Lecture #19

ANNOUNCEMENTS

- Midterm 2 thurs. april 15, 9:40-11am.
- A-M initials in 10 Evans
- N-Z initials in Sibley auditorium
- Closed book, except for two 8.5 x 11 inch cheat sheets

OUTLINE

- The CMOS inverter (cont’d)
- CMOS logic gates
- The body effect

Reading (Rabaey et al.)
Chapter 5.5.1 (p.220); 6.2.1
Features of CMOS Digital Circuits

- The output is always connected to V_{DD} or GND in steady state
 - Full logic swing; large noise margins
 - Logic levels are not dependent upon the relative sizes of the devices ("ratioless")

- There is no direct path between V_{DD} and GND in steady state
 - No static power dissipation
The CMOS Inverter: Current Flow during Switching
Power Dissipation due to Direct-Path Current

Energy consumed per switching period: \(E_{dp} = t_{sc} V_{DD} I_{peak} \)
N-Channel MOSFET Operation

An NMOSFET is a closed switch when the input is high.

\[Y = X \text{ if A and B} \]

\[Y = X \text{ if A or B} \]

NMOSFETs pass a “strong” 0 but a “weak” 1.
P-Channel MOSFET Operation

A PMOSFET is a closed switch when the input is low

\[Y = X \text{ if } \overline{A} \text{ and } \overline{B} = (A + B) \]

PMOSFETs pass a “strong” 1 but a “weak” 0
Pull-Down and Pull-Up Devices

- In CMOS logic gates, NMOSFETs are used to connect the output to GND, whereas PMOSFETs are used to connect the output to V_{DD}.
 - An NMOSFET functions as a **pull-down device** when it is turned on (gate voltage = V_{DD})
 - A PMOSFET functions as a **pull-up device** when it is turned on (gate voltage = GND)
CMOS Pass Gate

\[Y = X \text{ if } A \]
The “Body Effect”

\[V_T = V_{T0} + \gamma \left(\sqrt{2\phi_F + V_{SB}} - \sqrt{2\phi_F} \right) \]

where \[\phi_F = \frac{kT}{q} \ln \left(\frac{N_B}{n_i} \right) \]

\(\gamma \) is the body effect coefficient

When the body-source pn junction is reverse-biased, \(|V_T|\) increases. Usually, we want to minimize \(\gamma \) so that \(I_{D_{sat}} \) will be the same for all transistors in a circuit.
Example (0.25 μm CMOS technology)