Lecture #18

OUTLINE

• Continue small signal analysis
• Logic functions
• NMOS logic gates
• The CMOS inverter

Reading

• Rabaey et al.: Chapter 5.2
• Hambleley: Chapter 7.1-7.2
Digital Signals

- For a digital signal, the voltage must be within one of two ranges in order to be defined:

- Positive Logic:
 - “low” voltage ≡ logic state 0
 - “high” voltage ≡ logic state 1
Logic Functions, Symbols, & Notation

<table>
<thead>
<tr>
<th>NAME</th>
<th>SYMBOL</th>
<th>NOTATION</th>
<th>TRUTH TABLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>“NOT”</td>
<td></td>
<td>$F = \overline{A}$</td>
<td></td>
</tr>
<tr>
<td>“OR”</td>
<td></td>
<td>$F = A + B$</td>
<td></td>
</tr>
<tr>
<td>“AND”</td>
<td></td>
<td>$F = A \cdot B$</td>
<td></td>
</tr>
</tbody>
</table>
NOR

\[F = \overline{A + B} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

NAND

\[F = \overline{A \cdot B} \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

XOR (exclusive OR)

\[F = A \oplus B \]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
NMOS Inverter ("NOT" Gate)

Circuit:

\[V_{DD} \]
\[R_D \]
\[i_D \]
\[V_{IN} \]
\[V_{DS} = V_{OUT} \]
\[V_{DD} \]
\[V_{DS} \]

Voltage-Transfer Characteristic

\[V_{IN} = V_{DD} \]

Increasing
\[V_{GS} = V_{IN} > V_T \]

<table>
<thead>
<tr>
<th>A</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Noise Margins

Definition of Input Levels

- Logic swing V_{sw}
- V_{OL} to V_{OH}
- V_{IL} to V_{IH}
- Slope $= -1$

Definition of Noise Margins

- Noise margin high $NM_H = V_{\text{OH}} - V_{\text{IH}}$
- Noise margin low $NM_L = V_{\text{IL}} - V_{\text{OL}}$

Gate output

Gate input

Undefined region

V_{OL}

V_{IL}

V_{IH}

V_{OH}
NMOS NAND Gate

- Output is low only if both inputs are high

Truth Table

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
NMOS NOR Gate

- Output is low if either input is high

Truth Table

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Disadvantages of NMOS Logic Gates

• Large values of R_D are required in order to
 - achieve a low value of V_{OL}
 - keep power consumption low

→ Large resistors are needed, but these take up a lot of space.

• One solution is to replace the resistor with an NMOSFET that is always on.
The CMOS Inverter: Intuitive Perspective

CIRCUIT

- V_{IN}
- V_{OUT}
- V_{DD}
- G
- S
- D

SWITCH MODELS

- V_{DD}
- V_{OUT}
- $V_{OL} = 0 \text{ V}$
- $V_{OH} = V_{DD}$
- R_p
- R_n

Low static power consumption, since one MOSFET is always off in steady state

$V_{IN} = V_{DD}$

$V_{IN} = 0 \text{ V}$
CMOS Inverter Voltage Transfer Characteristic

Diagram showing the voltage transfer characteristic of a CMOS inverter. The graph plots V_{OUT} against V_{IN} with V_{DD} as the upper limit. The characteristic is divided into regions labeled A, B, C, D, and E, each with a different state (N: off, P: lin, N: sat, P: sat, N: lin, P: off) for the NMOS and PMOS transistors.

The diagram also includes a circuit representation of a CMOS inverter with terminals labeled V_{IN} and V_{OUT}.
CMOS Inverter Load-Line Analysis

\[V_{IN} = V_{DD} + V_{GSp} \]

\[V_{OUT} = V_{DD} + V_{DSP} \]

Increasing \(V_{IN} \):
- \(V_{IN} = 0 \text{ V} \)
- \(V_{IN} = V_{DD} \)

Increasing \(V_{OUT} \):
- \(V_{DSP} = -V_{DD} \)
- \(V_{DSP} = 0 \)

\(I_{Dn} = -I_{DP} \)
CMOS Inverter Load-Line Analysis: Region A

\[V_{IN} \leq V_{Tn} \]

\[I_{Dn} = -I_{Dp} \]

\[V_{OUT} = V_{DSn} \]

\[V_{GSn} = V_{IN} - V_{DD} \]

\[V_{DSn} = V_{OUT} - V_{DD} \]
CMOS Inverter Load-Line Analysis: Region B

\[\frac{V_{DD}}{2} > V_{IN} > V_{Tn} \]

\[I_{Dn} = -I_{Dp} \]

\[V_{DSn} = V_{IN} - V_{DD} \]

\[V_{DSn} = V_{OUT} - V_{DD} \]

\[V_{OUT} = V_{DSn} \]
CMOS Inverter Load-Line Analysis: Region D

\[V_{DD} - |V_{Tp}| > V_{IN} > V_{DD}/2 \]

\[I_{Dn} = -I_{Dp} \]

\[V_{DSn} = V_{DD} - V_{OUT} \]

\[V_{GSp} = V_{IN} - V_{DD} \]
CMOS Inverter Load-Line Analysis: Region E

\[V_{IN} > V_{DD} - |V_{Tp}| \]

\[I_{Dn} = -I_{Dp} \]

\[V_{DSn} = V_{OUT} - V_{DD} \]

\[V_{OUT} = V_{DSn} \]