Lecture #21

<u>ANNOUNCEMENT</u>

- Midterm 2 thurs, april 15, 9:40-11am.
- A-M initials in 10 Evans
- N-Z initials in Sibley auditorium
- Closed book, except for two 8.5 x 11 inch cheat sheets
- Comprehensive, but focuses on HW's 5-9; L's,C's, 1st-order ckts,semiconductor devices, diode ckts, mosfet model, common source amplifier
- extra office hour with Mervin in 297 Cory next Monday 6-7pm

<u>OUTLINE</u>

- Sequential logic circuits
- Fan-out
- Propagation delay
- CMOS power consumption

Reading: Hambley Ch. 7; Rabaey et al. Secs. 5.2, 5.5, 6.2.1

Flip-Flops

- One of the basic building blocks for sequential circuits is the flip-flop:
 - 2 stable operating states → stores 1 bit of info.
 - A simple flip-flop can be constructed using two inverters:

The S-R ("Set"-"Reset") Flip-Flop

S-R Flip-Flop Symbol:

- Rule 1:
 - If S = 0 and R = 0, Q does not change.
- Rule 2:
 - If S = 0 and R = 1, then Q = 0
- Rule 3:
 - If S = 1 and R = 0, then Q = 1
- Rule 4:
 - S = 1 and R = 1 should never occur.

Realization of the S-R Flip-Flop

R	S	Q _n
0	0	Q _{n-1}
0	1	î Î
1	0	0
1	1	(not allowed)

Clock Signals

 Often, the operation of a sequential circuit is synchronized by a clock signal:

- The clock signal regulates when the circuits respond to new inputs, so that operations occur in proper sequence.
- Sequential circuits that are regulated by a clock signal are said to be synchronous.

Clocked S-R Flip-Flop

- When CK = 0, the value of Q does not change
- When CK = 1, the circuit acts like an ordinary S-R flip-flop

The D ("Delay") Flip-Flop

D Flip-Flop Symbol:

- The output terminals Q and Q behave just as in the S-R flip-flop.
- Q changes only when the clock signal CK makes a positive transition.

СК	D	Q _n
0	×	Q _{n-1}
1	×	_
1	0	ա _{ո-1} 0
1	1	1

D Flip-Flop Example (Timing Diagram)

Registers

 A register is an array of flip-flops that is used to store or manipulate the bits of a digital word.

Example: Serial-In, Parallel-Out Shift Register

Conclusion (Logic Circuits)

- Complex combinational logic functions can be achieved simply by interconnecting NAND gates (or NOR gates).
- Logic gates can be interconnected to form flipflops.
- Interconnections of flip-flops form registers.
- A complex digital system such as a computer consists of many gates, flip-flops, and registers.
 Thus, logic gates are the basic building blocks for complex digital systems.

Fan-Out

- Typically, the output of a logic gate is connected to the input(s) of one or more logic gates
- The fan-out is the number of gates that are connected to the output of the driving gate:

- Fanout leads to increased capacitive load on the driving gate, and therefore longer propagation delay
 - The input capacitances of the driven gates sum, and must be charged through the equivalent resistance of the driver

Effect of Capacitive Loading

 When an input signal of a logic gate is changed, there is a propagation delay before the output of the logic gate changes. This is due to capacitive loading at the output.

Calculating the Propagation Delay

Model the MOSFET in the ON state as a resistive switch:

Case 1: V_{out} changing from High to Low (input signal changed from Low to High)

Calculating the Propagation Delay (cont'd)

Case 2: V_{out} changing from Low to High (input signal changed from High to Low)

PMOSFET(s) connect V_{out} to V_{DD}

Output Capacitance of a Logic Gate

- The output capacitance of a logic gate is comprised of several components:
- "intrinsic -> pn-junction and gate-drain capacitance capacitance"
 - both NMOS and PMOS transistors
 - capacitance of connecting wires
 - input capacitances of the fan-out gates

Figure 5.14 The Miller effect—A capacitor experiencing identical but opposite voltage swings at both its terminals can be replaced by a capacitor to ground, whose value is two times the original value.

Minimizing Propagation Delay

A fast gate is built by

Keeping the output capacitance C_L small

- Minimize the area of drain pn junctions.
- Lay out devices to minimize interconnect capacitance.
- Avoid large fan-out.

2. Decreasing the equivalent resistance of the transistors

- Decrease L
- Increase W
 - ... but this increases pn junction area and hence C_L

3. Increasing V_{DD}

→ trade-off with power consumption & reliability

Transistor Sizing for Performance

- Widening the transistors reduces resistance, but increases capacitance
- In order to have the on-state resistance of the PMOS transistor match that of the NMOS transistor (e.g. to achieve a symmetric voltage transfer curve), its W/L ratio must be larger by a factor of ~3. To achieve minimum propagation delay, however, the optimum factor is ~2.

CMOS Energy Consumption (Review)

- The energy delivered by the voltage source in charging the load capacitance is C_LV²_{DD}
 - Half of this is stored in C_L; the other half is absorbed by the resistance through which C_I is charged.
- \rightarrow In one complete cycle (charging and discharging), the total energy delivered by the voltage source is $C_L V_{DD}^2$

CMOS Power Consumption

- The total power consumed by a CMOS circuit is comprised of several components:
 - Dynamic power consumption due to charging and discharging capacitances*:

$$P_{dyn} = C_L V_{DD}^2 f_{0\rightarrow 1} = C_{EFF} V_{DD}^2 f$$

 $f_{0\rightarrow 1}$ = frequency of $0\rightarrow 1$ transitions ("switching activity")

f = clock rate (maximum possible event rate)

Effective capacitance C_{EFF} = average capacitance charged every clock cycle

* This is typically by far the dominant component!

CMOS Power Consumption (cont'd)

2. Dynamic power consumption due to direct-path currents during switching

$$P_{dp} = C_{sc}V_{DD}^2 f$$

 $C_{sc} = t_{sc}I_{peak}IV_{DD}$ is the equivalent capacitance charged every clock cycle due to "short-circuits" between V_{DD} & GND

(typically <10% of total power consun

3. Static power consumption due to transistor leakage and pn-junction leakage

$$P_{\it stat} = I_{\it stat} V_{\it DD}$$

Low-Power Design Techniques

1. Reduce V_{DD}

- → quadratic effect on P_{dyn} Example: Reducing V_{DD} from 2.5 V to 1.25 V reduces power dissipation by factor of 4
- Lower bound is set by V_T : V_{DD} should be >2 V_T

2. Reduce load capacitance

→ Use minimum-sized transistors whenever possible

3. Reduce the switching activity

 involves design considerations at the architecture level (beyond the scope of this class!)

NAND Gates vs. NOR Gates

- In order for a 2-input NAND gate to have the same pull-down delay (t_{pHL}) as an inverter, the NMOS devices in the NAND gate must be made twice as wide.
 - This first-order analysis neglects the increase in capacitance which results from widening the transistors.
 - Note: The delay depends on the input signal pattern.
- In order for a 2-input NOR gate to have the same pull-up delay (t_{pLH}) as an inverter, the PMOS devices in the NOR gate must be made twice as wide.
 - Since hole mobility is lower than electron mobility (so that larger W/L ratios are needed for PMOS devices as compared with NMOS devices), stacking PMOS devices in series (as is done in a NOR gate) should be avoided as much as possible.
 - → NAND gates are preferred for implementing logic!