias Circuit Example

Rules for Small-Signal Analysis

- A DC supply voltage source acts as a short circuit
 - Even if AC current flows through the DC voltage source, the AC voltage across it is zero.
- A DC supply current source acts as an open circuit
 - Even if AC voltage is applied across the current source, the AC current through it is zero.

NMOSFET Small-Signal Model

$$i_{d} = \frac{\partial i_{D}}{\partial v_{GS}} v_{gs} + \frac{\partial i_{D}}{\partial v_{DS}} v_{ds} = g_{m} v_{gs} + g_{o} v_{ds}$$

$$g_{\scriptscriptstyle m} \equiv rac{\partial i_{\scriptscriptstyle D}}{\partial v_{\scriptscriptstyle GS}} \cong rac{W}{L} k' (V_{\scriptscriptstyle GS} - V_{\scriptscriptstyle T})$$
 transconductance

$$g_o \equiv \frac{\partial l_D}{\partial v_{DG}} \cong \lambda I_D$$
 output conductance

Small-Signal Equivalent Circuit

$$v_{out} = -g_m v_{gs} (r_o \parallel R_D)$$

voltage gain
$$A_{v} = \frac{v_{out}}{v_{in}} = -g_{m}(r_{o} \parallel R_{D})$$