Lecture #26

ANNOUNCEMENTS
« Basic Tutebot demonstration due by Fri. May 7 in lab section

« Tutebot demonstration contest on Tues., May 11, 9:30-11am,
10 Evans — possible extra credit for strong efforts. Class staff

will judge.

OUTLINE

Interconnect modeling
Propagation delay with interconnect
Inter-wire capacitance
Pi model for capacitive coupling
Coupling capacitance effects

— loading

— crosstalk

Reading (Rabaey ef al.)
Chapter 4: Secs. 4.1-4.4.4 ; Chapter 5: pp. 212-213
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Interconnects

« An interconnect is a thin-film wire that electrically
connects 2 or more components in an integrated circuit.

* |nterconnects can introduce parasitic (unwanted)
components of capacitance, resistance, and inductance.
These “parasitics” detrimentally affect

— performance {(e.g. propagation delay)
— power consumption
— reliability

« As fransistors are scaled down in size and the number of

metal wiring layers increases, the impact of interconnect
parasitics increases.

— Need to model interconnects, to evaluate their impact
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Interconnect Resistance & Capacitance

Metal lines run over thick
oxide covering the substrate

— contribute RESISTANCE
& CAPACITANCE to the
output node of the
driving logic gate
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Wire Resistance

R . =

_prL

=R

wire

HW

L
4

H]
¥
e Material Sheet Res. ((/0)
n, p well diffusion 1000 to 1500
Material pL2-m) n+, p+ diffusion 50 to 150
Silver (Ag) 16 x 10% n+, p+ diffusion dto 5
= T RERTT with silicide
;FJT;I; lle — 5 1 }_;_ polysilicon 150 to 200
el | SoX W polysilicon with 4105
Aluminum (Al) | 2.7 x 10° silicide
5.5 x 104 Aluminum 0.05 to 0.1

I Tungsten (W)
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Interconnect Resistance Example

Typical values of R, and R, are ~10 kQ, for W/L = 1
.. but R, R, are much lower for large transistors
(used to drive long interconnects with reasonable £,)
Compare with the resistance of a 0.5um-thick Al wire:
Ry=p/H=27 pQ-cm)/ (0.5 um)=54x 102 Q/
Example: £ =1000 um, W="1um
2> R,.=R (L/W)
= (5.4 x 102 Q/f )1000/1) = 54 Q
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Wire Capacitance: The Parallel Plate Model

single wire over
a substrate:

Current How

elgctric field lines

helectric
Relative Pemmnittivities

Subsirate Mutarin .
Free space I
Acrogels 1.5
Folyimides (orgamc) -4
E ) Siheon dioxde i
C — i ;l:’ 2 Cilass-cpoxy (P board) 3
HE f Silicon Nitride (Si;N,) 75
,:.f' Alumina (package) .5
Silicon 11.7
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Parallel-Plate Capacitance Example

« Oxide layer is typically ~500 nm thick
* Interconnect wire width is typically ~0.5 um wide (1st level)

= capacitance per unit length = 345 fF/cm = 34.5 aF/um

Example: £ =30 um

< C,, = 11F (compare with C ~ 2 fF)

EECS40, Spring 2004 Lecture 26, Slide 7 Frof. Sanders



Fringing-Field Capacitance

For W/t,<1.3, C;,, is dominant

Fringing feids i
o~ Sy il
b V. ___5 - !
g B i ! T T E E::E
R P T 7, & o
— _\/_/ u.zE
mamlw-mai;liwmumuﬁ i | : Y ; i g
Wire capacitance per unit length:
wEe . 27TE .
sz’re — C —I_ Cﬁ“mge " = T - w=W — E
t, log(t, /H) 2
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Modeling an Interconnect

Problem: Wire resistance and capacitance to underlying
substrate is spread along the length of the wire

“Distributed RC line”

1

We will start with a simple model...
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Lumped RC Model

Model the wire as single capacitor and single resistor:

* C,..o IS placed at the end of the interconnect
—s adds to the gate capacitance of the load

* R, 1S placed at the logic-gate output node
— adds to the MOSFET equivalent resistance

Rwim

—W

S Cwim

substrate
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Cascaded CMOS Inverters w/ Interconnect

Equivalent resistance R,,
AR A
V é ( wWireg WIire )

in
C.irﬂrinsic |
— —

Using “lumped RC” model for interconnect:

R-:ir' Rw:'re

— W

C

IRIMTRSIC T T Wi T

C

fanaut

T.D — Rdrcjﬂfr:ﬂssﬁ T (Rcir T sz’re )(Cw.t're T C f{IP‘mHI)
Cﬁmﬂwf T (Re;ir Fult C

il R C Ak (Rc:fr +R Wire
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Effect of Interconnect Scaling

L | e,
sz're — J'G Edz (WL)—I_ R-Edl oC pgcfz'LE
WH | t, log(t, / H) |

R

WIire

+ Interconnect delay scales as square of L

= minimize interconnect length!

* If W is large, then it does not appear in R,,,;,.C .

« Capacitance due to fringing fields becomes more significant
as Wis reduced; C .  doesn't actually scale with W for small W

Wire
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Propagation Delay with Interconnect

Using the lumped-RC interconnect model:
tp = 0.697,
=069 R, +0.69(R, + R

dr = intrinsic

+0.69(R, + R

2

wire ) Janatit

WIire WIFe

In reality, the interconnect resistance & capacitance are
distributed along the length of the interconnect.
- The interconnect delay is actually less than R, .C, ..

t,=0.69R,C, et 0.69(R, +R,.C

dr = mtrinsic

+(0.69R, +0.38R
A

The 0.38 factor accounts for the fact that the wire
resistance and capacitance are distributed.
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Interconnect Wire-to-Wire Capacitance

Wire A simply has capacitance (C,, + C,,,..) to substrate

Wire B has additional sidewall capacitance to neighboring wires

Wire C has additional capacitance to the wire above it
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Wiring Examples - Intel Processes

Advanced processes: narrow linewidths, taller wires, close
spacing —> relatively large inter-wire capacitances

ILD = Fluorinated Si0_

—1=3.6
. spect B

ungsien
Plugs
IR MLIL
INERgEEEpn
Intel 0.25pm Process (Al Tungsten
5 Layers - Tungsten Vias Plugs

Source: intel Technical Joumal 3098
Intel 0.13pm Process (Cu]

Source: Intef Technical Joumal 2Q02
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Effects of Inter-Wire Capacitance

« Capacitance between closely spaced lines
leads to two major effects:

1. Increased capacitive loading on driven nodes
(speed loss)

2. Unwanted transfer of signals from one place to
another through capacitive coupling
“crosstalk”

+  We will use a very simple model to estimate the
magnitude of these effects. In real circult
designs, very careful analysis Is necessary.
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Pi1 Model for Capacitive Coupling

There are three Wire 1 has CC

capacitances as
illustrated

resistance R,

Wire 2 has

resistance R,
Lising a simple lumped

model for each wire we
have three
capacitances and two
resistances

R
| R, R, ‘| R,
| i Which, when NN | |
o redrawn in a Ce
i Il plane,hasa“n® ~ —— —
S &2 shape T . &=F
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Coupling Capacitance: Loading Effect

4|>a—_—|>a— A) Coupling to grounded

T —— adjacent line
%>Q___D% B} Coupling to floating

I ﬂdjﬂCEI"It line
4|>‘3—_—|>"* C) Coupling to driven

adjacent line

Case C is well-approximated
to be the same as case A
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Case A: Coupling to Grounded Line

D Wire 1 D

T
Wire 2 —

Insert the Pi model:

E ‘ R = >D‘ C, and C. are in parallel with
1 7| - 4
A e the input capacitance of

| |
| | inverter 2, C. .
CC Sy
o, —— P This combined C is driven by
Ik o T the output resistance of
_I_T inverter 1 in series with the
intrinsic capacitance of Inverter 1 line resistance R,
= Rr:irl cutl + (R + Rr:irl XC + C + sz )
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Case B: Coupling to Floating Line

D Wire 1 D

Wire 2

Insert the Pi model:

4‘ >¢_‘ 2
R, R, Dﬂi C, is in parallel with the series
combination of C-and C,.

| |
C| |
= This combined C is driven by the
Ci—— — Cs output resistance of inverter 1 in
1 series with the line resistance R,
( 3\
£AE
(0 Rr:irlcﬂuﬂ + (Rl + Rr:irl )' C1 + — 4 C.z'ﬂz
k C, +C, )
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Coupling Capacitance: Crosstalk

Wire 1
—>0—_*>0* Signal from (1) couples

‘ Wire 2 ‘ to adjacent line
—3 >07

Insert Pi model:

D"* Note that (4) receives both
R R; from (3) and from (1). The

| |
CI | latter is undesired crosstalk.
L. - 1 . 4 Similarly, (2) receives signal
Clo—= T both from (1) and from (3).

Let's assume (3) is quiet, and (1) is broadcasting...
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Ve want to estimate
D‘}* the magnitude of the
R R; j crosstalk signal at

the input to (4).

VWe cannot easily treat this problem exactly (yet), but we can see that:

1. The crosstalk signal is attenuated by the capacitive voltage
divider C. in series with (C, || C,., ).

2. If C.is very large, about half the signal from (1) is coupled into (4)
because of the voltage divider R,+R,,, in series with R.+R -
where V. , is tapped off at the center.
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Approaches to Reducing Crosstalk

1. Increase inter-wire spacing (decrease C.)

2. Decrease field-oxide thickness (decrease C-/C,)

...but this loads the driven nodes and thus decreases circuit speed.

3. Place ground lines (or V lines) between signal lines

ground

'ﬂ"f t h‘

Si0,

Silicon substrate
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