Lecture #21

ANNOUNCEMENT

« Midterm 2 thurs. april 15, 9:40-11am.

« A-M initials in 10 Evans

« N-Zinitials in Sibley auditorium

« Closed book, except for two 8.5 x 11 inch cheat sheets

« Comprehensive, but focuses on HW's 5-9; L's,C’s, 1%t-order

ckts,semiconductor devices, diode ckts, mosfet model,
common source amplifier

extra office hour with Mervin in 297 Cory next Monday 6-7pm
OUTLINE

— Sequential logic circuits

— Fan-out

— Propagation delay

— CMOS power consumption

Reading: Hambley Ch. 7; Rabaey et al. Secs. 5.2, 5.5, 6.2.1
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Flip-Flops

« One of the basic building blocks for sequential
circuits Is the flip-flop:
— 2 stable operating states = stores 1 bit of info.

— A simple flip-flop can be constructed using two
inverters:

oo

Q
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The S-R (“Set”-“Reset”) Flip-Flop

, o—s Qr—=°
S-R Flip-Flop Symbol:
0—R Q0
+ Rule 1:
— IfS=0and R =0, Q does not change.
+ Rule 2:
- IfS=0andR=1,thenQ=0
+ Rule 3:
- IfS=1and R=0,then Q=1
+ Rule 4:

— S =1 and R = 1 should never occur.
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Realization of the S-R Flip-Flop

SO

>

RO
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R S Q,
00 Q, .
0 1 1
1 0 0
1 1
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Clock Signals

« Often, the operation of a sequential circult Is
synchronized by a clock signal

ve(f) positive-going edge negative-going edge
(leading edge) /[trailing edge)
Vou
0 - Hime
T 2T

« The clock signal regulates when the circuits
respond to new Iinputs, so that operations occur
IN proper sequence.

« Sequential circuits that are regulated by a clock
signal are said to be synchronous.
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Clocked S$S-R Flip-Flop

D>
= Q

CK—¢

o >

+ When CK = 0, the value of Q does not change

Ol

When CK = 1, the circuit acts like an ordinary S-R flip-flop
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The D (“Delay”) Flip-Flop

D Flip-Flop Symbol:

o—D

o—PCK

Q
Q

—0

—0

« The output terminals Q and Q behave just as In

the S-R flip-flop.

+ Q changes only when the clock signal CK
makes a positive transition.
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CK D Q,
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D Flip-Flop Example (Timing Diagram)
CK

t

D
| f

Q
| | | | {
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Registers

« A register s an array of flip-flops that is used to
store or manipulate the bits of a digital word.

Example: Serial-In, Parallel-Out Shift Register

Parallel outputs ——=> Q Q, Q,

Data input 0—D, Q, l D, Q l D, Q,

CK CK CK

Clock input T T T
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Conclusion (Logic Circuits)

+ Complex combinational logic functions can be
achieved simply by interconnecting NAND gates
(or NOR gates).

« Logic gates can be interconnected to form flip-
flops.

+ Interconnections of flip-flops form registers.

« A complex digital system such as a computer
consists of many gates, flip-flops, and registers.
Thus, logic gates are the basic building blocks
for complex digital systems.
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Fan-Out

. Tyglcally, the output of a logic gate Is connected
he Input(s) of one or more logic gates

« The fan-out s the number of gates that are
connected to the output of the driving gate:

e
4[>’_[>°T > fan-out =N

f :
driving gate | |§; : L

* Fanout leads to Increased capacitive |load on the

driving gate, and therefore longer propagation delay
— The input capacitances of the driven gates sum, and must be
charged through the equivalent resistance of the driver
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Effect of Capacitive Loading

« When an input signal of a logic gate is changed, there is
a propagation defay before the output of the logic gate
changes. This is due to capacitive loading at the output.

Voo b

-

+
Vin

B C, I Vour
L 4, =

= = 5

The propagation delay is
measured between the

50% transition points of

the input and output signals.

- | e = =
—

WHL |
or 3 4 'I

10%

!

. >
<—p
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Calculating the Propagation Delay

Model the MOSFET In the ON state as a resistive switch:

Case 1: V, , changing from High to Low
(Input signal changed from Low to High)

= NMOSFET(s) connect V, , to GND

VDD
try= 0.69xR.C, I
Pull-up network is modeled as an open switch =
Vin = Vpp 3
Pull-down network is modeled as a resistor EEEp R” CL — Your
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Calculating the Propagation Delay (cont'd)

Case 2: V,, changing from Low to High
(Input sighal changed from High to Low)

= PMOSFET(s) connect V_,;to V-

tin=0.69xR C, Vo,
Pull-up network is modeled as a resistor mmmp Rp
=0V +
Pull-down network is modeled as an open switch === CL — Your
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Output Capacitance of a Logic Gate

« The output capacitance of a logic gate Is
comprised of several components:
“intrinsic — * pnh-junction and gate-drain capacitance
capacitance”™  _ poth NMOS and PMOS transistors
N—— { capacitance of connecting wires

capacitance” L * INpUt capacitances of the fan-out gates
G Impact of gate-drain capacitance .
A T - iu
o |I ‘—
\ —_— )

Il"lu.u:
_t B
h 1 S —
W] I::> Al Tf—‘ =

Figure 5.14 The Miller effect—A capacitor experiencing identical but opposite voltage swings at both
s termunals can be replaced by a capacilor 1o ground, whose value 15 two tmes the oniginal value
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Minimizing Propagation Delay

« A fast gate is built by

1. Keeping the output capacitance C; small

— Minimize the area of drain pn junctions.

— Lay out devices to minimize interconnect
capacitance.

— Avoid large fan-out.

2. Decreasing the equivalent resistance of
the transistors
— Decrease L

— Increase W
... but this increases pn junction area and hence C,

3. Increasing Vj,,

— trade-off with power consumption & reliability
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Transistor Sizing for Performance

+ Widening the transistors
reduces resistance, but
Increases capacitance

 |In order to have the on-state

resistance of the PMOS
transistor match that of the

Voor NMOS transistor (e.g. to
achieve a symmetric voltage
transfer curve), its W/L ratio
must be larger by a factor of
~3. To achieve minimum
propagation delay, however,
the optimum factor is ~2.

E‘f
1 j_, l_g o
0 O o %) k
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CMOS Energy Consumption (Review)

+ The energy delivered by the voltage source in charging
the load capacitance is CLVDED

— Half of this is stored in C,; the other half is absorbed by the
resistance through which C, is charged.
—|n ohe complete cycle (charging and discharging), the

total energy delivered by the voltage source is CLVDED

R
P V=0V

W p—
+ .
Vop C_D R —C
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CMOS Power Consumption

+ The total power consumed by a CMOS circuit
Is comprised of several components:

1. Dynamic power consumption due to charging
and discharging capacitances®:

r dvn = CL Vﬂzﬂfml = CEFF Vﬂzﬂf

f,, = frequency of 0= 1 transitions (“switching activity’)
f = clock rate (maximum possible event rate)

Effective capacitance C. = average capacitance
charged every clock cycle

* This is typically by far the dominant component!
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CMOS Power Consumption (cont'd)

during switching

P, =l P of

Dynamic power consumption due to direct-path

currents

Coc = thea! Vo 1s the equivalent capacitance charged every
clock cycle due to “short-circuits™ between vV, & GND

(typically <10% of total power consun

Static power consumption

due to transistor leakage
and pn-junction leakage

F

SEcal

=1V

Skcak
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Low-Power Design Techniques

1. Reduce V,,

— quadratic effect on den

Example: Reducing V,, from 2.5V to 1.25V
reduces power dissipation by factor of 4

— Lower bound is set by V. V,; should be >2V

2. Reduce load capacitance
— Use minimum-sized transistors whenever possible

3. Reduce the switching activity

— Involves design considerations at the architecture
level (beyond the scope of this class!)
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NAND Gates vs. NOR Gates

« |n order for a 2-input NAND gate to have the same pull-
down delay (f,,) as an inverter, the NMOS devices In
the NAND gate must be made twice as wide.

— This first-order analysis neglects the increase in capacitance
which results from widening the transistors.

— Note: The delay depends on the input signal pattern.

* |n order for a 2-input NOR gate to have the same pull-up
delay (f,;;;) as an Inverter, the PMOS devices In the NOR
gate must be made twice as wide.

— Since hole mobility is lower than electron mobility (so that larger
W/ L ratios are needed for PMOS devices as compared with
NMOS devices), stacking PMOS devices in series (as Is done in
a NOR gate) should be avoided as much as possible.

— NAND gates are preferred for implementing logic!
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