Lecture #25

OUTLINE

- Device isolation methods
- Electrical contacts to Si
- Mask layout conventions
- Process flow examples
 - Resistor
 - N-channel MOSFET
 - CMOS process flow
- Circuit extraction from layout
Device Isolation Methods

(1) pn-junction isolation:

Cross-Sectional View:

- device area 1
- device area 2
- depletion region

Top View:

- The substrate is biased to ensure that the pn junctions are never forward biased
(2) Oxide isolation:

(3) Silicon-on-Insulator substrate:
Electrical Contacts to Si

- In order to achieve a low-resistance ("ohmic") contact between metal and silicon, the silicon must be heavily doped:

Metal contact to n-type Si

\[N_D \geq 10^{20} \text{ cm}^{-3} \]

Metal contact to p-type Si

\[N_A \geq 10^{19} \text{ cm}^{-3} \]

→ To contact the body of a MOSFET, locally heavy doping is used.
Mask Layout

- Typically, multiple lithography steps are needed in order to fabricate an integrated circuit.
 - Each lithography step utilizes a mask with the desired pattern for a specific layer.

- Computer-aided design (CAD) tools are used to generate the masks
 - The desired pattern for each layer is drawn, and can be overlaid with the patterns for other layers, to make sure that they are properly aligned to each other

Layout Example:
MOSFET gate pattern overlaid with "active area" pattern

Process layers:
- "Active" area
- Gate (poly-Si)
What if the physical mask looks like this?

Most of the area of the exposure field is dark

“dark-field” mask

Layout:

Pattern from another mask

Layout is all color, with the exception of a few holes

→ very inconvenient to draw and to display
Dark-Field / Light-Field Convention

A dark-field mask blocks our view of underlying layers

...but if we draw the "negative" (or "complement") of masks that are dark-field, the CAD layout is much easier, and the overlaid layers are easier to visualize

Rather than this:

Draw only the "holes" on the layout, i.e. the clear areas

To indicate that the CAD layout is the negative of the mask, label it "dark field". "Clear field" indicates a "positive" mask.
Process Flow Example #1: Resistor

Three-mask process:
Starting material: p-type wafer with $N_A = 10^{16}$ cm3
Step 1: grow 500 nm of SiO$_2$
Step 2: pattern oxide using the oxide mask (dark field)
Step 3: implant phosphorus and anneal to form an n-type layer with $N_D = 10^{20}$ cm3 and depth 100 nm
Step 4: deposit oxide to a thickness of 500 nm
Step 5: pattern deposited oxide using the contact mask (dark field)
Step 6: deposit aluminum to a thickness of 1 μm
Step 7: pattern using the aluminum mask (clear field)

Layout:
A-A Cross-Section

Step 2: Pattern oxide
- Oxide etchant
- Photoresist patterned using mask #1
- SiO₂
- p-type Si

Step 3: Implant & Anneal
- Phosphorus ions
- Phosphorus blocked by oxide
- Phosphorus implant:
- After anneal of phosphorus implant:
 - n⁺ layer
 - Lateral diffusion of phosphorus under oxide during anneal
Step 4: Deposit 500 nm oxide

- 1st layer of SiO₂
- 2nd layer of SiO₂
- p-type Si
- n⁺ layer

Step 5: Pattern oxide

- Open holes for metal contacts
- p-type Si
- n⁺ layer

Step 7: Pattern metal

- Al
- p-type Si
- n⁺ layer
Importance of Layer-to-Layer Alignment

Example: metal line to contact hole

→ marginal contact

→ no contact!

Example of Design Rule:
If the minimum feature size is 2λ, then the safety margin for overlay error is λ.

→ Design Rules are needed:
- Interface between designer & process engineer
- Guidelines for designing masks
IC RESISTOR MASK LAYOUTS – REGISTRATION OF EACH MASK

Registration of mask patterns is critical → show separate layouts to avoid ambiguity

- Oxide mask (dark field)
- Contact mask (dark field)
- Al mask (clear field)

"registration" shows overlay of patterns

Registration of one mask to the next (also called "alignment" and "overlay") is a crucial aspect of lithography
Same Layout but with misregistration (misalignment)

perfect registration

Contact mask misaligned by 2\(\mu\)m

Lets look again at cross-section A-A to understand the consequence of this misalignment. Note contact mask \(\rightarrow 2\mu m\)
Layout with no misregistration (misalignment)

perfect registration

n-type layer

STEP 7
Thus we need safety margins in layout which take into account the possible tolerances in fabrication. Each process has a set of “design rules” which specify the safety margins.
N-channel MOSFET

Schematic Cross-Sectional View

Layout (Top View)

4 lithography steps are required:
1. active area
2. gate electrode
3. contacts
4. metal interconnects
Process Flow Example #2: nMOSFET

1) Thermal oxidation (~10 nm "pad oxide")

2) Silicon-nitride (Si₃N₄) deposition by CVD (~40nm)

3) Active-area definition (lithography & etch)

4) Boron ion implantation ("channel stop" implant)
5) Thermal oxidation to grow oxide in “field regions”

6) \(\text{Si}_3\text{N}_4 \) & pad oxide removal

7) Thermal oxidation (“gate oxide”)

8) Poly-Si deposition by CVD

9) Poly-Si gate-electrode patterning (litho. & etch)

10) P or As ion implantation to form \(n^+ \) source and drain regions
11) SiO₂ CVD

12) Contact definition (litho. & etch)

13) Al deposition by sputtering

14) Al patterning by litho. & etch to form interconnects
CMOS Technology

Challenge: Build both NMOS & PMOS transistors on a single silicon chip

- NMOSFETs need a p-type substrate
- PMOSFETs need an n-type substrate

→ Requires extra process steps!
Conceptual CMOS Process Flow

n-type wafer

*Create “p-well”

Grow thick oxide

*Remove thick oxide in transistor areas (“active region”)

Grow gate oxide

Deposit & *pattern poly-Si gate electrodes

*Dope n channel source and drains (need to protect PMOS areas)

*Dope p-channel source and drains (need to protect NMOS areas)

Deposit insulating layer (oxide)

*Open contact holes

Deposit and *pattern metal interconnects

→ At least 3 more masks, as compared to NMOS process
Additional Process Steps Required for CMOS

1. Well Formation

- Top view of p-well mask (dark field)
- Cross-sectional view of wafer

- Before transistor fabrication, we must perform the following process steps:
 1. grow oxide layer; pattern oxide using p-well mask
 2. implant phosphorus; anneal to form deep p-type regions
2. Masking the Source/Drain Implants

“Select p-channel” → We must protect the n-channel devices during the boron implantation step, and

“Select n-channel” → We must protect the p-channel devices during the arsenic implantation step

Example: Select p-channel

[Diagram showing the process of masking the source/drain implants]
Forming Body Contacts

Modify oxide mask and “select” masks:
1. Open holes in original oxide layer, for body contacts
2. Include openings in select masks, to dope these regions
Select Masks

N-select:

P-select:
CMOS Inverter Layout

Note body contacts:
- p-well to GND
- n-substrate to V_{DD}

PMOS
$W/L = 9\lambda/2\lambda$

NMOS
$W/L = 3\lambda/2\lambda$

P-well mask (dark field)
Active (clear field)
Gate (clear field)
Select mask (dark field & clear field)
Contact (dark field)
Metal (clear field)
Modern CMOS Process at a Glance

1. Define active areas; etch Si trenches
2. Fill trenches (deposit SiO₂ then CMP)
3. Form wells (implantation + thermal anneal)
4. Grow gate oxide
5. Deposit poly-Si and pattern gate electrodes
6. Implant source/drain and body-contact regions
7. Activate dopants (thermal anneal)
8. Deposit insulating layer (SiO₂); planarize (CMP)
9. Open contact holes; deposit & pattern metal layer
Visualizing Layouts and Cross-Sections with SIMPLer

SIMPL is a CAD tool created by Prof. Neureuther’s group
- allows IC designers to visualize device cross-sections corresponding to a fabrication process and physical layout.

A Berkeley undergraduate student, Harlan Hile, created a mini-version of SIMPL (called SIMPLer) for EECS40.
- It’s a JAVA program -> can be run on any computer, as well as on a web server.
- You can access it directly at
 http://www.ocf.berkeley.edu/~hhile/SIMPLer/SIMPLer.html
Circuit Extraction from Layouts

Procedure:

1) Inspect layout and identify obvious devices:
 - NMOSFETs
 - PMOSFETs
 - wires (metal or poly-Si)

2) Identify other (often undesired) circuit components:
 - resistances (e.g. associated with long wires)
 - capacitances

3) Draw schematic (V_{DD} at top, GND at bottom)
Identifying a MOSFET

Poly-Si line crossing over an “active” region → MOSFET!

Active area (thin oxide)

If the active area is located within p-well region → NMOS
If the active area is NOT located in p-well region → PMOS
Example: Circuit Extraction from Layout