Lecture #25

<u>OUTLINE</u>

- Device isolation methods
- Electrical contacts to Si
- Mask layout conventions
- Process flow examples
 - Resistor
 - N-channel MOSFET
 - CMOS process flow
- Circuit extraction from layout

Device Isolation Methods

(1) pn-junction isolation:

Cross-Sectional View:

Top View:

The substrate
 is biased to
 ensure that the
 pn junctions
 are never
 forward biased

(2) Oxide isolation:

(3) Silicon-on-Insulator substrate:

Electrical Contacts to Si

 In order to achieve a low-resistance ("ohmic") contact between metal and silicon, the silicon must be heavily doped:

Metal contact to n-type Si

Metal contact to p-type Si

→ To contact the body of a MOSFET, locally heavy doping is used.

Mask Layout

- Typically, multiple lithography steps are needed in order to fabricate an integrated circuit.
 - Each lithography step utilizes a mask with the desired pattern for a specific layer.
- Computer-aided design (CAD) tools are used to generate the masks
 - The desired pattern for each layer is drawn, and can be overlaid with the patterns for other layers, to make sure that they are properly aligned to each other

Layout Example:

MOSFET gate pattern overlaid with "active area" pattern

What if the physical mask looks like this?

Layout is all color, with the exception of a few holes

→ very inconvenient to draw and to display

Dark-Field / Light-Field Convention

A dark-field mask blocks our view of underlying layers

...but if we draw the "negative" (or "complement") of masks that are dark-field, the CAD layout is much easier, and the overlaid layers are easier to visualize

To indicate that the CAD layout is the <u>negative</u> of the mask, label it "<u>dark field</u>". "Clear field" indicates a "positive" mask.

Process Flow Example #1: Resistor

Three-mask process:

Starting material: p-type wafer with $N_A = 10^{16}$ cm⁻³

Step 1: grow 500 nm of SiO₂

Step 2: pattern oxide using the oxide mask (dark field)

Step 3: implant phosphorus and anneal to form an n-type

layer with $N_D = 10^{20}$ cm⁻³ and depth 100 nm

Step 4: deposit oxide to a thickness of 500 nm

Step 5: pattern deposited oxide using the contact mask (dark field)

Step 6: deposit aluminum to a thickness of 1 µm

Step 7: pattern using the aluminum mask (clear field)

Contact mask (dark field) All mask (clear field)

A-A Cross-Section

EECS40, Spring 2004

Lecture 25, Slide 9

Prof. Sanders

Importance of Layer-to-Layer Alignment

Example: metal line to contact hole

→ marginal contact

→ no contact!

safety margin to allow for misalignment

- → Design Rules are needed:
 - Interface between designer & process engineer
 - Guidelines for designing masks

IC RESISTOR MASK LAYOUTS – REGISTRATION OF EACH MASK

Registration of mask patterns is critical \rightarrow show separate layouts to avoid ambiguity

Registration of one mask to the next (also called "alignment" and "overlay") is a crucial aspect of lithography

Same Layout but with misregistration (misalignment)

Lets look again at cross-section A-A to understand the consequence of this misalignment.

Note contact mask

2μm

Layout with no misregistration (misalignment)

Layout with misregistration (misalignment)

Thus we need safety margins in layout which take into account the possible tolerances in fabrication. Each process has a set of "design rules" which specify the safety margins.

N-channel MOSFET

Schematic Cross-Sectional View

p-type substrate

Layout (Top View)

- 4 lithography steps are required:
- 1. active area
- 2. gate electrode
- 3. contacts
- 4. metal interconnects

Lecture 25, Slide 16

Process Flow Example #2: nMOSFET

1) Thermal oxidation (~10 nm "pad oxide") Cross-Section View Silicon nitride Silicon-nitride (Si₃N₄) Top View of Masks deposition by CVD p-type silicon (~40nm) Boron (a) implant 3) Active-area definition (lithography & etch) p 4) Boron ion implantation (b)

("channel stop" implant)

- 5) Thermal oxidation to grow oxide in "field regions"
- 6) Si₃N₄ & pad oxide removal
- 7) Thermal oxidation ("gate oxide")
- 8) Poly-Si deposition by CVD
- Poly-Si gate-electrode patterning (litho. & etch)
- 10) P or As ion implantation to form n+ source and drain regions

12) Contact definition (litho. & etch)

14) Al patterning by litho. & etch to form interconnects

CMOS Technology

Challenge: Build both NMOS & PMOS transistors on a single silicon chip

- NMOSFETs need a p-type substrate
- PMOSFETs need an n-type substrate
- → Requires extra process steps!

Conceptual CMOS Process Flow

*Remove thick oxide in transistor areas ("active region")

Grow gate oxide

Deposit & *pattern poly-Si gate electrodes

*Dope n channel source and drains (need to protect PMOS areas)

*Dope p-channel source and drains (need to protect NMOS areas)

Deposit insulating layer (oxide)

*Open contact holes

→ At least 3 more masks, as compared to NMOS process

Deposit and *pattern metal interconnects

Additional Process Steps Required for CMOS

1. Well Formation

- Before transistor fabrication, we must perform the following process steps:
 - grow oxide layer; pattern oxide using p-well mask
 - implant phosphorus; anneal to form deep p-type regions

2. Masking the Source/Drain Implants

"Select p-channel" -> We must protect the n-channel devices during the boron implantation step, and

"Select n-channel" -> We must protect the p-channel devices during the arsenic implantation step

Example: Select p-channel

Forming Body Contacts

Modify oxide mask and "select" masks:

- Open holes in original oxide layer, for body contacts
- 2. Include openings in select masks, to dope these regions

Select Masks

N-select:

P-select:

CMOS Inverter Layout

Modern CMOS Process at a Glance

Visualizing Layouts and Cross-Sections with SIMPLer

SIMPL is a CAD tool created by Prof. Neureuther's group

 allows IC designers to visualize device cross-sections corresponding to a fabrication process and physical layout.

A Berkeley undergraduate student, Harlan Hile, created a mini-version of SIMPL (called SIMPLer) for EECS40.

- It's a JAVA program -> can be run on any computer, as well as on a web server.
- You can access it directly at

http://www.ocf.berkeley.edu/~hhile/SIMPLer/SIMPLer.html

Circuit Extraction from Layouts

Procedure:

- 1) Inspect layout and identify obvious devices:
 - NMOSFETs
 - PMOSFETs
 - wires (metal or poly-Si)
- 2) Identify other (often undesired) circuit components:
 - resistances (e.g. associated with long wires)
 - capacitances
- Draw schematic (V_{DD} at top, GND at bottom)

Identifying a MOSFET

Poly-Si line crossing over an "active" region → MOSFET!

If the active area is located within p-well region → NMOS

If the active area is NOT located in p-well region → PMOS

Example: Circuit Extraction from Layout

